Transcription Factors
transcription factors
Astrocytes: From Metabolism to Cognition
Different brain cell types exhibit distinct metabolic signatures that link energy economy to cellular function. Astrocytes and neurons, for instance, diverge dramatically in their reliance on glycolysis versus oxidative phosphorylation, underscoring that metabolic fuel efficiency is not uniform across cell types. A key factor shaping this divergence is the structural organization of the mitochondrial respiratory chain into supercomplexes. Specifically, complexes I (CI) and III (CIII) form a CI–CIII supercomplex, but the degree of this assembly varies by cell type. In neurons, CI is predominantly integrated into supercomplexes, resulting in highly efficient mitochondrial respiration and minimal reactive oxygen species (ROS) generation. Conversely, in astrocytes, a larger fraction of CI remains unassembled, freely existing apart from CIII, leading to reduced respiratory efficiency and elevated mitochondrial ROS production. Despite this apparent inefficiency, astrocytes boast a highly adaptable metabolism capable of responding to diverse stressors. Their looser CI–CIII organization allows for flexible ROS signaling, which activates antioxidant programs via transcription factors like Nrf2. This modular architecture enables astrocytes not only to balance energy production but also to support neuronal health and influence complex organismal behaviors.
Cellular and genetic mechanisms of cerebral cortex folding
One of the most prominent features of the human brain is the fabulous size of the cerebral cortex and its intricate folding, both of which emerge during development. Over the last few years, work from my lab has shown that specific cellular and genetic mechanisms play central roles in cortex folding, particularly linked to neural stem and progenitor cells. Key mechanisms include high rates of neurogenesis, high abundance of basal Radial Glia Cells (bRGCs), and neuron migration, all of which are intertwined during development. We have also shown that primary cortical folds follow highly stereotyped patterns, defined by a spatial-temporal protomap of gene expression within germinal layers of the developing cortex. I will present recent findings from my laboratory revealing novel cellular and genetic mechanisms that regulate cortex expansion and folding. We have uncovered the contribution of epigenetic regulation to the establishment of the cortex folding protomap, modulating the expression levels of key transcription factors that control progenitor cell proliferation and cortex folding. At the single cell level, we have identified an unprecedented diversity of cortical progenitor cell classes in the ferret and human embryonic cortex. These are differentially enriched in gyrus versus sulcus regions and establish parallel cell lineages, not observed in mouse. Our findings show that genetic and epigenetic mechanisms in gyrencephalic species diversify cortical progenitor cell types and implement parallel cell linages, driving the expansion of neurogenesis and patterning cerebral cortex folds.
Astrocyte reprogramming / activation and brain homeostasis
Astrocytes are multifunctional glial cells, implicated in neurogenesis and synaptogenesis, supporting and fine-tuning neuronal activity and maintaining brain homeostasis by controlling blood-brain barrier permeability. During the last years a number of studies have shown that astrocytes can also be converted into neurons if they force-express neurogenic transcription factors or miRNAs. Direct astrocytic reprogramming to induced-neurons (iNs) is a powerful approach for manipulating cell fate, as it takes advantage of the intrinsic neural stem cell (NSC) potential of brain resident reactive astrocytes. To this end, astrocytic cell fate conversion to iNs has been well-established in vitro and in vivo using combinations of transcription factors (TFs) or chemical cocktails. Challenging the expression of lineage-specific TFs is accompanied by changes in the expression of miRNAs, that post-transcriptionally modulate high numbers of neurogenesis-promoting factors and have therefore been introduced, supplementary or alternatively to TFs, to instruct direct neuronal reprogramming. The neurogenic miRNA miR-124 has been employed in direct reprogramming protocols supplementary to neurogenic TFs and other miRNAs to enhance direct neurogenic conversion by suppressing multiple non-neuronal targets. In our group we aimed to investigate whether miR-124 is sufficient to drive direct reprogramming of astrocytes to induced-neurons (iNs) on its own both in vitro and in vivo and elucidate its independent mechanism of reprogramming action. Our in vitro data indicate that miR-124 is a potent driver of the reprogramming switch of astrocytes towards an immature neuronal fate. Elucidation of the molecular pathways being triggered by miR-124 by RNA-seq analysis revealed that miR-124 is sufficient to instruct reprogramming of cortical astrocytes to immature induced-neurons (iNs) in vitro by down-regulating genes with important regulatory roles in astrocytic function. Among these, the RNA binding protein Zfp36l1, implicated in ARE-mediated mRNA decay, was found to be a direct target of miR-124, that be its turn targets neuronal-specific proteins participating in cortical development, which get de-repressed in miR-124-iNs. Furthermore, miR-124 is potent to guide direct neuronal reprogramming of reactive astrocytes to iNs of cortical identity following cortical trauma, a novel finding confirming its robust reprogramming action within the cortical microenvironment under neuroinflammatory conditions. In parallel to their reprogramming properties, astrocytes also participate in the maintenance of blood-brain barrier integrity, which ensures the physiological functioning of the central nervous system and gets affected contributing to the pathology of several neurodegenerative diseases. To study in real time the dynamic physical interactions of astrocytes with brain vasculature under homeostatic and pathological conditions, we performed 2-photon brain intravital imaging in a mouse model of systemic neuroinflammation, known to trigger astrogliosis and microgliosis and to evoke changes in astrocytic contact with brain vasculature. Our in vivo findings indicate that following neuroinflammation the endfeet of activated perivascular astrocytes lose their close proximity and physiological cross-talk with vasculature, however this event is at compensated by the cross-talk of astrocytes with activated microglia, safeguarding blood vessel coverage and maintenance of blood-brain integrity.
Inter-tissue signals modify food-seeking behavior in C. elegans
Animals modify their behavioral outputs in response to changes in external and internal environments. We use the nematode, C. elegans to probe the pathways linking changes in internal states like hunger with behavior. We find that acute food deprivation alters the localization of two transcription factors, likely releasing an insulin-like peptide from the intestine, which in turn modifies chemosensory neurons and alters behavior. These results present a model for how inter-tissue signals to generate flexible behaviors via gut-brain signaling.
Dissecting the 3D regulatory landscape of the developing cerebral cortex with single-cell epigenomics
Understanding how different epigenetic layers are coordinated to facilitate robust lineage decisions during development is one of the fundamental questions in regulatory genomics. Using single-cell epigenomics coupled with cell-type specific high-throughput mapping of enhancer activity, DNA methylation and the 3D genome landscape in vivo, we dissected how the epigenome is rewired during cortical development. We identified and functionally validated key transcription factors such as Neurog2 which underlie regulatory dynamics and coordinate rewiring across multiple epigenetic layers to ensure robust lineage specification. This work showcases the power of high-throughput integrative genomics to dissect the molecular rules of cell fate decisions in the brain and more broadly, how to apply them to evolution and disease.
Circuit transcription factors in C.elegans
Cooperative binding of transcription factors is a hallmark of active enhancers
Extracellular vesicles from hypothalamic astrocytes modify transcription factors of the leptin signaling pathway in proopiomelanocortin (POMC) neurons
FENS Forum 2024
Interactions between amyloid beta 1-42 and nuclear transcription factors in mitochondria
FENS Forum 2024