Threat
threat representations
Dynamical population coding during defensive behaviours in prefrontal circuits
Coping with threatening situations requires both identifying stimuli predicting danger and selecting adaptive behavioral responses in order to survive. The dorso medial prefrontal cortex (dmPFC) is a critical structure involved in the regulation of threat-related behaviour, yet it is still largely unclear how threat-predicting stimuli and defensive behaviours are associated within prefrontal networks in order to successfully drive adaptive responses. To address these questions, we used a combination of extracellular recordings, neuronal decoding approaches, and optogenetic manipulations to show that threat representations and the initiation of avoidance behaviour are dynamically encoded in the overall population activity of dmPFC neurons. These data indicate that although dmPFC population activity at stimulus onset encodes sustained threat representations and discriminates threat- from non-threat cues, it does not predict action outcome. In contrast, transient dmPFC population activity prior to action initiation reliably predicts avoided from non-avoided trials. Accordingly, optogenetic inhibition of prefrontal activity critically constrained the selection of adaptive defensive responses in a time-dependent manner. These results reveal that the adaptive selection of active fear responses relies on a dynamic process of information linking threats with defensive actions unfolding within prefrontal networks.
Race and the brain: Insights from the neural systems of emotion and decisions
Investigations of the neural systems mediating the processing of social groups defined by race, specifically Black and White race groups in American participants, reveals significant overlap with brain mechanisms involved in emotion. This talk will provide an overview of research on the neuroscience of race and emotion, focusing on implicit race attitudes. Implicit race attitudes are expressed without conscious effort and control, and contrast with explicit, conscious attitudes. In spite of sharp decline in the expression of explicit, negative attitudes towards outgroup race members over the last half century, negative implicit attitudes persist, even in the face of strong egalitarian goals and beliefs. Early research demonstrated that implicit, but not explicit, negative attitudes towards outgroup race members correlate with blood oxygenation level dependent (BOLD) signal in the amygdala – a region implicated in threat representations, as well as emotion’s influence on cognition. Building on this initial finding, we demonstrate how learning and decisions may be modulated by implicit race attitudes and involve neural systems mediating emotion, learning and choice. Finally, we discuss techniques that may diminish the unintentional expression of negative, implicit race attitudes.
Dynamical population coding during defensive behaviours in prefrontal circuits
Coping with threatening situations requires both identifying stimuli predicting danger and selecting adaptive behavioral responses in order to survive. The dorso medial prefrontal cortex (dmPFC) is a critical structure involved in the regulation of threat-related behaviour, yet it is still largely unclear how threat-predicting stimuli and defensive behaviours are associated within prefrontal networks in order to successfully drive adaptive responses. To address these questions, we used a combination of extracellular recordings, neuronal decoding approaches, and optogenetic manipulations to show that threat representations and the initiation of avoidance behaviour are dynamically encoded in the overall population activity of dmPFC neurons. These data indicate that although dmPFC population activity at stimulus onset encodes sustained threat representations and discriminates threat- from non-threat cues, it does not predict action outcome. In contrast, transient dmPFC population activity prior to action initiation reliably predicts avoided from non-avoided trials. Accordingly, optogenetic inhibition of prefrontal activity critically constrained the selection of adaptive defensive responses in a time-dependent manner. These results reveal that the adaptive selection of active fear responses relies on a dynamic process of information linking threats with defensive actions unfolding within prefrontal networks.