← Back

Thirst

Topic spotlight
TopicWorld Wide

thirst

Discover seminars, jobs, and research tagged with thirst across World Wide.
7 curated items5 Seminars1 Position1 ePoster
Updated 1 day ago
7 items · thirst
7 results
Position

Dr. Yoav Livneh

Weizmann Institute of Science
Rehovot, Israel
Dec 5, 2025

We are looking for enthusiastic students and researchers from diverse backgrounds, including (but not limited to) biology, physics, medicine, physiology, psychology, engineering, and more. We have several ERC-funded positions at different levels.

SeminarNeuroscience

The circadian clock and neural circuits maintaining body fluid homeostasis

Charles BOURQUE
Professor, Department of Neurology-Neurosurgery, McGill University
Jan 9, 2022

Neurons in the suprachiasmatic nucleus (SCN, the brain’s master circadian clock) display a 24 hour cycle in the their rate of action potential discharge whereby firing rates are high during the light phase and lower during the dark phase. Although it is generally agreed that this cycle of activity is a key mediator of the clock’s neural and humoral output, surprisingly little is known about how changes in clock electrical activity can mediate scheduled physiological changes at different times of day. Using opto- and chemogenetic approaches in mice we have shown that the onset of electrical activity in vasopressin releasing SCN neurons near Zeitgeber time 22 (ZT22) activates glutamatergic thirst-promoting neurons in the OVLT (organum vasculosum lamina terminalis) to promote water intake prior to sleep. This effect is mediated by activity-dependent release of vasopressin from the axon terminals of SCN neurons which acts as a neurotransmitter on OVLT neurons. More recently we found that the clock receives excitatory input from a different subset of sodium sensing neurons in the OVLT. Activation of these neurons by a systemic salt load delivered at ZT19 stimulated the electrical activity of SCN neurons which are normally silent at this time. Remarkably, this effect induced an acute reduction in non-shivering thermogenesis and body temperature, which is an adaptive response to the salt load. These findings provide information regarding the mechanisms by which the SCN promotes scheduled physiological rhythms and indicates that the clock’s output circuitry can also be recruited to mediate an unscheduled homeostatic response.

SeminarNeuroscience

A Network for Computing Value Equilibrium in the Human Medial Prefrontal Corte

Anush Ghambaryan
HSE University
Dec 22, 2021

Humans and other animals make decisions in order to satisfy their goals. However, it remains unknown how neural circuits compute which of multiple possible goals should be pursued (e.g., when balancing hunger and thirst) and how to combine these signals with estimates of available reward alternatives. Here, humans undergoing fMRI accumulated two distinct assets over a sequence of trials. Financial outcomes depended on the minimum cumulate of either asset, creating a need to maintain “value equilibrium” by redressing any imbalance among the assets. Blood-oxygen-level-dependent (BOLD) signals in the rostral anterior cingulate cortex (rACC) tracked the level of imbalance among goals, whereas the ventromedial prefrontal cortex (vmPFC) signaled the level of redress incurred by a choice rather than the overall amount received. These results suggest that a network of medial frontal brain regions compute a value signal that maintains value equilibrium among internal goals.

SeminarNeuroscienceRecording

Change of mind in rapid free-choice picking scenarios

Ariel Furstenberg
The Hebrew University
Nov 23, 2021

In a famous philosophical paradox, Buridan's ass perishes because he is equally hungry and thirsty, and cannot make up his mind whether to first drink or eat. We are faced daily with the need to pick between alternatives that are equally attractive (or not) to us. What are the processes that allow us to avoid paralysis and to rapidly select between such equal options when there are no preferences or rational reasons to rely on? One solution that was offered is that although on a higher cognitive level there is symmetry between the alternatives, on a neuronal level the symmetry does not maintain. What is the nature of this asymmetry of the neuronal level? In this talk I will present experiments addressing this important phenomenon using measures of human behavior, EEG, EMG and large scale neural network modeling, and discuss mechanisms involved in the process of intention formation and execution, in the face of alternatives to choose from. Specifically, I will show results revealing the temporal dynamics of rapid intention formation and, moreover, ‘change of intention’ in a free choice picking scenario, in which the alternatives are on a par for the participant. The results suggest that even in arbitrary choices, endogenous or exogenous biases that are present in the neural system for selecting one or another option may be implicitly overruled; thus creating an implicit and non-conscious ‘change of mind’. Finally, the question is raised: in what way do such rapid implicit ‘changes of mind’ help retain one’s self-control and free-will behavior?

SeminarNeuroscience

Estimation of current and future physiological states in insular cortex

Mark Andermann
Harvard University
Jun 28, 2021

Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. While human insular cortex (InsCtx) is implicated in interoception, the cellular and circuit mechanisms remain unclear. I will describe our recent work imaging mouse InsCtx neurons during two physiological deficiency states – hunger and thirst. InsCtx ongoing activity patterns reliably tracked the gradual return to homeostasis, but not changes in behavior. Accordingly, while artificial induction of hunger/thirst in sated mice via activation of specific hypothalamic neurons (AgRP/SFOGLUT) restored cue-evoked food/water-seeking, InsCtx ongoing activity continued to reflect physiological satiety. During natural hunger/thirst, food/water cues rapidly and transiently shifted InsCtx population activity to the future satiety-related pattern. During artificial hunger/thirst, food/water cues further shifted activity beyond the current satiety-related pattern. Together with circuit-mapping experiments, these findings suggest that InsCtx integrates visceral-sensory inputs regarding current physiological state with hypothalamus-gated amygdala inputs signaling upcoming ingestion of food/water, to compute a prediction of future physiological state.

SeminarNeuroscienceRecording

Cortical estimation of current and future bodily states

Yoav Livneh
Weizmann Institute of Science
Nov 1, 2020

Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. Human neuroimaging studies suggest insular cortex plays a central role in interoception, yet the cellular and circuit mechanisms of its involvement remain unclear. We developed a microprism-based cellular imaging approach to monitor insular cortex activity in behaving mice across different physiological need states. We combine this imaging approach with manipulations of peripheral physiology, circuit-mapping, cell type-specific and circuit-specific manipulation approaches to investigate the underlying circuit mechanisms. I will present our recent data investigating insular cortex activity during two physiological need states – hunger and thirst. These wereinduced naturally by caloric/fluid deficiency, or artificially by activation of specific hypothalamic “hunger neurons” and “thirst neurons”. We found that insular cortex ongoing activity faithfully represents current physiological state, independently of behavior or arousal levels. In contrast, transient responses to learned food- or water-predicting cues reflect a population-level “simulation” of future predicted satiety. Together with additional circuit-mapping and manipulation experiments, our findings suggest that insular cortex integrates visceral-sensory inputs regarding current physiological state with hypothalamus-gated amygdala inputs signaling availability of food/water. This way, insular cortex computes a prediction of future physiological state that can be used to guide behavioral choice.

ePoster

Mechanisms of lithium-induced thirst

Dejiao Xu, Wang Xihua, Wang Binyou, Meng Tong, Bao Jin

FENS Forum 2024