Time Delays
time delays
NMC4 Short Talk: Synchronization in the Connectome: Metastable oscillatory modes emerge from interactions in the brain spacetime network
The brain exhibits a rich repertoire of oscillatory patterns organized in space, time and frequency. However, despite ever more-detailed characterizations of spectrally-resolved network patterns, the principles governing oscillatory activity at the system-level remain unclear. Here, we propose that the transient emergence of spatially organized brain rhythms are signatures of weakly stable synchronization between subsets of brain areas, naturally occurring at reduced collective frequencies due to the presence of time delays. To test this mechanism, we build a reduced network model representing interactions between local neuronal populations (with damped oscillatory response at 40Hz) coupled in the human neuroanatomical network. Following theoretical predictions, weakly stable cluster synchronization drives a rich repertoire of short-lived (or metastable) oscillatory modes, whose frequency inversely depends on the number of units, the strength of coupling and the propagation times. Despite the significant degree of reduction, we find a range of model parameters where the frequencies of collective oscillations fall in the range of typical brain rhythms, leading to an optimal fit of the power spectra of magnetoencephalographic signals from 89 heathy individuals. These findings provide a mechanistic scenario for the spontaneous emergence of frequency-specific long-range phase-coupling observed in magneto- and electroencephalographic signals as signatures of resonant modes emerging in the space-time structure of the Connectome, reinforcing the importance of incorporating realistic time delays in network models of oscillatory brain activity.
Exploring feedforward and feedback communication between visual cortical areas with DLAG
Technological advances have increased the availability of recordings from large populations of neurons across multiple brain areas. Coupling these recordings with dimensionality reduction techniques, recent work has led to new proposals for how populations of neurons can send and receive signals selectively and flexibly. Advancement of these proposals depends, however, on untangling the bidirectional, parallel communication between neuronal populations. Because our current data analytic tools struggle to achieve this task, we have recently validated and presented a novel dimensionality reduction framework: DLAG, or Delayed Latents Across Groups. DLAG decomposes the time-varying activity in each area into within- and across-area latent variables. Across-area variables can be decomposed further into feedforward and feedback components using automatically estimated time delays. In this talk, I will review the DLAG framework. Then I will discuss new insights into the moment-by-moment nature of feedforward and feedback communication between visual cortical areas V1 and V2 of macaque monkeys. Overall, this work lays the foundation for dissecting the dynamic flow of signals across populations of neurons, and how it might change across brain areas and behavioral contexts.