← Back

Therapy

Topic spotlight
TopicWorld Wide

therapy

Discover seminars, jobs, and research tagged with therapy across World Wide.
100 curated items60 Seminars40 ePosters
Updated 10 months ago
100 items · therapy
100 results
SeminarNeuroscience

Brain macrophage transplantation for research and therapy development

Chris Bennett
University of Pennsilvania
Jan 29, 2025
SeminarNeuroscience

Rett syndrome, MECP2 and therapeutic strategies

Rudolf Jaenisch
Whitehead Institute for Biomedical Research and Department of Biology, MIT, Cambridge, USA
Dec 10, 2024

The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss two topics: (i) the use of gene editing as an approach to therapy and (ii) the role of MECP2 in gene expression (i) The mutation of the X-linked MECP2 gene is causative for the disease. In a female patient, every cell has a wt copy that is, however, in 50% of the cells located on the inactive X chromosome. We have used epigenetic gene editing tools to activate the wt MECP2 allele on the inactive X chromosome. (ii) MECP2 is thought to act as repressor of gene expression. I will present data which show that MECP2 binds to Pol II and acts as an activator for thousands of genes. The target genes are significantly enriched for Autism related genes. Our data challenge the established model of MECP2’s role in gene expression and suggest novel therapeutic approaches.

SeminarNeuroscience

Traumatic brain injury and the visual sequela

Daniella Rutner
SUNY
Nov 25, 2024
SeminarNeuroscience

Evolution of convulsive therapy from electroconvulsive therapy to Magnetic Seizure Therapy; Interventional Neuropsychiatry

Mustafa Husain, MD & Prof. Nolan Williams, MD
Duke University / UT Southwestern Medical Center & Stanford University
Apr 24, 2024

In April, we will host Nolan Williams and Mustafa Husain. Be prepared to embark on a journey from early brain stimulation with ECT to state-of-the art TMS protocols and magnetic seizure therapy! The talks will be held on Thursday, April 25th at noon ET / 6PM CET. Nolan Williams, MD, is an associate professor of Psychiatry and Behavioral Science at Stanford University. He developed the SAINT protocol, which is the first FDA-cleared non-invasive, rapid-acting neuromodulation treatment for treatment-resistant depression. Mustafa Husain, MD, is an adjunct professor of Psychiatry and Behavioral Sciences at Duke University and a professor of Psychiatry and Neurology at UT Southwestern Medical Center, Dallas. He will tell us about “Evolution of convulsive therapy from electroconvulsive therapy to Magnetic Seizure Therapy”. As always, we will also get a glimpse at the “Person behind the science”. Please register va talks.stimulatingbrains.org to receive the (free) Zoom link, subscribe to our newsletter, or follow us on Twitter/X for further updates!

SeminarNeuroscience

Gene therapy for hearing loss: where do we go from ear?

Christopher Cederroth
HNO at University Hospital Tübingen
Nov 1, 2023
SeminarNeuroscience

Use of brain imaging data to improve prescriptions of psychotropic drugs - Examples of ketamine in depression and antipsychotics in schizophrenia

Xenia Marlene HART.
Central Institute of Mental Health, Department of Molecular Neuroimaging, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany & Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
Oct 12, 2023

The use of molecular imaging, particularly PET and SPECT, has significantly transformed the treatment of schizophrenia with antipsychotic drugs since the late 1980s. It has offered insights into the links between drug target engagement, clinical effects, and side effects. A therapeutic window for receptor occupancy is established for antipsychotics, yet there is a divergence of opinions regarding the importance of blood levels, with many downplaying their significance. As a result, the role of therapeutic drug monitoring (TDM) as a personalized therapy tool is often underrated. Since molecular imaging of antipsychotics has focused almost entirely on D2-like dopamine receptors and their potential to control positive symptoms, negative symptoms and cognitive deficits are hardly or not at all investigated. Alternative methods have been introduced, i.e. to investigate the correlation between approximated receptor occupancies from blood levels and cognitive measures. Within the domain of antidepressants, and specifically regarding ketamine's efficacy in depression treatment, there is limited comprehension of the association between plasma concentrations and target engagement. The measurement of AMPA receptors in the human brain has added a new level of comprehension regarding ketamine's antidepressant effects. To ensure precise prescription of psychotropic drugs, it is vital to have a nuanced understanding of how molecular and clinical effects interact. Clinician scientists are assigned with the task of integrating these indispensable pharmacological insights into practice, thereby ensuring a rational and effective approach to the treatment of mental health disorders, signaling a new era of personalized drug therapy mechanisms that promote neuronal plasticity not only under pathological conditions, but also in the healthy aging brain.

SeminarNeuroscience

Therapy in the Digital Age: Learnings from a Swedish Study (n=2400) on CBT vs. PDT + thoughts about ChatGPT

Per Carlbring
Stockholm University, Sweden
Jun 14, 2023
SeminarNeuroscience

Restoring function in advanced disease with photoreceptor cell replacement therapy

Rachael Pearson
King's College London
Jun 12, 2023
SeminarNeuroscience

Mechanisms Underlying the Persistence of Cancer-Related Fatigue

Elisabeth G. Vichaya
Baylor University
May 22, 2023

Cancer-related fatigue is a prominent and debilitating side effect of cancer and its treatment. It can develop prior to diagnosis, generally peaks during cancer treatment, and can persist long after treatment completion. Its mechanisms are multifactorial, and its expression is highly variable. Unfortunately, treatment options are limited. Our research uses syngeneic murine models of cancer and cisplatin-based chemotherapy to better understand these mechanisms. Our data indicate that both peripherally and centrally processes may contribute to the developmental of fatigue. These processes include metabolic alterations, mitochondrial dysfunction, pre-cachexia, and inflammation. However, our data has revealed that behavioral fatigue can persist even after the toxicity associated with cancer and its treatment recover. For example, running during cancer treatment attenuates kidney toxicity while also delaying recovery from fatigue-like behavior. Additionally, administration of anesthetics known to disrupt memory consolidation at the time treatment can promote recovery, and treatment-related cues can re-instate fatigue after recovery. Cancer-related fatigue can also promote habitual behavioral patterns, as observed using a devaluation task. We interpret this data to suggest that limit metabolic resources during cancer promote the utilization of habit-based behavioral strategies that serve to maintain fatigue behavior into survivorship. This line of work is exciting as it points us toward novel interventional targets for the treatment of persistent cancer-related fatigue.

SeminarNeuroscienceRecording

Aging promotes reactivation from metastatic melanoma dormancy

Mitchell Fane
Fox Chase Cancer Center
Mar 29, 2023
SeminarNeuroscienceRecording

How does the primary tumor imprint a dormancy signature in disseminated tumor cells?

Lucia Borriello
Lewis Katz School of Medicine and Fox Chase Cancer Center
Mar 29, 2023
SeminarNeuroscienceRecording

T cells specific for alpha-myosin drive immunotherapy-related myocarditis

Margaret L. Axelrod
Vanderbilt University Medical Center
Mar 22, 2023
SeminarNeuroscienceRecording

CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor

Nataliya Prokhnevska
MSKCC
Mar 22, 2023
SeminarNeuroscience

Harnessing mRNA metabolism for the development of precision gene therapy

Jeff Coller, PhD
Johns Hopkins Medicine
Mar 15, 2023
SeminarNeuroscience

Myelin Formation and Oligodendrocyte Biology in Epilepsy

Angelika Mühlebner
Universitair Medisch Centrum Utrecht
Feb 15, 2023

Epilepsy is one of the most common neurological diseases according to the World Health Organization (WHO) affecting around 70 million people worldwide [WHO]. Patients who suffer from epilepsy also suffer from a variety of neuro-psychiatric co-morbidities, which they can experience as crippling as the seizure condition itself. Adequate organization of cerebral white matter is utterly important for cognitive development. The failure of integration of neurologic function with cognition is reflected in neuro-psychiatric disease, such as autism spectrum disorder (ASD). However, in epilepsy we know little about the importance of white matter abnormalities in epilepsy-associated co-morbidities. Epilepsy surgery is an important therapy strategy in patients where conventional anti-epileptic drug treatment fails . On histology of the resected brain samples, malformations of cortical development (MCD) are common among the epilepsy surgery population, especially focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC). Both pathologies are associated with constitutive activation of the mTOR pathway. Interestingly, some type of FCD is morphological similar to TSC cortical tubers including the abnormalities of the white matter. Hypomyelination with lack of myelin-producing cells, the oligodendrocytes, within the lesional area is a striking phenomenon. Impairment of the complex myelination process can have a major impact on brain function. In the worst case leading to distorted or interrupted neurotransmissions. It is still unclear whether the observed myelin pathology in epilepsy surgical specimens is primarily related to the underlying malformation process or is just a secondary phenomenon of recurrent epileptic seizures creating a toxic micro-environment which hampers myelin formation. Interestingly, mTORC1 has been implicated as key signal for myelination, thus, promoting the maturation of oligodendrocytes . These results, however, remain controversial. Regardless of the underlying pathophysiologic mechanism, alterations of myelin dynamics, depending on their severity, are known to be linked to various kinds of developmental disorders or neuropsychiatric manifestations.

SeminarNeuroscienceRecording

Children-Agent Interaction For Assessment and Rehabilitation: From Linguistic Skills To Mental Well-being

Micole Spitale
Department of Computer Science and Technology, University of Cambridge
Feb 6, 2023

Socially Assistive Robots (SARs) have shown great potential to help children in therapeutic and healthcare contexts. SARs have been used for companionship, learning enhancement, social and communication skills rehabilitation for children with special needs (e.g., autism), and mood improvement. Robots can be used as novel tools to assess and rehabilitate children’s communication skills and mental well-being by providing affordable and accessible therapeutic and mental health services. In this talk, I will present the various studies I have conducted during my PhD and at the Cambridge Affective Intelligence and Robotics Lab to explore how robots can help assess and rehabilitate children’s communication skills and mental well-being. More specifically, I will provide both quantitative and qualitative results and findings from (i) an exploratory study with children with autism and global developmental disorders to investigate the use of intelligent personal assistants in therapy; (ii) an empirical study involving children with and without language disorders interacting with a physical robot, a virtual agent, and a human counterpart to assess their linguistic skills; (iii) an 8-week longitudinal study involving children with autism and language disorders who interacted either with a physical or a virtual robot to rehabilitate their linguistic skills; and (iv) an empirical study to aid the assessment of mental well-being in children. These findings can inform and help the child-robot interaction community design and develop new adaptive robots to help assess and rehabilitate linguistic skills and mental well-being in children.

SeminarNeuroscienceRecording

Programmed axon death: from animal models into human disease

Michael Coleman
Department of Clinical Neurosciences, University of Cambridge
Jan 30, 2023

Programmed axon death is a widespread and completely preventable mechanism in injury and disease. Mouse and Drosophila studies define a molecular pathway involving activation of SARM1 NA Dase and its prevention by NAD synthesising enzyme NMNAT2 . Loss of axonal NMNAT2 causes its substrate, NMN , to accumulate and activate SARM1 , driving loss of NAD and changes in ATP , ROS and calcium. Animal models caused by genetic mutation, toxins, viruses or metabolic defects can be alleviated by blocking programmed axon death, for example models of CMT1B , chemotherapy-induced peripheral neuropathy (CIPN), rabies and diabetic peripheral neuropathy (DPN). The perinatal lethality of NMNAT2 null mice is completely rescued, restoring a normal, healthy lifespan. Animal models lack the genetic and environmental diversity present in human populations and this is problematic for modelling gene-environment combinations, for example in CIPN and DPN , and identifying rare, pathogenic mutations. Instead, by testing human gene variants in WGS datasets for loss- and gain-of-function, we identified enrichment of rare SARM1 gain-of-function variants in sporadic ALS , despite previous negative findings in SOD1 transgenic mice. We have shown in mice that heterozygous SARM1 loss-of-function is protective from a range of axonal stresses and that naturally-occurring SARM1 loss-of-function alleles are present in human populations. This enables new approaches to identify disorders where blocking SARM1 may be therapeutically useful, and the existence of two dominant negative human variants in healthy adults is some of the best evidence available that drugs blocking SARM1 are likely to be safe. Further loss- and gain-of-function variants in SARM1 and NMNAT2 are being identified and used to extend and strengthen the evidence of association with neurological disorders. We aim to identify diseases, and specific patients, in whom SARM1 -blocking drugs are most likely to be effective.

SeminarNeuroscience

Myelin Formation and Oligodendrocyte Biology in Epilepsy

Angelika Mühlebner
Universitair Medisch Centrum Utrecht
Oct 18, 2022

Epilepsy is one of the most common neurological diseases according to the World Health Organization (WHO) affecting around 70 million people worldwide [WHO]. Patients who suffer from epilepsy also suffer from a variety of neuro-psychiatric co-morbidities, which they can experience as crippling as the seizure condition itself. Adequate organization of cerebral white matter is utterly important for cognitive development. The failure of integration of neurologic function with cognition is reflected in neuro-psychiatric disease, such as autism spectrum disorder (ASD). However, in epilepsy we know little about the importance of white matter abnormalities in epilepsy-associated co-morbidities. Epilepsy surgery is an important therapy strategy in patients where conventional anti-epileptic drug treatment fails . On histology of the resected brain samples, malformations of cortical development (MCD) are common among the epilepsy surgery population, especially focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC). Both pathologies are associated with constitutive activation of the mTOR pathway. Interestingly, some type of FCD is morphological similar to TSC cortical tubers including the abnormalities of the white matter. Hypomyelination with lack of myelin-producing cells, the oligodendrocytes, within the lesional area is a striking phenomenon. Impairment of the complex myelination process can have a major impact on brain function. In the worst case leading to distorted or interrupted neurotransmissions. It is still unclear whether the observed myelin pathology in epilepsy surgical specimens is primarily related to the underlying malformation process or is just a secondary phenomenon of recurrent epileptic seizures creating a toxic micro-environment which hampers myelin formation. Interestingly, mTORC1 has been implicated as key signal for myelination, thus, promoting the maturation of oligodendrocytes . These results, however, remain controversial. Regardless of the underlying pathophysiologic mechanism, alterations of myelin dynamics, depending on their severity, are known to be linked to various kinds of developmental disorders or neuropsychiatric manifestations.

SeminarNeuroscience

Radiopharmaceutical evaluation of novel bifunctional chelators and bioconjugates for tumour imaging and therapy

Manja Kubeil
Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden- Rossendorf (HDZR), Germany
Oct 11, 2022

Bispidines (3,7-diazabicyclo[3.3.1]nonane) and their derivatives act as bifunctional chelators (BFC), combining the advantages of multidentate macrocyclic and acyclic ligands e.g. high kinetic inertness, rapid radiolabelling under mild conditions. This bicyclic chelator system shows a great diversity in terms of its denticity and type of functional groups, yielding a wide range of multidentate ligands that can bind a variety of different metal ions. In addition, they allow a facile functionalisation of targeting molecules such as peptides, peptidomimetics, and bispeci􀄀c antibodies. Herein, examples of various bispidine complexes labelled with [64Cu]Cu2+, [111In]In3+, [ 177Lu]Lu3+ or [ 225Ac]Ac3+ will be presented which provide a picture of how different substituents in􀄁uence the coordination mode. Target-speci􀄀c radiolabelled bispidine-based conjugates (e.g. peptides, antibody fragments, antibodies) investigated in vivo by positron emission or single-photon emission computed tomography will be presented and discussed in terms of their suitability for nuclear medicine applications.

SeminarNeuroscience

Faking emotions and a therapeutic role for robots and chatbots: Ethics of using AI in psychotherapy

Bipin Indurkhya
Cognitive Science Department, Jagiellonian University, Kraków
May 18, 2022

In recent years, there has been a proliferation of social robots and chatbots that are designed so that users make an emotional attachment with them. This talk will start by presenting the first such chatbot, a program called Eliza designed by Joseph Weizenbaum in the mid 1960s. Then we will look at some recent robots and chatbots with Eliza-like interfaces and examine their benefits as well as various ethical issues raised by deploying such systems.

SeminarNeuroscience

Reconstructing inhibitory circuits in a damaged brain

Robert Hunt
University of California-Irvine
May 17, 2022

Inhibitory interneurons govern the sparse activation of principal cells that permits appropriate behaviors, but they among the most vulnerable to brain damage. Our recent work has demonstrated important roles for inhibitory neurons in disorders of brain development, injury and epilepsy. These studies have motivated our ongoing efforts to understand how these cells operate at the synaptic, circuit and behavioral levels and in designing new technologies targeting specific populations of interneurons for therapy. I will discuss our recent efforts examining the role of interneurons in traumatic brain injury and in designing cell transplantation strategies - based on the generation of new inhibitory interneurons - that enable precise manipulation of inhibitory circuits in the injured brain. I will also discuss our ongoing efforts using monosynaptic virus tracing and whole-brain clearing methods to generate brain-wide maps of inhibitory circuits in the rodent brain. By comprehensively mapping the wiring of individual cell types on a global scale, we have uncovered a fundamental strategy to sustain and optimize inhibition following traumatic brain injury that involves spatial reorganization of local and long-range inputs to inhibitory neurons. These recent findings suggest that brain damage, even when focally restricted, likely has a far broader affect on brain-wide neural function than previously appreciated.

SeminarNeuroscience

The Synaptome Architecture of the Brain: Lifespan, disease, evolution and behavior

Seth Grant
Professor of Molecular Neuroscience, Centre for Clinical Brain Sciences, University of Edinburgh, UK
May 1, 2022

The overall aim of my research is to understand how the organisation of the synapse, with particular reference to the postsynaptic proteome (PSP) of excitatory synapses in the brain, informs the fundamental mechanisms of learning, memory and behaviour and how these mechanisms go awry in neurological dysfunction. The PSP indeed bears a remarkable burden of disease, with components being disrupted in disorders (synaptopathies) including schizophrenia, depression, autism and intellectual disability. Our work has been fundamental in revealing and then characterising the unprecedented complexity (>1000 highly conserved proteins) of the PSP in terms of the subsynaptic architecture of postsynaptic proteins such as PSD95 and how these proteins assemble into complexes and supercomplexes in different neurons and regions of the brain. Characterising the PSPs in multiple species, including human and mouse, has revealed differences in key sets of functionally important proteins, correlates with brain imaging and connectome data, and a differential distribution of disease-relevant proteins and pathways. Such studies have also provided important insight into synapse evolution, establishing that vertebrate behavioural complexity is a product of the evolutionary expansion in synapse proteomes that occurred ~500 million years ago. My lab has identified many mutations causing cognitive impairments in mice before they were found to cause human disorders. Our proteomic studies revealed that >130 brain diseases are caused by mutations affecting postsynaptic proteins. We uncovered mechanisms that explain the polygenic basis and age of onset of schizophrenia, with postsynaptic proteins, including PSD95 supercomplexes, carrying much of the polygenic burden. We discovered the “Genetic Lifespan Calendar”, a genomic programme controlling when genes are regulated. We showed that this could explain how schizophrenia susceptibility genes are timed to exert their effects in young adults. The Genes to Cognition programme is the largest genetic study so far undertaken into the synaptic molecular mechanisms underlying behaviour and physiology. We made important conceptual advances that inform how the repertoire of both innate and learned behaviours is built from unique combinations of postsynaptic proteins that either amplify or attenuate the behavioural response. This constitutes a key advance in understanding how the brain decodes information inherent in patterns of nerve impulses, and provides insight into why the PSP has evolved to be so complex, and consequently why the phenotypes of synaptopathies are so diverse. Our most recent work has opened a new phase, and scale, in understanding synapses with the first synaptome maps of the brain. We have developed next-generation methods (SYNMAP) that enable single-synapse resolution molecular mapping across the whole mouse brain and extensive regions of the human brain, revealing the molecular and morphological features of a billion synapses. This has already uncovered unprecedented spatiotemporal synapse diversity organised into an architecture that correlates with the structural and functional connectomes, and shown how mutations that cause cognitive disorders reorganise these synaptome maps; for example, by detecting vulnerable synapse subtypes and synapse loss in Alzheimer’s disease. This innovative synaptome mapping technology has huge potential to help characterise how the brain changes during normal development, including in specific cell types, and with degeneration, facilitating novel pathways to diagnosis and therapy.

SeminarNeuroscienceRecording

Genetic-based brain machine interfaces for visual restoration

Serge Picaud
Institute Vision Paris
Apr 12, 2022

Visual restoration is certainly the greatest challenge for brain-machine interfaces with the high pixel number and high refreshing rate. In the recent year, we brought retinal prostheses and optogenetic therapy up to successful clinical trials. Concerning visual restoration at the cortical level, prostheses have shown efficacy for limited periods of time and limited pixel numbers. We are investigating the potential of sonogenetics to develop a non-contact brain machine interface allowing long-lasting activation of the visual cortex. The presentation will introduce our genetic-based brain machine interfaces for visual restoration at the retinal and cortical levels.

SeminarNeuroscienceRecording

Antisense oligonucleotide mediated exon skipping therapy development for Duchenne muscular dystrophy takes more than an oligonucleotide

Annemieke Aartsma-Rus
Leiden University Medical Center, the Netherlands
Mar 28, 2022
SeminarNeuroscienceRecording

Mutation targeted gene therapy approaches to alter rod degeneration and retain cones

Maureen McCall
University of Louisville
Mar 27, 2022

My research uses electrophysiological techniques to evaluate normal retinal function, dysfunction caused by blinding retinal diseases and the restoration of function using a variety of therapeutic strategies. We can use our understanding or normal retinal function and disease-related changes to construct optimal therapeutic strategies and evaluate how they ameliorate the effects of disease. Retinitis pigmentosa (RP) is a family of blinding eye diseases caused by photoreceptor degeneration. The absence of the cells that for this primary signal leads to blindness. My interest in RP involves the evaluation of therapies to restore vision: replacing degenerated photoreceptors either with: (1) new stem or other embryonic cells, manipulated to become photoreceptors or (2) prosthetics devices that replace the photoreceptor signal with an electronic signal to light. Glaucoma is caused by increased intraocular pressure and leads to ganglion cell death, which eliminates the link between the retinal output and central visual processing. We are parsing out of the effects of increased intraocular pressure and aging on ganglion cells. Congenital Stationary Night Blindness (CSNB) is a family of diseases in which signaling is eliminated between rod photoreceptors and their postsynaptic targets, rod bipolar cells. This deafferents the retinal circuit that is responsible for vision under dim lighting. My interest in CSNB involves understanding the basic interplay between excitation and inhibition in the retinal circuit and its normal development. Because of the targeted nature of this disease, we are hopeful that a gene therapy approach can be developed to restore night vision. My work utilizes rodent disease models whose mutations mimic those found in human patients. While molecular manipulation of rodents is a fairly common approach, we have recently developed a mutant NIH miniature swine model of a common form of autosomal dominant RP (Pro23His rhodopsin mutation) in collaboration with the National Swine Resource Research Center at University of Missouri. More genetically modified mini-swine models are in the pipeline to examine other retinal diseases.

SeminarNeuroscience

Gene Therapy in Epilepsy

Merab Kokaia
Lund University
Mar 1, 2022
SeminarNeuroscience

Activity-dependent Gene Therapy for Epilepsy

Gabriele Lignani
University College London
Feb 15, 2022
SeminarNeuroscience

Personalized Psychotherapy

Wolfgang Lutz
University of Trier
Jan 26, 2022
SeminarNeuroscienceRecording

Mechanisms of CACNA1A-associated developmental epileptic encephalopathies

Elsa Rossignol
University of Montreal
Nov 2, 2021

Developmental epileptic encephalopathies are early-onset epilepsies, often refractory to therapy, with developmental delay or regression. These disorders carry poor neurodevelopmental prognosis, with long-term refractory epilepsy and persistent cognitive, behavioral and motor deficits. Mutations in the CACNA1A gene, encoding the pore-forming α1 subunit of CaV2.1 voltage-gated calcium channels, result in a spectrum of neurological disorders, including severe, early-onset epileptic encephalopathies. Recent work from the Rossignol lab helped characterize the phenotypic spectrum of CACNA1A-related epilepsies in humans. Using conditional genetics and novel animal models, the Rossignol lab unveiled some of the underlying pathophysiological mechanisms, including critical deficits in cortical inhibition, resulting in seizures and a range of cognitive-behavioral deficits. Importantly, Dr. Rossignol’s team demonstrated that the targeted activation of specific GABAergic interneuron populations in selected cortical regions prevents motor seizures and reverts attention deficits and cognitive rigidity in mouse models of the disorder. These recent findings open novel avenues for the treatment of these severe CACNA1A-associated neurodevelopmental disorders.

SeminarNeuroscience

Understanding the Assessment of Spatial Neglect and its Treatment Using Prism Adaptation Training

Matthew Checketts
Division of Neuroscience & Experimental Psychology and Division of Psychology and Mental Health, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
Oct 4, 2021

Spatial neglect is a syndrome that is most frequently associated with damage to the right hemisphere, although damage to the left hemisphere can also result in signs of spatial neglect. It is characterised by absent or deficient awareness of the contralesional side of space. The screening and diagnosis of spatial neglect lacks a universal gold standard, but is usually achieved by using various modes of assessment. Spatial neglect is also difficult to treat, although prism adaptation training (PAT) has in the past reportedly showed some promise. This seminar will include highlights from a series of studies designed to identify knowledge gaps, and will suggest ways in which these can be bridged. The first study was conducted to identify and quantify clinicians’ use of assessment tools for spatial neglect, finding that several different tools are in use, but that there is an emerging consensus and appetite for harmonisation. The second study included PAT, and sought to uncover whether PAT can improve engagement in recommended therapy in order to improve the outcomes of stroke survivors with spatial neglect. The final study, a systematic review and meta-analysis, sought to investigate the scientific efficacy (rather than clinical effectiveness) of PAT, identifying several knowledge gaps in the existing literature and a need for a new approach in the study of PAT in the clinical setting.

SeminarNeuroscience

Brain-Machine Interfaces: Beyond Decoding

José del R. Millán
University of Texas at Austin
Sep 15, 2021

A brain-machine interface (BMI) is a system that enables users to interact with computers and robots through the voluntary modulation of their brain activity. Such a BMI is particularly relevant as an aid for patients with severe neuromuscular disabilities, although it also opens up new possibilities in human-machine interaction for able-bodied people. Real-time signal processing and decoding of brain signals are certainly at the heart of a BMI. Yet, this does not suffice for subjects to operate a brain-controlled device. In the first part of my talk I will review some of our recent studies, most involving participants with severe motor disabilities, that illustrate additional principles of a reliable BMI that enable users to operate different devices. In particular, I will show how an exclusive focus on machine learning is not necessarily the solution as it may not promote subject learning. This highlights the need for a comprehensive mutual learning methodology that foster learning at the three critical levels of the machine, subject and application. To further illustrate that BMI is more than just decoding, I will discuss how to enhance subject learning and BMI performance through appropriate feedback modalities. Finally, I will show how these principles translate to motor rehabilitation, where in a controlled trial chronic stroke patients achieved a significant functional recovery after the intervention, which was retained 6-12 months after the end of therapy.

SeminarNeuroscienceRecording

Cluster Headache: Improving Therapy for the Worst Pain Experienced by Humans

Peter Goadsby
King's College London, UK & UCLA, USA
Sep 2, 2021

Cluster headache is a brain disorder dominated clinically by dreadful episodes of excruciating pain with a circadian pattern and most often focused in bouts with circannual periodicity. As we have understood its neurobiology new therapies, including those directed at calcitonin gene-related peptide, are helpful improve the lives of sufferers.

SeminarNeuroscience

LONG-ACTING ANTIPSYCHOTICS: OPTION DOWN THE ROCKY ROAD, NICE TO HAVE OR ESSENTIAL CHOICE?

Christoph U. Correll
The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell New York, USA & Charité – Universitätsmedizin Berlin, Berlin, Germany
Aug 30, 2021

Time and again we are faced with the question at what point in the treatment of schizophrenia a depot formulation should be used. The data on the so-called LAIs (Long-Acting Injectables) has steadily increased in recent years. Today, we have very good evidence for the early use of depot therapies. However, the willingness and consent of the patient for this form of pharmacotherapy remains central to the successful use of LAIs. In his lecture, Prof. Correll will talk about the current evidence for the use of LAIs summarizing the latest studies.

SeminarNeuroscienceRecording

Gene therapy for Optic Neuropathies

José-Alain Sahel
University of Pittsburgh
Jul 26, 2021
SeminarNeuroscienceRecording

How inclusive and diverse is non-invasive brain stimulation in the treatment of psychiatric disorders?

Indira Tendolkar
Radboud Univeristy
Jul 13, 2021

How inclusive and diverse is non-invasive brain stimulation in the treatment of psychiatric disorders?Indira Tendolkar, Donders Institute for Brain, Cognition and Behavior, Department of Psychiatry. Mental illness is associated with a huge socioeconomic burden worldwide, with annual costs only in the Netherlands of €22 billion. Over two decades of cognitive and affective neuroscience research with modern tools of neuroimaging and neurophysiology in humans have given us a wealth of information about neural circuits underlying the main symptom domains of psychiatric disorders and their remediation. Neuromodulation entails the alteration of these neural circuits through invasive (e.g., DBS) or non-invasive (e.g., TMS) techniques with the aim of improving symptoms and/or functions and enhancing neuroplasticity. In my talk, I will focus on neuromodulation studies using repetitive transcranial magnetic stimulation (rTMS) as a relatively safe, noninvasive method, which can be performed simultaneously with neurocognitive interventions. Using the examples of two chronifying mental illnesses, namely obsessive compulsive disorders and major depressive disorder (MDD), I will review the concept of "state dependent" effects of rTMS and highlight how simultaneous or sequential cognitive interventions could help optimize rTMS therapy by providing further control of ongoing neural activity in targeted neural networks. Hardly any attention has been paid to diversity aspects in the studies. By including studies from low- and middle income countries, I will discuss the potential of non-invasive brain stimulation from a transcultural perspective.

SeminarNeuroscience

Developing metal-based radiopharmaceuticals for imaging and therapy

Brett Paterson and Cormac Kelderman
Monash Biomedical Imaging
Jul 7, 2021

Personalised medicine will be greatly enhanced with the introduction of new radiopharmaceuticals for the diagnosis and treatment of various cancers, as well as cardiovascular disease and brain disorders. The unprecedented interest in developing theranostic radiopharmaceuticals is mainly due to the recent clinical successes of radiometal-based products including: • 177LuDOTA-TATE (trade name Lutathera, FDA approved in 2018), a peptide-based tracer that is used for treating metastatic neuroendocrine tumours • Ga 68 PSMA-11 (FDA approved in 2020), a positron emission tomography agent for imaging prostate-specific membrane antigen positive lesions in men with prostate cancer. In this webinar, Dr Brett Paterson and PhD candidate Mr Cormac Kelderman will present their research on developing the chemistry and radiochemistry to produce new radiometal-based imaging and therapy agents. They will discuss the synthesis of new molecules, the optimisation of the radiochemistry, and results from preclinical evaluations. Dr Brett Paterson is a National Imaging Facility Fellow at Monash Biomedical Imaging and academic group leader in the School of Chemistry, Monash University. His research focuses on the development of radiochemistry and new radiopharmaceuticals. Cormac Kelderman is a PhD candidate under the supervision of Dr Brett Paterson in the School of Chemistry, Monash University. His research focuses on developing new bis(thiosemicarbazone) chelators for technetium-99m SPECT imaging.

SeminarNeuroscience

Mechanisms and precision therapies in genetic epilepsies

Holger Lerche
Hertie Institute for Clinical Brain Research
Jul 6, 2021

Large scale genetic studies and associated functional investigations have tremendously augmented our knowledge about the mechanisms underlying epileptic seizures, and sometimes also accompanying developmental problems. Pharmacotherapy of the epilepsies is routinely guided by trial and error, since predictors for a response to specific antiepileptic drugs are largely missing. The recent advances in the field of genetic epilepsies now offer an increasing amount of either well fitting established or new re-purposing therapies for genetic epilepsy syndromes based on understanding of the pathophysiological principles. Examples are provided by variants in ion channel or transporter encoding genes which cause a broad spectrum of epilepsy syndromes of variable severity and onset, (1) the ketogenic diet for glucose transporter defects of the blood-brain barrier, (2) Na+ channel blockers (e.g. carbamazepine) for gain-of-function Na+ channel mutations and avoidance of those drugs for loss-of-function mutations, and (3) specific K+ channel blockers for mutations with a gain-of-function defect in respective K+ channels. I will focus in my talk on the latter two including the underlying mechanisms, their relation to clinical phenotypes and possible therapeutic implications. In conclusion, genetic and mechanistic studies offer promising tools to predict therapeutic effects in rare epilepsies.

SeminarNeuroscience

Exploring and targeting CNS inflammation in brain metastases

Lisa Sevenich
Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt
Jun 30, 2021
SeminarNeuroscience

Making spinal sensory interneurons from stem cells for regenerative therapies

Sandeep Gupta
University of California, LA
Jun 12, 2021

Dr. Gupta is carrying out his post doctoral studies in the Buter Laboratory in UCLA. He is applying his his knowledge of embryology to stem cells for developing regenerative therapies to treat spinal cord injuries. In this talk, he will discuss how understanding the logic for spinal cord development led us to derive diverse sensory neuronal classes from embryonic stem cells. The spinal sensory neurons enableus to perceive our environment through modalities that are lost in spinal injury patients. These ESC derived senory neurons can help regain sensation in spina cord injury patients through regenerative therapies.

SeminarNeuroscienceRecording

Visual restoration from prosthesis to optogenetic therapy

Serge Picaud
Institut de la Vision
Jun 7, 2021
SeminarNeuroscienceRecording

Regenerative Neuroimmunology - a stem cell perspective

Stefano Pluchino
Department of Clinical Neurosciences, University of Cambridge
May 31, 2021

There are currently no approved therapies to slow down the accumulation of neurological disability that occurs independently of relapses in multiple sclerosis (MS). International agencies are engaging to expedite the development of novel strategies capable of modifying disease progression, abrogating persistent CNS inflammation, and support degenerating axons in people with progressive MS. Understanding why regeneration fails in the progressive MS brain and developing new regenerative approaches is a key priority for the Pluchino Lab. In particular, we aim to elucidate how the immune system, in particular its cells called myeloid cells, affects brain structure and function under normal healthy conditions and in disease. Our objective is to find how myeloid cells communicate with the central nervous system and affect tissue healing and functional recovery by stimulating mechanisms of brain plasticity mechanisms such as the generation of new nerve cells and the reduction of scar formation. Applying combination of state-of-the-art omic technologies, and molecular approaches to study murine and human disease models of inflammation and neurodegeneration, we aim to develop experimental molecular medicines, including those with stem cells and gene therapy vectors, which slow down the accumulation of irreversible disabilities and improve functional recovery after progressive multiple sclerosis, stroke and traumatic injuries. By understanding the mechanisms of intercellular (neuro-immune) signalling, diseases of the brain and spinal cord may be treated more effectively, and significant neuroprotection may be achieved with new tailored molecular therapeutics.

SeminarNeuroscienceRecording

Genetics and Therapy of Inherited Retinal Diseases

Dror Sharon
Hebrew University
May 31, 2021
SeminarNeuroscienceRecording

New Frontiers in Understanding and Treating Migraine Headaches

Lars Edvinsson
Lund University, Sweden & University of Copenhagen, Denmark
May 26, 2021

In this presentation I will describe how the CGRP project started and culminated in the development of gepants and mAbs for successful therapy. The outstanding question regarding the preponderance of female migraineurs also remains. I will present views on the reason behind this and suggest that understanding the hormonal influence will pave the way to alleviating hormone related migraine.

SeminarNeuroscience

Towards targeted therapies for the treatment of Dravet Syndrome

Gaia Colasante
Ospedale San Raffaele
May 18, 2021

Dravet syndrome is a severe epileptic encephalopathy that begins during the first year of life and leads to severe cognitive and social interaction deficits. It is mostly caused by heterozygous loss-of-function mutations in the SCN1A gene, which encodes for the alpha-subunit of the voltage-gated sodium channel (Nav1.1) and is responsible mainly of GABAergic interneuron excitability. While different therapies based on the upregulation of the healthy allele of the gene are being developed, the dynamics of reversibility of the pathology are still unclear. In fact, whether and to which extent the pathology is reversible after symptom onset and if it is sufficient to ensure physiological levels of Scn1a during a specific critical period of time are open questions in the field and their answers are required for proper development of effective therapies. We generated a novel Scn1a conditional knock-in mouse model (Scn1aSTOP) in which the endogenous Scn1a gene is silenced by the insertion of a floxed STOP cassette in an intron of Scn1a gene; upon Cre recombinase expression, the STOP cassette is removed, and the mutant allele can be reconstituted as a functional Scn1a allele. In this model we can reactivate the expression of Scn1a exactly in the neuronal subtypes in which it is expressed and at its physiological level. Those aspects are crucial to obtain a final answer on the reversibility of DS after symptom onset. We exploited this model to demonstrate that global brain re-expression of the Scn1a gene when symptoms are already developed (P30) led to a complete rescue of both spontaneous and thermic inducible seizures and amelioration of behavioral abnormalities characteristic of this model. We also highlighted dramatic gene expression alterations associated with astrogliosis and inflammation that, accordingly, were rescued by Scn1a gene expression normalization at P30. Moreover, employing a conditional knock-out mouse model of DS we reported that ensuring physiological levels of Scn1a during the critical period of symptom appearance (until P30) is not sufficient to prevent the DS, conversely, mice start to die of SUDEP and develop spontaneous seizures. These results offer promising insights in the reversibility of DS and can help to accelerate therapeutic translation, providing important information on the timing for gene therapy delivery to Dravet patients.

SeminarNeuroscienceRecording

Gene therapy in neuromuscular and mitochondrial disorders

Thomas Klopstock
Ludwig Maximilans University, Munich, Germany
May 10, 2021
SeminarNeuroscienceRecording

Can we repair the Parkinsonian brain?

Roger Barker
Department of Clinical Neurosciences, University of Cambridge
May 3, 2021
SeminarNeuroscience

Hyperbaric Oxygen and the Brain: Concussions to COVID

Daphne W. Denham
Healing with Hyperbarics of North Dakota, Fargo
Apr 11, 2021

Hyperbaric oxygen [HBO] treatments are an underappreciated way to get oxygen to injured tissue. Concussions, and now post-COVID neuropsychiatric issues have become a major cause of disability. Data from objective testing will be presented to discuss our clinic experience TREATING these conditions.

SeminarNeuroscience

AAV-mediated gene therapy for neurological disorders

Steven Gray
UT Southwestern
Mar 30, 2021
SeminarNeuroscience

Genetic therapies for Huntington’s disease, what does the future hold for neurodegenerative disorders?

Sarah Tabrizi
University College London
Mar 8, 2021

There are no effective disease-modifying therapies for neurodegenerative diseases such as Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis or Huntington’s disease. Huntington’s disease (HD) is a devastating autosomal dominantly inherited neurodegenerative disease and the world’s most common genetic dementia. I will present an overview of important approaches in development for targeting mutant HTT DNA and RNA (Tabrizi et al Neuron 2019), the cause of HD pathogenesis, and the translational pathway from bench to clinic for a HTT targeting antisense oligonucleotide (Tabrizi et al New England Journal of Medicine 2019, Tabrizi, Science 2020) which is now in phase 3 studies. In my talk I will also review some of the genetic approaches in development for other CNS diseases. I will talk a bit about my journey as a clinician scientist and share some of my learnings for young scientists on how to survive a career in science.

SeminarNeuroscience

The Kappa Opioid Receptor as Potential Drug Target in TLE

Christoph Schwarzer
Medical University of Innsbruck
Feb 2, 2021

The Kappa Opioid Receptor as Potential Drug Target in TLE Over the last decades, neuropeptides and their receptors received increasing interest as drug targets for multiple purposes. Our interest focuses on the endogenous opioid system and more specifically on dynorphins and the kappa opioid receptor (KOR). Activation of KOR blocks presynaptic Calcium channels and facilitates postsynaptic Potassium release, thereby dampening signal transduction. As KORs are situated on excitatory neurons in the hippocampus, this makes them an interesting target in temporal lobe epilepsy.

SeminarNeuroscience

Gene Therapy for Neurodegeneration

Ronald G. Crystal
Cornell Research
Jan 31, 2021

One of the major challenges in developing therapeutics for the neurodegenerative disorders is the blood-brain barrier, limiting the availability of systemically administered therapies such as recombinant proteins or monoclonal antibodies from reaching the brain. Direct central nervous system (CNS) gene therapy using adeno-associated virus vectors expressing a therapeutic protein, monoclonal antibody or inhibiting RNA-coding sequences has two characteristics ideal for therapy of neurodegenerative disorders: circumventing the blood-brain barrier by directly expressing the therapy in the brain and the ability to provide persistent therapy with only a single administration. There are several critical parameters relevant to successful CNS gene therapy, including choice of vector, design of the gene to be expressed, delivery/route of administration, dose and anti-vector immune responses. The presentation will focus on these issues, the current status of clinical trials of gene therapy for neurodegeneration and specific challenges that will need to be overcome to ensure the success of these therapies.

SeminarNeuroscience

New Directions of the Epilepsy Therapy Screening Program

Karen Wilcox
the University of Utah
Jan 5, 2021
SeminarNeuroscience

Blood phosphorylated tau as biomarkers for Alzheimer’s disease

Thomas K. Karikari
University of Gothenburg
Dec 9, 2020

Alzheimer's disease (AD) is the most common cause of dementia, and its health and socioeconomic burdens are of major concern. Presently, a definite diagnosis of AD is established by examining brain tissue after death. These examinations focus on two major pathological hallmarks of AD in the brain: (i) amyloid plaques consisting of aggregated amyloid beta (Aβ) peptides and (ii) neurofibrillary tangles made of abnormally phosphorylated tau protein. In living individuals, AD diagnosis relies on two main approaches: (i) brain imaging of tau tangles and Aβ plaques using a technique called positron emission tomography (PET) and (ii) measuring biochemical changes in tau (including phosphorylated tau at threonine-181 [p-tau181]) and the Aβ42 peptide metabolized into CSF. Unlike Aβ42, CSF p-tau181 is highly specific for AD but its usability is restricted by the need of a lumbar puncture. Moreover, PET imaging is expensive and only available in specialised medical centres. Due to these shortcomings, a simple blood test that can detect disease-related changes in the brain is a high priority for AD research, clinical care and therapy testing. In this webinar, I will discuss the discovery of p-tau biomarkers in blood and the biochemistry of how these markers differ from those found in CSF. Furthermore, I will critically review the performance of blood p-tau biomarkers across the AD pathological process and how they associate with and predict Aβ and tau pathophysiological and neuropathological changes. Furthermore, I will evaluate the potential advantages, challenges and context of use of blood p-tau in clinical practice, therapeutic trials and population screening.

SeminarNeuroscience

Ex vivo gene therapy for epilepsy. Seizure-suppressant and neuroprotective effects of encapsulated GDNF-producing cells

Michele Simonato
Università Vita-Salute San Raffaele
Nov 3, 2020

A variety of pharmacological treatments exist for patients suffering from focal seizures, but systemically administered drugs offer only symptomatic relief and frequently cause unwanted side effects. Moreover, available drugs are ineffective in one third of the patients. Thus, developing more targeted and effective treatment strategies is highly warranted. Neurotrophic factors are candidates for treating epilepsy, but their development has been hampered by difficulties in achieving stable and targeted delivery of efficacious concentrations within the brain. We have developed an implantable cell encapsulation system that delivers high and consistent levels of neurotrophic molecules directly to a specific brain region. The potential of this approach has been tested by delivering glial cell line-derived neurotrophic factor (GDNF) to the hippocampus of epileptic rats. In vivo studies demonstrated that these intrahippocampal implants continue to secrete GDNF and produce high hippocampal GDNF tissue levels in a long-lasting manner. Identical implants rapidly and greatly reduced seizure frequency in the pilocarpine model. This effect increased in magnitude over 3 months, ultimately leading to a reduction of spontaneous seizures by more than 90%. Importantly, these effects were accompanied by improvements in cognition and anxiety, and by the normalization of many histological alterations that are associated with chronic epilepsy. In addition, the antiseizure effect persisted even after device removal. Finally, by establishing a unilateral epileptic focus using the intrahippocampal kainate model, we found that delivery of GDNF exclusively within the focus suppressed already established spontaneous recurrent seizures. Together, these results support the concept that the implantation of encapsulated GDNF-secreting cells can deliver GDNF in a sustained, targeted, and efficacious manner. These findings may form the basis for clinical translation of this approach.

SeminarNeuroscience

Emergent scientists discuss Alzheimer's disease

Christiana Bjørkli, Siddharth Ramanan
Norwegian University of Science and Technology, University of Cambridge
Oct 19, 2020

This seminar is part of our “Emergent Scientists” series, an initiative that provides a platform for scientists at the critical PhD/postdoc transition period to share their work with a broad audience and network. Summary: These talks cover Alzheimer’s disease (AD) research in both mice and humans. Christiana will discuss in particular the translational aspects of applying mouse work to humans and the importance of timing in disease pathology and intervention (e.g. timing between AD biomarkers vs. symptom onset, timing of therapy, etc.). Siddharth will discuss a rare variant of Alzheimer’s disease called “Logopenic Progressive Aphasia”, which presents with temporo-parietal atrophy yet relative sparing of hippocampal circuitry. Siddharth will discuss how, despite the unusual anatomical basis underlying this AD variant, degeneration of the angular gyrus in the left inferior parietal lobule contributes to memory deficits similar to those of typical amnesic Alzheimer’s disease. Christiana’s abstract: Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder that causes severe deterioration of memory, cognition, behavior, and the ability to perform daily activities. The disease is characterized by the accumulation of two proteins in fibrillar form; Amyloid-β forms fibrils that accumulate as extracellular plaques while tau fibrils form intracellular tangles. Here we aim to translate findings from a commonly used AD mouse model to AD patients. Here we initiate and chronically inhibit neuropathology in lateral entorhinal cortex (LEC) layer two neurons in an AD mouse model. This is achieved by over-expressing P301L tau virally and chronically activating hM4Di DREADDs intracranially using the ligand dechloroclozapine. Biomarkers in cerebrospinal fluid (CSF) is measured longitudinally in the model using microdialysis, and we use this same system to intracranially administer drugs aimed at halting AD-related neuropathology. The models are additionally tested in a novel contextual memory task. Preliminary findings indicate that viral injections of P301L tau into LEC layer two reveal direct projections between this region and the outer molecular layer of dentate gyrus and the rest of hippocampus. Additionally, phosphorylated tau co-localize with ‘starter cells’ and appear to spread from the injection site. Preliminary microdialysis results suggest that the concentrations of CSF amyloid-β and tau proteins mirror changes observed along the disease cascade in patients. The disease-modifying drugs appear to halt neuropathological development in this preclincial model. These findings will lead to a novel platform for translational AD research, linking the extensive research done in rodents to clinical applications. Siddharth’s abstract: A distributed brain network supports our ability to remember past events. The parietal cortex is a critical member of this network, yet, its exact contributions to episodic remembering remain unclear. Neurodegenerative syndromes affecting the posterior neocortex offer a unique opportunity to understand the importance and role of parietal regions to episodic memory. In this talk, I introduce and explore the rare neurodegenerative syndrome of Logopenic Progressive Aphasia (LPA), an aphasic variant of Alzheimer’s disease presenting with early, left-lateralized temporo-parietal atrophy, amidst relatively spared hippocampal integrity. I then discuss two key studies from my recent Ph.D. work showcasing pervasive episodic and autobiographical memory dysfunction in LPA, to a level comparable to typical, amnesic Alzheimer’s disease. Using multimodal neuroimaging, I demonstrate how degeneration of the angular gyrus in the left inferior parietal lobule, and its structural connections to the hippocampus, contribute to amnesic profiles in this syndrome. I finally evaluate these findings in the context of memory profiles in other posterior cortical neurodegenerative syndromes as well as recent theoretical models underscoring the importance of the parietal cortex in the integration and representation of episodic contextual information.

SeminarNeuroscienceRecording

Clinical practice recommendations for physical therapy for Huntington’s disease

Bernhard Landwehrmeyer
University Ulm, Germany
Oct 19, 2020
ePoster

Application of dehydroepiandrosterone as a neuroprotective agent for the therapy of Alzheimer’s disease in a mouse model

Kvak Erika Eliza, Szidónia Farkas, Adrienn Szabó, Dóra Zelena

FENS Forum 2024

ePoster

Astrocyte-based interleukin-2 gene therapy in temporal lobe epilepsy

Evelien Hendrix, Ilse Smolders, Matthew Holt

FENS Forum 2024

ePoster

The benefits of simultaneous hyperbaric oxygen therapy and antioxidant supplementation in the management of anxiogenic response to thermal skin injury in rats

Dragica Selakovic, Nemanja Jovicic, Bojana Krstic, Milos Krstic, Sara Rosic, Gvozden Rosic

FENS Forum 2024

ePoster

The biological effects of "green-therapy" on MDD

Gianna Pavarino, Claudio Brasso, Roberta Schellino, Anna Carluccio, Francesca Cirulli, Marina Boido, Paola Rocca, Alessandro Vercelli

FENS Forum 2024

ePoster

Blood biomarkers to monitor neuroinflammation: Insights from hematopoietic stem cell transplantation and gene therapy in X-linked adrenoleukodystrophy

Isabelle Weinhofer, Markus Ponleitner, Paulus Rommer, Wolfgang Köhler, Jörn-Sven Kühl

FENS Forum 2024

ePoster

Boosting MFN2 levels in neurons using adeno-associated virus (AAV) vectors as a therapy for Charcot-Marie-Tooth disease type 2A

Marine Tessier, Nathalie Bonello, Nathalie Roeckel-Trévisiol, Karine Bertaux, Marc Bartoli, Valérie Delague*, Bernard Schneider*, Nathalie Bernard-Marissal

FENS Forum 2024

ePoster

Chemotherapy alters the Kolmer cell of the choroid plexus

Parisa EmamiAref, Lucie Kubičková, Babak Bakhshinejad, Petr Dubový, Marek Joukal, Alemeh Zamani

FENS Forum 2024

ePoster

Chemotherapy-induced peripheral neuropathy caused by vincristine involves high mobility group box 1 (HMGB1) released from macrophages and Schwann cells

Fumiko Sekiguchi, Yui Aokiba, Kenta Yatsu, Momoko Sako, Maho Tsubota, Yasuko Tomono, Masahiro Nishibori, Atsufumi Kawabata

FENS Forum 2024

ePoster

CNS-targeted antioxidant gene therapy for treating epilepsy

Aseel Saadi, Prince Kumar Singh, Tawfeeq Shekh-Ahmad

FENS Forum 2024

ePoster

Developing gene therapy vector for the treatment of creatine transporter deficiency syndrome

Ludovica Iovino, Federica Di Vetta, Lorenzo Dadà, Caterina Montani, Elsa Ghirardini, Francesco Calugi, Giulia Sagona, Tommaso Pizzorusso, Alessandro Gozzi, Laura Baroncelli

FENS Forum 2024

ePoster

Development of an innovative radiotherapy using synchrotron-generated X-ray to treat focal epilepsy in a mouse model

Loan Samalens, Clothilde Courivaud, Camille Beets, Raphaël Serduc, E.L Barbier, Antoine Depaulis

FENS Forum 2024

ePoster

Electroconvulsive therapy promotes reinnervation of the dopamine-depleted striatum in the 6-OHDA model of Parkinson’s disease

Anika Frank, Se Joon Choi, Siham Bouhmahouad, Jonas Bendig, David Sulzer

FENS Forum 2024

ePoster

Evaluation of optogenetic gene therapy for hearing restoration in in vivo rodent models of sensorineural hearing loss

Victoria Hunniford, Maria Zerche, Bettina Wolf, Kathrin Kusch, Thomas Mager, Tobias Moser

FENS Forum 2024

ePoster

Exploring the potential of induced neural stem cells (iNSCs) as therapy for spinal cord injury in a rat model

Ibrahim Khan, Lara Bieler, Katharina Günther, Dominika Jakubec-Haščák, Felix Hübl, Jaqueline Illek, Marta Suarez-Cubero, Frank Edenhofer, Sebastien Couillard-Despres

FENS Forum 2024

ePoster

Exploring synergistic miRNA therapy for Alzheimer’s: AAV-mediated delivery of miR-124 and miR-132

Oliver Polzer, Ayinde Swildens, Rosa Randoe, Paul J. Lucassen, Evgenia Salta, Carlos P. Fitzsimons

FENS Forum 2024

ePoster

Functional ultrasound is able to detect music therapy-induced functional connectivity changes in neonates

Flora Faure, Olivier Baud, Joanna Sa de Almeida, Sébastien Fau, Jérome Mairesse, Jérôme Baranger, Petra S Huppi, Charlie Demené

FENS Forum 2024

ePoster

A gene therapy approach for focal epilepsy based on GABA\(_A\) receptor overexpression

Martina Bonfanti, Alessandro Gaeta, Lilian Juliana Lissner, Stefano Cattaneo, Gabriele Ruffolo, Eleonora Palma, Michele Simonato, Barbara Bettegazzi

FENS Forum 2024

ePoster

Happy Brain – Happy Bacteria? The effect of electroconvulsive therapy on gut bacteria

Else Schneider, Yasser Morsy, Michael Scharl, Annette Brühl

FENS Forum 2024

ePoster

The impact of combination therapy in spinal cord injury treatment

Martina Magurova, Maria Bacova, Stefania Papcunova, Jan Galik

FENS Forum 2024

ePoster

Improving stem cell therapy for stroke using cryogel microcarriers

Nora Hanna Rentsch, Beatriz Achón Buil, Rebecca Z. Weber, Jana Sievers-Liebschner, Petra B. Welzel, Ruslan Rust, Christian Tackenberg

FENS Forum 2024

ePoster

Investigation of protein replacement therapy for Rett Syndrome using directly reprogrammed neurons

Hannes Steinkellner, Anna M. Huber, Victoria Sarne, Alexander V. Beribisky, Sophia Derdak, Silvia Madritsch, John Christodoulou, Sigismund Huck, Bronwen Connor, Winfried Neuhaus, Franco Laccone

FENS Forum 2024

ePoster

Modelling chemotherapy-induced peripheral neuropathy on-a-chip

Xandor Spijkers, Georgia Avramidou, Wouter Strijker, Mary McFarlane, Catherine Rodger, Jay Harper, Luke Masterson, Nienke Wevers

FENS Forum 2024

ePoster

Modulating voltage-gated sodium channels to enhance differentiation and sensitize glioblastoma cells to chemotherapy

Francesca Giammello, Chiara Biella, Erica Cecilia Priori, Matilde Amat di San Filippo, Roberta Leone, Francesca D'Ambrosio, Martina Paterno', Giulia Cassioli, Cristina Spalletti, Ilaria Morella, Federica Barbieri, Giuseppe Lombardi, Tullio Florio, Riccardo Brambilla, Rossella Galli, Paola Rossi, Federico Brandalise

FENS Forum 2024

ePoster

Mouse hippocampal slice cultures as an ex vivo model for investigating SGSH enzyme replacement therapy in different brain cell types

Signe Lyngby, Andrea Asenjo Martinez, Anne Kathrine Nielsen Lindberg, Kaspar Russ, Karina Fog, Florence Sotty, Malene Ambjørn

FENS Forum 2024

ePoster

N-methylpropargylamino-quinazoline derivatives as potential multi-target directed ligands in the therapy of Alzheimer's disease

Martin Horak, Anna Misiachna, Jan Konecny, Martin Kufa, Barbora Svobodova, Jan Korabecny

FENS Forum 2024

ePoster

Nanobody-based immunotherapy for depression

Thibaut Laboute, Stefano Zucca, Omar Sial, Dipak Patil, Haiyong Peng, Christoph Rader, Jerome Becker, Julie Le Merrer, Appu Singh, Kirill Martemyanov

FENS Forum 2024

ePoster

Optimizing serum-free neuronal differentiation of SH-SY5Y cells: Implications for Alzheimer's disease therapy

Ihor Kozlov, Aleksandr Deviatov, Viswanath Das

FENS Forum 2024

ePoster

Polymeric nanoparticles for targeted cancer therapy

Letizia Cerutti, Paolo Canepa, Paolo Massobrio, Martina Brofiga

FENS Forum 2024

ePoster

Pre-operative structural MRI predicts cochlear therapy outcome in post-lingual deafness

Anaïs Grégoire, Laurence Dricot, Naima Deggouj, Ron Kupers

FENS Forum 2024

ePoster

Precision gene therapy for Alzheimer's disease: Enhancing amyloid-ß clearance at the brain endothelium with super-selective nanocarriers

Cátia Lopes

FENS Forum 2024

ePoster

Psychophysiological biomarkers to assess the effectiveness of surface EMG biofeedback as an alternative therapy to reduce chronic low back pain

Sadaf Ahmed, Shamoon Noushad, Amaila Fazal, Basit Ansari

FENS Forum 2024

ePoster

REMaST®: A novel immune cell therapy for neural tissue regeneration

Sissi Dolci, Loris Mannino, Alessandra Campanelli, Eros Rossi, Emanuela Bottani, Marzia Di Chio, Francesca Ciambella, Elisa Setten, Stefano Gianoli, Nicola Piazza, Benedetta Savino, Isabel Karkossa, Giuseppe Busetto, Alex Pezzotta, Alessia Amenta, Giulia Pruonto, Alessandra Castagna, Nicola Martinelli, Federico Boschi, Adam Doherty, Maria Teresa Scupoli, Chiara Cavallini, Giorgio Malpeli, Zulkifal Malik, Luana Binaschi, Vincenzo Silani, Marco Sandri, Patrizia Bossolasco, Anna Pistocchi, Marco Endrizzi, Kristin Schubert, Guido Francesco Fumagalli, Massimo Locati, Francesco Bifari, Ilaria Decimo

FENS Forum 2024

ePoster

The use of a shortened MeCP2 protein construct in Rett syndrome protein replacement therapy

Alexander Beribisky, Hannes Steinkellner, Claudia Sulek, Anna Huber, Victoria Sarne, Franco Laccone

FENS Forum 2024

ePoster

Sourcing human bone marrow stromal cell-derived motor neuron progenitors for cell replacement therapy of amyotrophic lateral sclerosis

Daisy Kwok-Yan Shum, Kin-Wai Tam, Ying-Shing Chan

FENS Forum 2024

ePoster

Systemic review of cell-based therapy for cerebral infarction

Chung-Che Wu, Yung-Hsiao Chiang, Ju-Chi Ou, Kai-Yun Chen

FENS Forum 2024

ePoster

TAF1 splicing variants and prolyl hydroxylase inhibitors therapy in a mouse model of Huntington’s disease

Claudia Rodríguez-López, Ivó H Hernández, Marcos Casado Barbero, Jose J Lucas

FENS Forum 2024

ePoster

Targeting cerebellar, alpha6-containing GABA-A receptors with novel compounds based on computational pharmacophore screening as potential therapy for essential tremor

Elena Battaglin, Martin Hochwarter, Jörg Heider, Thierry Langer, Petra Scholze, Margot Ernst, Xenia Simeone

FENS Forum 2024

ePoster

Understanding midbrain dopaminergic cell fate acquisition using midbrain-like organoids for Parkinson’s disease cell therapy

Hilary Toh, Audrey Khoo, Adeline H. Basil, Lisheng Xu, John F. Ouyang, Alfred Sun

FENS Forum 2024

ePoster

Understanding the role of microglia in ‘chemofog’ to resolve chemotherapy-induced cognitive impairment

Agnese Cherubini, Giorgia Scaringi, Bernadette Basilico, Davide Ragozzino, Ingrid Reverte

FENS Forum 2024

ePoster

In vitro modelling of immune effector cell-associated neurotoxicity syndrome (ICANS) resulting from CAR T-cell therapy treating haematological cancer

Aisling McGarry, Shiden Solomon, Le Anh Luong, Lorenzo Veschini, Jemeen Sreedharan, Reuben Benjamin, Gerald Finnerty, Anna Schurich

FENS Forum 2024