← Back

Treatment

Topic spotlight
TopicWorld Wide

treatment

Discover seminars, jobs, and research tagged with treatment across World Wide.
100 curated items60 Seminars40 ePosters
Updated 3 months ago
100 items · treatment
100 results
SeminarNeuroscience

Low intensity rTMS: age dependent effects, and mechanisms underlying neural plasticity

Ann Lohof
Sorbonne Université, Institut de Biologie Paris Seine
Sep 18, 2025

Neuroplasticity is essential for the establishment and strengthening of neural circuits. Repetitive transcranial magnetic stimulation (rTMS) is commonly used to modulate cortical excitability and shows promise in the treatment of some neurological disorders. Low intensity magnetic stimulation (LI-rTMS), which does not directly elicit action potentials in the stimulated neurons, have also shown some therapeutic effects, and it is important to determine the biological mechanisms underlying the effects of these low intensity magnetic fields, such as would occur in the regions surrounding the central high-intensity focus of rTMS. Our team has used a focal low-intensity (10mT) magnetic stimulation approach to address some of these questions and to identify cellular mechanisms. I will present several studies from our laboratory, addressing (1) effects of LIrTMS on neuronal activity and excitability ; and (2) neuronal morphology and post-lesion repair. The ensemble of our results indicate that the effects of LI-rTMS depend upon the stimulation pattern, the age of the animal, and the presence of cellular magnetoreceptors.

SeminarNeuroscience

Neural circuits underlying sleep structure and functions

Antoine Adamantidis
University of Bern
Jun 12, 2025

Sleep is an active state critical for processing emotional memories encoded during waking in both humans and animals. There is a remarkable overlap between the brain structures and circuits active during sleep, particularly rapid eye-movement (REM) sleep, and the those encoding emotions. Accordingly, disruptions in sleep quality or quantity, including REM sleep, are often associated with, and precede the onset of, nearly all affective psychiatric and mood disorders. In this context, a major biomedical challenge is to better understand the underlying mechanisms of the relationship between (REM) sleep and emotion encoding to improve treatments for mental health. This lecture will summarize our investigation of the cellular and circuit mechanisms underlying sleep architecture, sleep oscillations, and local brain dynamics across sleep-wake states using electrophysiological recordings combined with single-cell calcium imaging or optogenetics. The presentation will detail the discovery of a 'somato-dendritic decoupling'in prefrontal cortex pyramidal neurons underlying REM sleep-dependent stabilization of optimal emotional memory traces. This decoupling reflects a tonic inhibition at the somas of pyramidal cells, occurring simultaneously with a selective disinhibition of their dendritic arbors selectively during REM sleep. Recent findings on REM sleep-dependent subcortical inputs and neuromodulation of this decoupling will be discussed in the context of synaptic plasticity and the optimization of emotional responses in the maintenance of mental health.

SeminarNeuroscience

Neuro-Optometric Rehabilitation - an introduction to the diagnosis and treatment of vision disorders secondary to neurological impairment

Marsha Benshir
May 26, 2025
SeminarNeuroscienceRecording

Functional Plasticity in the Language Network – evidence from Neuroimaging and Neurostimulation

Gesa Hartwigsen
University of Leipzig, Germany
May 19, 2025

Efficient cognition requires flexible interactions between distributed neural networks in the human brain. These networks adapt to challenges by flexibly recruiting different regions and connections. In this talk, I will discuss how we study functional network plasticity and reorganization with combined neurostimulation and neuroimaging across the adult life span. I will argue that short-term plasticity enables flexible adaptation to challenges, via functional reorganization. My key hypothesis is that disruption of higher-level cognitive functions such as language can be compensated for by the recruitment of domain-general networks in our brain. Examples from healthy young brains illustrate how neurostimulation can be used to temporarily interfere with efficient processing, probing short-term network plasticity at the systems level. Examples from people with dyslexia help to better understand network disorders in the language domain and outline the potential of facilitatory neurostimulation for treatment. I will also discuss examples from aging brains where plasticity helps to compensate for loss of function. Finally, examples from lesioned brains after stroke provide insight into the brain’s potential for long-term reorganization and recovery of function. Collectively, these results challenge the view of a modular organization of the human brain and argue for a flexible redistribution of function via systems plasticity.

SeminarArtificial IntelligenceRecording

Computational modelling of ocular pharmacokinetics

Arto Urtti
School of Pharmacy, University of Eastern Finland
Apr 21, 2025

Pharmacokinetics in the eye is an important factor for the success of ocular drug delivery and treatment. Pharmacokinetic features determine the feasible routes of drug administration, dosing levels and intervals, and it has impact on eventual drug responses. Several physical, biochemical, and flow-related barriers limit drug exposure of anterior and posterior ocular target tissues during treatment during local (topical, subconjunctival, intravitreal) and systemic administration (intravenous, per oral). Mathematical models integrate joint impact of various barriers on ocular pharmacokinetics (PKs) thereby helping drug development. The models are useful in describing (top-down) and predicting (bottom-up) pharmacokinetics of ocular drugs. This is useful also in the design and development of new drug molecules and drug delivery systems. Furthermore, the models can be used for interspecies translation and probing of disease effects on pharmacokinetics. In this lecture, ocular pharmacokinetics and current modelling methods (noncompartmental analyses, compartmental, physiologically based, and finite element models) are introduced. Future challenges are also highlighted (e.g. intra-tissue distribution, prediction of drug responses, active transport).

SeminarNeuroscience

Human Fear and Memory: Insights and Treatments Using Mobile Implantable Neurotechnologies

Nanthia Suthana
University of California, Los Angeles
Apr 13, 2025
SeminarNeuroscienceRecording

An inconvenient truth: pathophysiological remodeling of the inner retina in photoreceptor degeneration

Michael Telias
University of Rochester
Apr 7, 2025

Photoreceptor loss is the primary cause behind vision impairment and blindness in diseases such as retinitis pigmentosa and age-related macular degeneration. However, the death of rods and cones allows retinoids to permeate the inner retina, causing retinal ganglion cells to become spontaneously hyperactive, severely reducing the signal-to-noise ratio, and creating interference in the communication between the surviving retina and the brain. Treatments aimed at blocking or reducing hyperactivity improve vision initiated from surviving photoreceptors and could enhance the signal fidelity generated by vision restoration methodologies.

SeminarNeuroscience

Structural & Functional Neuroplasticity in Children with Hemiplegia

Christos Papadelis
University of Texas at Arlington
Feb 20, 2025

About 30% of children with cerebral palsy have congenital hemiplegia, resulting from periventricular white matter injury, which impairs the use of one hand and disrupts bimanual co-ordination. Congenital hemiplegia has a profound effect on each child's life and, thus, is of great importance to the public health. Changes in brain organization (neuroplasticity) often occur following periventricular white matter injury. These changes vary widely depending on the timing, location, and extent of the injury, as well as the functional system involved. Currently, we have limited knowledge of neuroplasticity in children with congenital hemiplegia. As a result, we provide rehabilitation treatment to these children almost blindly based exclusively on behavioral data. In this talk, I will present recent research evidence of my team on understanding neuroplasticity in children with congenital hemiplegia by using a multimodal neuroimaging approach that combines data from structural and functional neuroimaging methods. I will further present preliminary data regarding functional improvements of upper extremities motor and sensory functions as a result of rehabilitation with a robotic system that involves active participation of the child in a video-game setup. Our research is essential for the development of novel or improved neurological rehabilitation strategies for children with congenital hemiplegia.

SeminarNeuroscience

Analyzing Network-Level Brain Processing and Plasticity Using Molecular Neuroimaging

Alan Jasanoff
Massachusetts Institute of Technology
Jan 27, 2025

Behavior and cognition depend on the integrated action of neural structures and populations distributed throughout the brain. We recently developed a set of molecular imaging tools that enable multiregional processing and plasticity in neural networks to be studied at a brain-wide scale in rodents and nonhuman primates. Here we will describe how a novel genetically encoded activity reporter enables information flow in virally labeled neural circuitry to be monitored by fMRI. Using the reporter to perform functional imaging of synaptically defined neural populations in the rat somatosensory system, we show how activity is transformed within brain regions to yield characteristics specific to distinct output projections. We also show how this approach enables regional activity to be modeled in terms of inputs, in a paradigm that we are extending to address circuit-level origins of functional specialization in marmoset brains. In the second part of the talk, we will discuss how another genetic tool for MRI enables systematic studies of the relationship between anatomical and functional connectivity in the mouse brain. We show that variations in physical and functional connectivity can be dissociated both across individual subjects and over experience. We also use the tool to examine brain-wide relationships between plasticity and activity during an opioid treatment. This work demonstrates the possibility of studying diverse brain-wide processing phenomena using molecular neuroimaging.

SeminarNeuroscience

An intranasal non-opioid treatment for opioid use disorder

Pothos Emmanuel
Tufts University School of Medicine, Boston, MA, USA
Dec 18, 2024
SeminarNeuroscience

SWEBAGS conference 2024: Shared network mechanisms of dopamine and deep brain stimulation for the treatment of Parkinson’s disease: From modulation of oscillatory cortex – basal ganglia communication to intelligent clinical brain computer interfaces

Wolf-Julian Neumann
Charité – Universitätsmedizin Berlin
Dec 4, 2024
SeminarNeuroscience

Applied cognitive neuroscience to improve learning and therapeutics

Greg Applebaum
Department of Psychiatry, University of California, San Diego
May 15, 2024

Advancements in cognitive neuroscience have provided profound insights into the workings of the human brain and the methods used offer opportunities to enhance performance, cognition, and mental health. Drawing upon interdisciplinary collaborations in the University of California San Diego, Human Performance Optimization Lab, this talk explores the application of cognitive neuroscience principles in three domains to improve human performance and alleviate mental health challenges. The first section will discuss studies addressing the role of vision and oculomotor function in athletic performance and the potential to train these foundational abilities to improve performance and sports outcomes. The second domain considers the use of electrophysiological measurements of the brain and heart to detect, and possibly predict, errors in manual performance, as shown in a series of studies with surgeons as they perform robot-assisted surgery. Lastly, findings from clinical trials testing personalized interventional treatments for mood disorders will be discussed in which the temporal and spatial parameters of transcranial magnetic stimulation (TMS) are individualized to test if personalization improves treatment response and can be used as predictive biomarkers to guide treatment selection. Together, these translational studies use the measurement tools and constructs of cognitive neuroscience to improve human performance and well-being.

SeminarNeuroscience

Evolution of convulsive therapy from electroconvulsive therapy to Magnetic Seizure Therapy; Interventional Neuropsychiatry

Mustafa Husain, MD & Prof. Nolan Williams, MD
Duke University / UT Southwestern Medical Center & Stanford University
Apr 24, 2024

In April, we will host Nolan Williams and Mustafa Husain. Be prepared to embark on a journey from early brain stimulation with ECT to state-of-the art TMS protocols and magnetic seizure therapy! The talks will be held on Thursday, April 25th at noon ET / 6PM CET. Nolan Williams, MD, is an associate professor of Psychiatry and Behavioral Science at Stanford University. He developed the SAINT protocol, which is the first FDA-cleared non-invasive, rapid-acting neuromodulation treatment for treatment-resistant depression. Mustafa Husain, MD, is an adjunct professor of Psychiatry and Behavioral Sciences at Duke University and a professor of Psychiatry and Neurology at UT Southwestern Medical Center, Dallas. He will tell us about “Evolution of convulsive therapy from electroconvulsive therapy to Magnetic Seizure Therapy”. As always, we will also get a glimpse at the “Person behind the science”. Please register va talks.stimulatingbrains.org to receive the (free) Zoom link, subscribe to our newsletter, or follow us on Twitter/X for further updates!

SeminarNeuroscienceRecording

Blood-brain barrier dysfunction in epilepsy: Time for translation

Alon Friedman
Dalhousie University
Feb 27, 2024

The neurovascular unit (NVU) consists of cerebral blood vessels, neurons, astrocytes, microglia, and pericytes. It plays a vital role in regulating blood flow and ensuring the proper functioning of neural circuits. Among other, this is made possible by the blood-brain barrier (BBB), which acts as both a physical and functional barrier. Previous studies have shown that dysfunction of the BBB is common in most neurological disorders and is associated with neural dysfunction. Our studies have demonstrated that BBB dysfunction results in the transformation of astrocytes through transforming growth factor beta (TGFβ) signaling. This leads to activation of the innate neuroinflammatory system, changes in the extracellular matrix, and pathological plasticity. These changes ultimately result in dysfunction of the cortical circuit, lower seizure threshold, and spontaneous seizures. Blocking TGFβ signaling and its associated pro-inflammatory pathway can prevent this cascade of events, reduces neuroinflammation, repairs BBB dysfunction, and prevents post-injury epilepsy, as shown in experimental rodents. To further understand and assess BBB integrity in human epilepsy, we developed a novel imaging technique that quantitatively measures BBB permeability. Our findings have confirmed that BBB dysfunction is common in patients with drug-resistant epilepsy and can assist in identifying the ictal-onset zone prior to surgery. Current clinical studies are ongoing to explore the potential of targeting BBB dysfunction as a novel treatment approach and investigate its role in drug resistance, the spread of seizures, and comorbidities associated with epilepsy.

SeminarNeuroscienceRecording

Seizure control by electrical stimulation: parameters and mechanisms

Dominique Durand
Case Western
Jan 30, 2024

Seizure suppression by deep brain stimulation (DBS) applies high frequency stimulation (HFS) to grey matter to block seizures. In this presentation, I will present the results of a different method that employs low frequency stimulation (LFS) (1 to 10Hz) of white matter tracts to prevent seizures. The approach has been shown to be effective in the hippocampus by stimulating the ventral and dorsal hippocampal commissure in both animal and human studies respectively for mesial temporal lobe seizures. A similar stimulation paradigm has been shown to be effective at controlling focal cortical seizures in rats with corpus callosum stimulation. This stimulation targets the axons of the corpus callosum innervating the focal zone at low frequencies (5 to 10Hz) and has been shown to significantly reduce both seizure and spike frequency. The mechanisms of this suppression paradigm have been elucidated with in-vitro studies and involve the activation of two long-lasting inhibitory potentials GABAB and sAHP. LFS mechanisms are similar in both hippocampus and cortical brain slices. Additionally, the results show that LFS does not block seizures but rather decreases the excitability of the tissue to prevent seizures. Three methods of seizure suppression, LFS applied to fiber tracts, HFS applied to focal zone and stimulation of the anterior nucleus of the thalamus (ANT) were compared directly in the same animal in an in-vivo epilepsy model. The results indicate that LFS generated a significantly higher level of suppression, indicating LFS of white matter tract could be a useful addition as a stimulation paradigm for the treatment of epilepsy.

SeminarNeuroscience

Neuroestrogens as novel targets for the treatment of depression and anxiety

Dalla Christina
Medical School, National & Kapodistrian University of Athens, Athens, Greece
Nov 28, 2023
SeminarNeuroscience

Use of brain imaging data to improve prescriptions of psychotropic drugs - Examples of ketamine in depression and antipsychotics in schizophrenia

Xenia Marlene HART.
Central Institute of Mental Health, Department of Molecular Neuroimaging, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany & Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
Oct 12, 2023

The use of molecular imaging, particularly PET and SPECT, has significantly transformed the treatment of schizophrenia with antipsychotic drugs since the late 1980s. It has offered insights into the links between drug target engagement, clinical effects, and side effects. A therapeutic window for receptor occupancy is established for antipsychotics, yet there is a divergence of opinions regarding the importance of blood levels, with many downplaying their significance. As a result, the role of therapeutic drug monitoring (TDM) as a personalized therapy tool is often underrated. Since molecular imaging of antipsychotics has focused almost entirely on D2-like dopamine receptors and their potential to control positive symptoms, negative symptoms and cognitive deficits are hardly or not at all investigated. Alternative methods have been introduced, i.e. to investigate the correlation between approximated receptor occupancies from blood levels and cognitive measures. Within the domain of antidepressants, and specifically regarding ketamine's efficacy in depression treatment, there is limited comprehension of the association between plasma concentrations and target engagement. The measurement of AMPA receptors in the human brain has added a new level of comprehension regarding ketamine's antidepressant effects. To ensure precise prescription of psychotropic drugs, it is vital to have a nuanced understanding of how molecular and clinical effects interact. Clinician scientists are assigned with the task of integrating these indispensable pharmacological insights into practice, thereby ensuring a rational and effective approach to the treatment of mental health disorders, signaling a new era of personalized drug therapy mechanisms that promote neuronal plasticity not only under pathological conditions, but also in the healthy aging brain.

SeminarNeuroscienceRecording

Adaptive deep brain stimulation to treat gait disorders in Parkinson's disease; Personalized chronic adaptive deep brain stimulation outperforms conventional stimulation in Parkinson's disease

Doris Wang, MD, PhD & Stephanie Cernera, PhD
University of California, San Francisco, USA
Aug 30, 2023

On Friday, August 31st we will host Stephanie Cernera & Doris Wang! Stephanie Cernera, PhD, is a postdoctoral research fellow in the Starr lab at University of California San Francisco. She will tell us about “Personalized chronic adaptive deep brain stimulation outperforms conventional stimulation in Parkinson’s Disease”. Doris Wang, MD, PhD, is a neurosurgeon and assistant professor at the University of California San Francisco. Apart from her scientific presentation about “Adaptive Deep Brain Stimulation to Treat Gait Disorders in Parkinson’s Disease”, she will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscience

Doubting the neurofeedback double-blind do participants have residual awareness of experimental purposes in neurofeedback studies?

Timo Kvamme
Aarhus University
Aug 7, 2023

Neurofeedback provides a feedback display which is linked with on-going brain activity and thus allows self-regulation of neural activity in specific brain regions associated with certain cognitive functions and is considered a promising tool for clinical interventions. Recent reviews of neurofeedback have stressed the importance of applying the “double-blind” experimental design where critically the patient is unaware of the neurofeedback treatment condition. An important question then becomes; is double-blind even possible? Or are subjects aware of the purposes of the neurofeedback experiment? – this question is related to the issue of how we assess awareness or the absence of awareness to certain information in human subjects. Fortunately, methods have been developed which employ neurofeedback implicitly, where the subject is claimed to have no awareness of experimental purposes when performing the neurofeedback. Implicit neurofeedback is intriguing and controversial because it runs counter to the first neurofeedback study, which showed a link between awareness of being in a certain brain state and control of the neurofeedback-derived brain activity. Claiming that humans are unaware of a specific type of mental content is a notoriously difficult endeavor. For instance, what was long held as wholly unconscious phenomena, such as dreams or subliminal perception, have been overturned by more sensitive measures which show that degrees of awareness can be detected. In this talk, I will discuss whether we will critically examine the claim that we can know for certain that a neurofeedback experiment was performed in an unconscious manner. I will present evidence that in certain neurofeedback experiments such as manipulations of attention, participants display residual degrees of awareness of experimental contingencies to alter their cognition.

SeminarArtificial IntelligenceRecording

Computational and mathematical approaches to myopigenesis

C. Ross Ethier
Georgia Institute of Technology and Emory University
Jul 31, 2023

Myopia is predicted to affect 50% of all people worldwide by 2050, and is a risk factor for significant, potentially blinding ocular pathologies, such as retinal detachment and glaucoma. Thus, there is significant motivation to better understand the process of myopigenesis and to develop effective anti-myopigenic treatments. In nearly all cases of human myopia, scleral remodeling is an obligate step in the axial elongation that characterizes the condition. Here I will describe the development of a biomechanical assay based on transient unconfined compression of scleral samples. By treating the scleral as a poroelastic material, one can determine scleral biomechanical properties from extremely small samples, such as obtained from the mouse eye. These properties provide proxy measures of scleral remodeling, and have allowed us to identify all-trans retinoic acid (atRA) as a myopigenic stimulus in mice. I will also describe nascent collaborative work on modeling the transport of atRA in the eye.

SeminarNeuroscienceRecording

The Insights and Outcomes of the Wellcome-funded Waiting Times Project

Michael Flexer
University of Exeter
Jun 20, 2023

Waiting is one of healthcare’s core experiences. It is there in the time it takes to access services; through the days, weeks, months or years needed for diagnoses; in the time that treatment takes; and in the elongated time-frames of recovery, relapse, remission and dying.Funded by the Wellcome Trust, our project opens up what it means to wait in and for healthcare by examining lived experiences, representations and histories of delayed and impeded time.In an era in which time is lived at increasingly different and complex tempos, Waiting Times looks to understand both the difficulties and vital significance of waiting for practices of care, offering a fundamental re-conceptualisation of the relation between time and care in contemporary thinking about health, illness, and wellbeing.

SeminarNeuroscience

Mechanisms Underlying the Persistence of Cancer-Related Fatigue

Elisabeth G. Vichaya
Baylor University
May 22, 2023

Cancer-related fatigue is a prominent and debilitating side effect of cancer and its treatment. It can develop prior to diagnosis, generally peaks during cancer treatment, and can persist long after treatment completion. Its mechanisms are multifactorial, and its expression is highly variable. Unfortunately, treatment options are limited. Our research uses syngeneic murine models of cancer and cisplatin-based chemotherapy to better understand these mechanisms. Our data indicate that both peripherally and centrally processes may contribute to the developmental of fatigue. These processes include metabolic alterations, mitochondrial dysfunction, pre-cachexia, and inflammation. However, our data has revealed that behavioral fatigue can persist even after the toxicity associated with cancer and its treatment recover. For example, running during cancer treatment attenuates kidney toxicity while also delaying recovery from fatigue-like behavior. Additionally, administration of anesthetics known to disrupt memory consolidation at the time treatment can promote recovery, and treatment-related cues can re-instate fatigue after recovery. Cancer-related fatigue can also promote habitual behavioral patterns, as observed using a devaluation task. We interpret this data to suggest that limit metabolic resources during cancer promote the utilization of habit-based behavioral strategies that serve to maintain fatigue behavior into survivorship. This line of work is exciting as it points us toward novel interventional targets for the treatment of persistent cancer-related fatigue.

SeminarNeuroscience

Epigenomic (re)programming of the brain and behavior by ovarian hormones

Marija Kundakovic
Fordham University
May 1, 2023

Rhythmic changes in sex hormone levels across the ovarian cycle exert powerful effects on the brain and behavior, and confer female-specific risks for neuropsychiatric conditions. In this talk, Dr. Kundakovic will discuss the role of fluctuating ovarian hormones as a critical biological factor contributing to the increased depression and anxiety risk in women. Cycling ovarian hormones drive brain and behavioral plasticity in both humans and rodents, and the talk will focus on animal studies in Dr. Kundakovic’s lab that are revealing the molecular and receptor mechanisms that underlie this female-specific brain dynamic. She will highlight the lab’s discovery of sex hormone-driven epigenetic mechanisms, namely chromatin accessibility and 3D genome changes, that dynamically regulate neuronal gene expression and brain plasticity but may also prime the (epi)genome for psychopathology. She will then describe functional studies, including hormone replacement experiments and the overexpression of an estrous cycle stage-dependent transcription factor, which provide the causal link(s) between hormone-driven chromatin dynamics and sex-specific anxiety behavior. Dr. Kundakovic will also highlight an unconventional role that chromatin dynamics may have in regulating neuronal function across the ovarian cycle, including in sex hormone-driven X chromosome plasticity and hormonally-induced epigenetic priming. In summary, these studies provide a molecular framework to understand ovarian hormone-driven brain plasticity and increased female risk for anxiety and depression, opening new avenues for sex- and gender-informed treatments for brain disorders.

SeminarNeuroscience

Obesity and Brain – Bidirectional Influences

Alain Dagher
McGill University
Apr 10, 2023

The regulation of body weight relies on homeostatic mechanisms that use a combination of internal signals and external cues to initiate and terminate food intake. Homeostasis depends on intricate communication between the body and the hypothalamus involving numerous neural and hormonal signals. However, there is growing evidence that higher-level cognitive function may also influence energy balance. For instance, research has shown that BMI is consistently linked to various brain, cognitive, and personality measures, implicating executive, reward, and attentional systems. Moreover, the rise in obesity rates over the past half-century is attributed to the affordability and widespread availability of highly processed foods, a phenomenon that contradicts the idea that food intake is solely regulated by homeostasis. I will suggest that prefrontal systems involved in value computation and motivation act to limit food overconsumption when food is scarce or expensive, but promote over-eating when food is abundant, an optimum strategy from an economic standpoint. I will review the genetic and neuroscience literature on the CNS control of body weight. I will present recent studies supporting a role of prefrontal systems in weight control. I will also present contradictory evidence showing that frontal executive and cognitive findings in obesity may be a consequence not a cause of increased hunger. Finally I will review the effects of obesity on brain anatomy and function. Chronic adiposity leads to cerebrovascular dysfunction, cortical thinning, and cognitive impairment. As the most common preventable risk factor for dementia, obesity poses a significant threat to brain health. I will conclude by reviewing evidence for treatment of obesity in adults to prevent brain disease.

SeminarNeuroscience

Integration of 3D human stem cell models derived from post-mortem tissue and statistical genomics to guide schizophrenia therapeutic development

Jennifer Erwin, Ph.D
Lieber Institute for Brain Development; Department of Neurology and Neuroscience; Johns Hopkins University School of Medicine
Mar 14, 2023

Schizophrenia is a neuropsychiatric disorder characterized by positive symptoms (such as hallucinations and delusions), negative symptoms (such as avolition and withdrawal) and cognitive dysfunction1. Schizophrenia is highly heritable, and genetic studies are playing a pivotal role in identifying potential biomarkers and causal disease mechanisms with the hope of informing new treatments. Genome-wide association studies (GWAS) identified nearly 270 loci with a high statistical association with schizophrenia risk; however each locus confers only a small increase in risk therefore it is difficult to translate these findings into understanding disease biology that can lead to treatments. Induced pluripotent stem cell (iPSC) models are a tractable system to translate genetic findings and interrogate mechanisms of pathogenesis. Mounting research with patient-derived iPSCs has proposed several neurodevelopmental pathways altered in SCZ, such as neural progenitor cell (NPC) proliferation, imbalanced differentiation of excitatory and inhibitory cortical neurons. However, it is unclear what exactly these iPS models recapitulate, how potential perturbations of early brain development translates into illness in adults and how iPS models that represent fetal stages can be utilized to further drug development efforts to treat adult illness. I will present the largest transcriptome analysis of post-mortem caudate nucleus in schizophrenia where we discovered that decreased presynaptic DRD2 autoregulation is the causal dopamine risk factor for schizophrenia (Benjamin et al, Nature Neuroscience 2022 https://doi.org/10.1038/s41593-022-01182-7). We developed stem cell models from a subset of the postmortem cohort to better understand the molecular underpinnings of human psychiatric disorders (Sawada et al, Stem Cell Research 2020). We established a method for the differentiation of iPS cells into ventral forebrain organoids and performed single cell RNAseq and cellular phenotyping. To our knowledge, this is the first study to evaluate iPSC models of SZ from the same individuals with postmortem tissue. Our study establishes that striatal neurons in the patients with SCZ carry abnormalities that originated during early brain development. Differentiation of inhibitory neurons is accelerated whereas excitatory neuronal development is delayed, implicating an excitation and inhibition (E-I) imbalance during early brain development in SCZ. We found a significant overlap of genes upregulated in the inhibitory neurons in SCZ organoids with upregulated genes in postmortem caudate tissues from patients with SCZ compared with control individuals, including the donors of our iPS cell cohort. Altogether, we demonstrate that ventral forebrain organoids derived from postmortem tissue of individuals with schizophrenia recapitulate perturbed striatal gene expression dynamics of the donors’ brains (Sawada et al, biorxiv 2022 https://doi.org/10.1101/2022.05.26.493589).

SeminarNeuroscienceRecording

AI for Multi-centre Epilepsy Lesion Detection on MRI

Sophie Adler
Feb 28, 2023

Epilepsy surgery is a safe but underutilised treatment for drug-resistant focal epilepsy. One challenge in the presurgical evaluation of patients with drug-resistant epilepsy are patients considered “MRI negative”, i.e. where a structural brain abnormality has not been identified on MRI. A major pathology in “MRI negative” patients is focal cortical dysplasia (FCD), where lesions are often small or subtle and easily missed by visual inspection. In recent years, there has been an explosion in artificial intelligence (AI) research in the field of healthcare. Automated FCD detection is an area where the application of AI may translate into significant improvements in the presurgical evaluation of patients with focal epilepsy. I will provide an overview of our automated FCD detection work, the Multicentre Epilepsy Lesion Detection (MELD) project and how AI algorithms are beginning to be integrated into epilepsy presurgical planning at Great Ormond Street Hospital and elsewhere around the world. Finally, I will discuss the challenges and future work required to bring AI to the forefront of care for patients with epilepsy.

SeminarNeuroscienceRecording

25 years of DBS beyond movement disorders: what challenges are we facing?; Directional DBS targeting of different nuclei in the thalamus for the treatment of pain

Veerle Visser-Vandewalle, MD, PhD & Marie Krüger, MD
University Hospital Cologne, Germany / Kantonsspital St. Gallen, Switzerland & UCL / Queensquare London, UK
Feb 22, 2023

On Thursday, 23rd of February, we will host Veerle Visser-Vandewalle and Marie Krüger. Marie Krüger, MD, is is currently leading the stereotactic surgery unit in St. Gallen but is on her move to join the team at UCL / Queensquare London. She will discuss “Directional DBS targeting of different nuclei in the thalamus for the treatment of pain”. Veerle Visser-Vandewalle, MD, PhD, is the Head of the Department of Stereotactic and Functional Neurosurgery at University Hospital of Cologne. Beside his scientific presentation on “25 years of DBS beyond movement disorders: what challenges are we facing?”, she will also give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscience

Myelin Formation and Oligodendrocyte Biology in Epilepsy

Angelika Mühlebner
Universitair Medisch Centrum Utrecht
Feb 15, 2023

Epilepsy is one of the most common neurological diseases according to the World Health Organization (WHO) affecting around 70 million people worldwide [WHO]. Patients who suffer from epilepsy also suffer from a variety of neuro-psychiatric co-morbidities, which they can experience as crippling as the seizure condition itself. Adequate organization of cerebral white matter is utterly important for cognitive development. The failure of integration of neurologic function with cognition is reflected in neuro-psychiatric disease, such as autism spectrum disorder (ASD). However, in epilepsy we know little about the importance of white matter abnormalities in epilepsy-associated co-morbidities. Epilepsy surgery is an important therapy strategy in patients where conventional anti-epileptic drug treatment fails . On histology of the resected brain samples, malformations of cortical development (MCD) are common among the epilepsy surgery population, especially focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC). Both pathologies are associated with constitutive activation of the mTOR pathway. Interestingly, some type of FCD is morphological similar to TSC cortical tubers including the abnormalities of the white matter. Hypomyelination with lack of myelin-producing cells, the oligodendrocytes, within the lesional area is a striking phenomenon. Impairment of the complex myelination process can have a major impact on brain function. In the worst case leading to distorted or interrupted neurotransmissions. It is still unclear whether the observed myelin pathology in epilepsy surgical specimens is primarily related to the underlying malformation process or is just a secondary phenomenon of recurrent epileptic seizures creating a toxic micro-environment which hampers myelin formation. Interestingly, mTORC1 has been implicated as key signal for myelination, thus, promoting the maturation of oligodendrocytes . These results, however, remain controversial. Regardless of the underlying pathophysiologic mechanism, alterations of myelin dynamics, depending on their severity, are known to be linked to various kinds of developmental disorders or neuropsychiatric manifestations.

SeminarNeuroscienceRecording

Valentine’s Day for people with multiple sclerosis: promoting brain repair through remyelination

Alasdair Coles
Department of Clinical Neurosciences, University of Cambridge
Feb 13, 2023

Current disease-modifying therapies in multiple sclerosis are all focused on suppressing the inflammatory phase of the disease. This has been extremely successful, and it is doubtful that significantly more efficacious anti-inflammatory treatments will be found. However, it remains the case that people with relapsing-remitting multiple sclerosis acquire disability on treatment, and enter the secondary progressive phase. I argue that we now need treatments that prevent neuronal degeneration. The most promising approach is to prevent axons degenerating by remyelination. Since the discovery that the adult brain contains stem cells which can remyelinate, the problem now is how to promote endogenous remyelination, and how to know when we have achieved this! We have successfully identified one drug which promotes remyelination but unfortunately it is too toxic for use in the clinic. So the hunt continues.

SeminarNeuroscience

Targeting thalamic circuits rescues motor and mood deficits in PD mice

Dheeraj Roy
Feng Lab, Broad Institute of MIT and Harvard
Jan 31, 2023

Although bradykinesia, tremor, and rigidity are hallmark motor defects in Parkinson’s disease (PD) patients, they also experience motor learning impairments and non-motor symptoms such as depression. The neural basis for these different PD symptoms are not well understood. While current treatments are effective for locomotion deficits in PD, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking. We found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN), and nucleus accumbens (NAc). While PF-->CPu and PF-->STN circuits are critical for locomotion and motor learning respectively, inhibition of the PF-->NAc circuit induced a depression-like state. While chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation at PF-->STN synapses restored motor learning behavior in PD model mice. Furthermore, activation of NAc-projecting PF neurons rescued depression-like PD phenotypes. Importantly, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.

SeminarNeuroscienceRecording

Can we have jam today and jam tomorrow ?Improving outcomes for older people living with mental illness using applied and translational research

Ben Underwood
Department of Psychiatry, University of Cambridge
Jan 16, 2023

This talk will examine how approaches such as ‘big data’ and new ways of delivering clinical trials can improve current services for older people with mental illness (jam today) and identify and deliver new treatments in the future (jam tomorrow).

SeminarNeuroscienceRecording

Indispensable for generating epileptic seizures: where, when, how?

Yujiang Wang
Newcastle University
Dec 13, 2022

In epilepsy research, a holy grail has been the identification and understanding of the "epileptogenic zone" - operationally defined as the (minimal) area or region of the brain is indispensible for the generation of epileptic seizures. The identification of the epileptogenic zone is particularly important for surgical treatments of focal epilepsy patients, but I will highlight some recent clinical, experimental and theoretical work showing that it is also fundamentally linked with our understanding of epilepsy and seizures. I will conclude with a proposal for an updated understanding of the epileptogenic zone and ictogenesis.

SeminarNeuroscience

NEW TREATMENTS FOR PAIN: Unmet needs and how to meet them

Multiple speakers
Nov 8, 2022

“Of pain you could wish only one thing: that it should stop. Nothing in the world was so bad as physical pain. In the face of pain there are no heroes.- George Orwell, ‘1984’ " "Neuroscience has revealed the secrets of the brain and nervous system to an extent that was beyond the realm of imagination just 10-20 years ago, let alone in 1949 when Orwell wrote his prophetic novel. Understanding pain, however, presents a unique challenge to academia, industry and medicine, being both a measurable physiological process as well as deeply personal and subjective. Given the millions of people who suffer from pain every day, wishing only, “that it should stop”, the need to find more effective treatments cannot be understated." "‘New treatments for pain’ will bring together approximately 120 people from the commercial, academic, and not-for-profit sectors to share current knowledge, identify future directions, and enable collaboration, providing delegates with meaningful and practical ways to accelerate their own work into developing treatments for pain.

SeminarNeuroscience

Development of Interictal Networks: Implications for Epilepsy Progression and Cognition

Jennifer Gelinas
Columbia University Medical Center, NY
Nov 1, 2022

Epilepsy is a common and disabling neurologic condition affecting adults and children that results from complex dysfunction of neural networks and is ineffectively treated with current therapies in up to one third of patients. This dysfunction can have especially severe consequences in pediatric age group, where neurodevelopment may be irreversibly affected. Furthermore, although seizures are the most obvious manifestation of epilepsy, the cognitive and psychiatric dysfunction that often coexists in patients with this disorder has the potential to be equally disabling.  Given these challenges, her research program aims to better understand how epileptic activity disrupts the proper development and function of neural networks, with the overall goal of identifying novel biomarkers and systems level treatments for epileptic disorders and their comorbidities, especially those affecting children.

SeminarNeuroscience

Myelin Formation and Oligodendrocyte Biology in Epilepsy

Angelika Mühlebner
Universitair Medisch Centrum Utrecht
Oct 18, 2022

Epilepsy is one of the most common neurological diseases according to the World Health Organization (WHO) affecting around 70 million people worldwide [WHO]. Patients who suffer from epilepsy also suffer from a variety of neuro-psychiatric co-morbidities, which they can experience as crippling as the seizure condition itself. Adequate organization of cerebral white matter is utterly important for cognitive development. The failure of integration of neurologic function with cognition is reflected in neuro-psychiatric disease, such as autism spectrum disorder (ASD). However, in epilepsy we know little about the importance of white matter abnormalities in epilepsy-associated co-morbidities. Epilepsy surgery is an important therapy strategy in patients where conventional anti-epileptic drug treatment fails . On histology of the resected brain samples, malformations of cortical development (MCD) are common among the epilepsy surgery population, especially focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC). Both pathologies are associated with constitutive activation of the mTOR pathway. Interestingly, some type of FCD is morphological similar to TSC cortical tubers including the abnormalities of the white matter. Hypomyelination with lack of myelin-producing cells, the oligodendrocytes, within the lesional area is a striking phenomenon. Impairment of the complex myelination process can have a major impact on brain function. In the worst case leading to distorted or interrupted neurotransmissions. It is still unclear whether the observed myelin pathology in epilepsy surgical specimens is primarily related to the underlying malformation process or is just a secondary phenomenon of recurrent epileptic seizures creating a toxic micro-environment which hampers myelin formation. Interestingly, mTORC1 has been implicated as key signal for myelination, thus, promoting the maturation of oligodendrocytes . These results, however, remain controversial. Regardless of the underlying pathophysiologic mechanism, alterations of myelin dynamics, depending on their severity, are known to be linked to various kinds of developmental disorders or neuropsychiatric manifestations.

SeminarNeuroscience

The peripheral airways in Asthma: significance, assessment, and targeted treatment

Claire O'Sullivan
Alfred Health/Monash & Newcastle UK University
Sep 27, 2022

The peripheral airways are technically challenging to assess and have been overlooked in the assessment of chronic respiratory diseases such as Asthma, in both the clinical and research space. Evidence of the importance of the small airways in Asthma is building, and small airways dysfunction is implicated in poor Asthma control, airway hyperresponsiveness, and exacerbation risk. The aim of this research was to complete comprehensive global, regional, and spatial assessments of airway function and ventilation in Asthma using physiological and MRI techniques. Specific ventilation imaging (SVI) and Phase resolved functional lung imaging (PREFUL) formed the spatial assessments. SVI uses oxygen as a contrast agent and looks at rate of change in signal to assess ventilation heterogeneity, PREFUL is a completely contrast free technique that uses Fourier decomposition to determine fractional ventilation.

SeminarNeuroscienceRecording

Linking GWAS to pharmacological treatments for psychiatric disorders

Aurina Arnatkeviciute
Monash University
Aug 18, 2022

Genome-wide association studies (GWAS) have identified multiple disease-associated genetic variations across different psychiatric disorders raising the question of how these genetic variants relate to the corresponding pharmacological treatments. In this talk, I will outline our work investigating whether functional information from a range of open bioinformatics datasets such as protein interaction network (PPI), brain eQTL, and gene expression pattern across the brain can uncover the relationship between GWAS-identified genetic variation and the genes targeted by current drugs for psychiatric disorders. Focusing on four psychiatric disorders---ADHD, bipolar disorder, schizophrenia, and major depressive disorder---we assess relationships between the gene targets of drug treatments and GWAS hits and show that while incorporating information derived from functional bioinformatics data, such as the PPI network and spatial gene expression, can reveal links for bipolar disorder, the overall correspondence between treatment targets and GWAS-implicated genes in psychiatric disorders rarely exceeds null expectations. This relatively low degree of correspondence across modalities suggests that the genetic mechanisms driving the risk for psychiatric disorders may be distinct from the pathophysiological mechanisms used for targeting symptom manifestations through pharmacological treatments and that novel approaches for understanding and treating psychiatric disorders may be required.

SeminarNeuroscience

Ebselen: a lithium-mimetic without lithium side-effects?

Beata R. Godlewska
Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
Jun 30, 2022

Development of new medications for mental health conditions is a pressing need given the high proportion of people not responding to available treatments. We hope that presenting ebselen to a wider audience will inspire further studies on this promising agent with a benign side-effects profile. Laboratory research, animal research and human studies suggest that ebselen shares many features with the mood stabilising drug lithium, creating a promise of a drug that would have a similar clinical effect but without lithium’s troublesome side-effect profile and toxicity. Both drugs have a common biological target, inositol monophosphatase, whose inhibition is thought key to lithium’s therapeutic effect. Both drugs have neuroprotective action and reduce oxidative stress. In animal studies, ebselen affected neurotransmitters involved in the development of mental health symptoms, and in particular, produced effects of serotonin function very similar to lithium. Both ebselen and lithium share behavioural effects: antidepressant-like effects in rodent models of depression and decrease in behavioural impulsivity, a property associated with lithium's anti-suicidal action. Human neuropsychological studies support an antidepressant profile for ebselen based on its positive impact on emotional processing and reward seeking. Our group currently is exploring ebselen’s effects in patients with mood disorders. A completed ‘add-on’ clinical trial in mania showed ebselen’s superiority over placebo after three weeks of treatment. Our ongoing experimental research explores ebselen’s antidepressant profile in patients with treatment resistant depression. If successful, this will lead to a clinical trial of ebselen as an antidepressant augmentation agent, similar to lithium.

SeminarNeuroscience

Cell-type specific genomics and transcriptomics of HIV in the brain

Amara Plaza-Jennings
Icahn School of Medicine at Mt. Sinai, NYC
Jun 21, 2022

Exploration of genome organization and function in the HIV infected brain is critical to aid in the understanding and development of treatments for HIV-associated neurocognitive disorder (HAND). Here, we applied a multiomic approach, including single nuclei transcriptomics, cell-type specific Hi-C 3D genome mapping, and viral integration site sequencing (IS-seq) to frontal lobe tissue from HIV-infected individuals with encephalitis (HIVE) and without encephalitis (HIV+). We observed reorganization of open/repressive (A/B) compartment structures in HIVE microglia encompassing 6.4% of the genome with enrichment for regions containing interferon (IFN) pathway genes. 3D genome remodeling was associated with transcriptomic reprogramming, including down-regulation of cell adhesion and synapse-related functions and robust activation of IFN signaling and cell migratory pathways, and was recapitulated by IFN-g stimulation of cultured microglial cells. Microglia from HIV+ brains showed, to a lesser extent, similar transcriptional alterations. IS-seq recovered 1,221 integration sites in the brain that were enriched for chromosomal domains newly mobilized into a permissive chromatin environment in HIVE microglia. Viral transcription, which was detected in 0.003% of all nuclei in HIVE brain, occurred in a subset of highly activated microglia that drove differential expression in HIVE. Thus, we observed a dynamic interrelationship of interferon-associated 3D genome and transcriptome remodeling with HIV integration and transcription in the brain.

SeminarNeuroscience

PET imaging in brain diseases

Bianca Jupp and Lucy Vivash
Monash University
Jun 7, 2022

Talk 1. PET based biomarkers of treatment efficacy in temporal lobe epilepsy A critical aspect of drug development involves identifying robust biomarkers of treatment response for use as surrogate endpoints in clinical trials. However, these biomarkers also have the capacity to inform mechanisms of disease pathogenesis and therapeutic efficacy. In this webinar, Dr Bianca Jupp will report on a series of studies using the GABAA PET ligand, [18F]-Flumazenil, to establish biomarkers of treatment response to a novel therapeutic for temporal lobe epilepsy, identifying affinity at this receptor as a key predictor of treatment outcome. Dr Bianca Jupp is a Research Fellow in the Department of Neuroscience, Monash University and Lead PET/CT Scientist at the Alfred Research Alliance–Monash Biomedical Imaging facility. Her research focuses on neuroimaging and its capacity to inform the neurobiology underlying neurological and neuropsychiatric disorders. Talk 2. The development of a PET radiotracer for reparative microglia Imaging of neuroinflammation is currently hindered by the technical limitations associated with TSPO imaging. In this webinar, Dr Lucy Vivash will discuss the development of PET radiotracers that specifically image reparative microglia through targeting the receptor kinase MerTK. This includes medicinal chemistry design and testing, radiochemistry, and in vitro and in vivo testing of lead tracers. Dr Lucy Vivash is a Research Fellow in the Department of Neuroscience, Monash University. Her research focuses on the preclinical development and clinical translation of novel PET radiotracers for the imaging of neurodegenerative diseases.

SeminarNeuroscienceRecording

Apathy and impulsivity in neurological disease – cause, effect and treatment

James Rowe
Department of Clinical Neurosciences, University of Cambridge
May 23, 2022
SeminarNeuroscience

Angelman syndrome: biomarkers and treatment opportunities

Ben Philpot
UNC-Chapel Hill
May 17, 2022
SeminarNeuroscience

Cell type-specific gene regulatory mechanisms associated with addiction-related behaviors in rats

Francesca Telese, PhD
University of California, San Diego
May 10, 2022

Understanding the fundamental gene regulatory mechanisms underlying addiction and related behaviors could facilitate more effective treatments. We discuss our work using multi-omics methods to provide mechanistic and functional insights into how addiction perturbs gene regulatory programs in the rat brain, with single-cell resolution.

SeminarNeuroscience

MicroRNAs as targets in the epilepsies: hits, misses and complexes

David Henshall
The Royal College of Surgeons in Ireland
May 3, 2022

MicroRNAs are small noncoding RNAs that provide a critical layer of gene expression control. Individual microRNAs variably exert effects across networks of genes via sequence-specific binding to mRNAs, fine-tuning protein levels. This helps coordinate the timing and specification of cell fate transitions during brain development and maintains neural circuit function and plasticity by activity-dependent (re)shaping of synapses and the levels of neurotransmitter components. MicroRNA levels have been found to be altered in tissue from the epileptogenic zone resected from adults with drug-resistant focal epilepsy and this has driven efforts to explore their therapeutic potential, in particular using antisense oligonucleotide (ASOs) inhibitors termed antimirs. Here, we review the molecular mechanisms by which microRNAs control brain excitability and the latest progress towards a microRNA-based treatment for temporal lobe epilepsy. We also look at whether microRNA-based approaches could be used to treat genetic epilepsies, correcting individual genes or dysregulated pathways. Finally, we look at how cells have evolved to maximise the efficiency of the microRNA system via RNA editing, where single base changes is capable of altering the repertoire of genes under the control of a single microRNA. The findings improve our understanding of the molecular landscape of the epileptic brain and may lead to new therapies.

SeminarNeuroscience

Remembering Immunity, Central regulation of peripheral immune processes

Asya Rolls
Technion, Israel Institute of Technology
May 1, 2022

Thoughts and emotions can impact physiology. This connection is evident by the emergence of disease following stress, psychosomatic disorders, or recovery in response to placebo treatment. Nevertheless, this fundamental aspect of physiology remains largely unexplored. In this talk, I will focus on the brain’s involvement in regulating the peripheral immune response and explore the question of how the brain evaluates and represents the state of the immune system it regulates.

SeminarNeuroscience

Elucidating the mechanism underlying Stress and Caffeine-induced motor dysfunction using a mouse model of Episodic Ataxia Type 2

Heather Snell
Albert Einstein Medical College
Apr 26, 2022

Episodic Ataxia type 2 (EA2), caused by mutations in the CACNA1A gene, results in a loss-of-function of the P/Q type calcium channel, which leads to baseline ataxia, and attacks of dyskinesia, that can last a few hours to a few days. Attacks are brought on by consumption of caffeine, alcohol, and physical or emotional stress. Interestingly, caffeine and stress are common triggers among other episodic channelopathies, as well as causing tremor or shaking in otherwise healthy adults. The mechanism underlying stress and caffeine induced motor impairment remains poorly understood. Utilizing behavior, and in vivo and in vitro electrophysiology in the tottering mouse, a well characterized mouse model of EA2, or WT mice, we first sought to elucidate the mechanism underlying stress-induced motor impairment. We found stress induces attacks in EA2 though the activation of cerebellar alpha 1 adrenergic receptors by norepinephrine (NE) through casein kinase 2 (CK2) dependent phosphorylation. This decreases SK2 channel activity, causing increased Purkinje cell irregularity and motor impairment. Knocking down or blocking CK2 with an FDA approved drug CX-4945 prevented PC irregularity and stress-induced attacks. We next hypothesized caffeine, which has been shown to increase NE levels, could induce attacks through the same alpha 1 adrenergic mechanism in EA2. We found caffeine increases PC irregularity and induces attacks through the same CK2 pathway. Block of alpha 1 adrenergic receptors, however, failed to prevent caffeine-induced attacks. Caffeine instead induces attacks through the block of cerebellar A1 adenosine receptors. This increases the release of glutamate, which interacts with mGluR1 receptors on PC, resulting in erratic firing and motor attacks. Finally, we show a novel direct interaction between mGluR1 and CK2, and inhibition of mGluR1 prior to initiation of attack, prevents the caffeine-induced increase in phosphorylation. These data elucidate the mechanism underlying stress and caffeine-induced motor impairment. Furthermore, given the success of CX-4945 to prevent stress and caffeine induced attacks, it establishes ground-work for the development of therapeutics for the treatment of caffeine and stress induced attacks in EA2 patients and possibly other episodic channelopathies.

SeminarNeuroscience

MBI Webinar on preclinical research into brain tumours and neurodegenerative disorders

Ekaterina (Caty) Salimova and Ms Sanjeevini Babu Reddiar
Apr 12, 2022

WEBINAR 1 Breaking the barrier: Using focused ultrasound for the development of targeted therapies for brain tumours presented by Dr Ekaterina (Caty) Salimova, Monash Biomedical Imaging Glioblastoma multiforme (GBM) - brain cancer - is aggressive and difficult to treat as systemic therapies are hindered by the blood-brain barrier (BBB). Focused ultrasound (FUS) - a non-invasive technique that can induce targeted temporary disruption of the BBB – is a promising tool to improve GBM treatments. In this webinar, Dr Ekaterina Salimova will discuss the MRI-guided FUS modality at MBI and her research to develop novel targeted therapies for brain tumours. Dr Ekaterina (Caty) Salimova is a Research Fellow in the Preclinical Team at Monash Biomedical Imaging. Her research interests include imaging cardiovascular disease and MRI-guided focused ultrasound for investigating new therapeutic targets in neuro-oncology. - WEBINAR 2 Disposition of the Kv1.3 inhibitory peptide HsTX1[R14A], a novel attenuator of neuroinflammation presented by Sanjeevini Babu Reddiar, Monash Institute of Pharmaceutical Sciences The voltage-gated potassium channel (Kv1.3) in microglia regulates membrane potential and pro-inflammatory functions, and non-selective blockade of Kv1.3 has shown anti-inflammatory and disease improvement in animal models of Alzheimer’s and Parkinson’s diseases. Therefore, specific inhibitors of pro-inflammatory microglial processes with CNS bioavailability are urgently needed, as disease-modifying treatments for neurodegenerative disorders are lacking. In this webinar, PhD candidate Ms Sanju Reddiar will discuss the synthesis and biodistribution of a Kv1.3-inhibitory peptide using a [64Cu]Cu-DOTA labelled conjugate. Sanjeevini Babu Reddiar is a PhD student at the Monash Institute of Pharmaceutical Sciences. She is working on a project identifying the factors governing the brain disposition and blood-brain barrier permeability of a Kv1.3-blocking peptide.

SeminarNeuroscience

Astroglial modulation of the antidepressant action of deep brain and bright light stimulation

Nasser Haddjeri
Stem Cell And Brain Research Institute, INSERM 1208, Bron, France
Apr 7, 2022

Even if major depression is now the most common of psychiatric disorders, successful antidepressant treatments are still difficult to achieve. Therefore, a better understanding of the mechanisms of action of current antidepressant treatments is needed to ultimately identify new targets and enhance beneficial effects. Given the intimate relationships between astrocytes and neurons at synapses and the ability of astrocytes to "sense" neuronal communication and release gliotransmitters, an attractive hypothesis is emerging stating that the effects of antidepressants on brain function could be, at least in part, modulated by direct influences of astrocytes on neuronal networks. We will present two preclinical studies revealing a permissive role of glia in the antidepressant response: i) Control of the antidepressant-like effects of rat prefrontal cortex Deep Brain Stimulation (DBS) by astroglia, ii) Modulation of antidepressant efficacy of Bright Light Stimulation (BLS) by lateral habenula astroglia. Therefore, it is proposed that an unaltered neuronal-glial system constitutes a major prerequisite to optimize antidepressant efficacy of DBS or BLS. Collectively, these results pave also the way to the development of safer and more effective antidepressant strategies.

SeminarNeuroscience

Autologous hematopoietic stem cell transplantation as a highly effective treatment for multiple sclerosis - clinical and mechanistic observations

Roland Martin
University Hospital Zurich, Switzerland
Mar 30, 2022
ePoster

Defining the Limits: Upper Bound of Non-Neurobiological Treatment Efficacy through Cognitive-Neural Network Alignment

Bita Shariatpanahi, Hamidreza Jamalabadi

Bernstein Conference 2024

ePoster

tDCS montage optimization for the treatment of epilepsy using Neurotwins

Borja Mercadal, Edmundo Lopez-Sola, Maria Guasch-Morgades, Èlia Lleal-Custey, Cristian Galan-Augé, Ricardo Salvador, Roser Sanchez-Todo, Fabrice Wendling, Fabrice Bartolomei, Giulio Ruffini

Bernstein Conference 2024

ePoster

VAME outperforms conventional assessment of behavioral changes and treatment efficacy in Alzheimer’s mouse models

Stephanie Miller, Kevin Luxem, Kelli Lauderdale, Pranav Nambiar, Patrick Honma, Katie Ly, Shreya Bangera, Nick Kaliss, Mary Bullock, Jia Shin, Yuechen Qiu, K Dakota Mallen, Zhaoqi Yan, Andrew Mendiola, Takashi Saito, Takaomi Saido, Alex Pico, Reuben Thomas, Erik Roberson, Katerina Akassoglou, Pavol Bauer, Stefan Remy, Jorge Palop

COSYNE 2025

ePoster

Acute and chronic treatment with the nitric oxide synthase inhibitor agmatine stimulates serotonergic neurons in the rat dorsal raphe nucleus

Hande Özbaşak, Ruslan Paliokha, Roman Dekhtiarenko, Daniil Grinchii, Eliyahu Dremencov

FENS Forum 2024

ePoster

Assessing the therapeutic impact of a 7-day N-acetylcysteine treatment in a preclinical model of Parkinson's disease: Behavioral and molecular insights

Rita Caridade, Bruna Araújo, Ana Catarina Vilaça-Ferreira, Catarina Teixeira, Joana Martins-Macedo, Carla Soares-Guedes, Hugo JR Fernandes, Richard Wade-Martins, FG Teixeira

FENS Forum 2024

ePoster

Behavioral and neurotransmitter changes on antiepileptic drugs treatment in the zebrafish pentylenetetrazol-induced seizure model

Kazuo Okanari, Hitoshi Teranishi, Ryohei Umeda, Kenshiro Shikano, Masanori Inoue, Toshikatsu Hanada, Kenji Ihara, Reiko Hanada

FENS Forum 2024

ePoster

Behavioral sensitization and tolerance induced by repeated treatment with ketamine enantiomers in male Wistar rats

Kristian Elersič, Anamarija Banjac, Marko Živin, Maja Zorović

FENS Forum 2024

ePoster

EEG beta de-synchronization signs the efficacy of a rehabilitation treatment for speech impairment in Parkinson’s disease population

Giovanni Vecchiato, Chiara Palmisano, Elena Hilary Rondoni, Ioannis Ugo Isaias, Daniele Volpe, Alberto Mazzoni

FENS Forum 2024

ePoster

Blood D-serine levels correlate with aging and dopaminergic treatment in Parkinson's disease

Isar Yahyavi, Alberto Imarisio, Micol Avenali, Anna Di Maio, Gabriele Buongarzone, Caterina Galandra, Marta Picascia, Asia Filosa, Gasparri Clara, Maria Cristina Monti, Mariangela Rondanelli, Claudio Pacchetti, Francesco Errico, Enza Maria Valente, Alessandro Usiello

FENS Forum 2024

ePoster

The brain sphingolipid system in schizophrenia and its treatment

Christian Müller, Christiane Mühle, Fabian Schumacher, Liubov Kalinichenko, Peter Gmeiner, Christian Alzheimer, Stephan von Hörsten, Erich Gulbins, Johannes Kornhuber, Hee Kyung Jin, Jae-sung Bae, Anbarasu Lourdusamy, Daria Chestnykh

FENS Forum 2024

ePoster

Caffeine treatment decreases MAO-B expression, neurite outgrowth, and neurite branching in immature rat primary neuronal cell cultures

Sara Bjurling, Frida Stam, Erik Nylander, Alfhild Grönbladh, Mathias Hallberg

FENS Forum 2024

ePoster

Capturing the benzodiazepine tolerance in mice: Treatment duration and gender as key determinants

Fatma Taha, Sarah L. King, Jasmina N. Jovanovic

FENS Forum 2024

ePoster

Characterization of multi-target ligands comprising opioid/non-opioid pharmacophores for the treatment of pain

Emile Breault, Jolien De Neve, Santo Previti, Esaü Vangeloven, Rebecca Brouillette, Magali Chartier, Brian Holleran, Émilie Eiselt, Frédérique Lussier, Annik Lanoie, Jean-Michel Longpré, Louis Gendron, Steven Ballet, Philippe Sarret

FENS Forum 2024

ePoster

Detection of the dopamine release induced by morphine and cocaine treatment using a novel microimaging platform

Masahiro Ohsawa, Austin Ganaway, Kousuke Tatsuta, Virgil Castillo, Ryoma Okada, Yoshinori Sunaga, Yasumi Ohta, Jun Ohta, Metin Akay, Yasemin Akay

FENS Forum 2024

ePoster

The circadian molecular clock in mPFC modulates the depressive phenotype and represents a potential treatment pathway

David Sarrazin, Wilf Gardner, Martin Balzinger, Tsvetan Serchov

FENS Forum 2024

ePoster

Clinical grade production of large-scale neural progenitor cells (NPC) for Huntington’s disease treatment

Josep M. Canals, Marc Estarellas, Georgina Bombau, Maria Camanyes, Irene Porcar, Jordi Abante, Unai Perpiña

FENS Forum 2024

ePoster

Combined treatment with the glycine transporter-1-inhibitor Org24598, varenicline, and bupropion as a new pharmacological treatment concept for alcohol use disorder

Yasmin Olsson, Helga Lidö, Karin Ademar, Davide Cadeddu, Mia Ericson, Bo Söderpalm

FENS Forum 2024

ePoster

Comparing stimulation and lesioning in a network model of essential tremor: Mechanisms and treatment

Nada Yousif, Roman Borisyuk, Ayesha Jameel, Joely Smith, Wladyslaw Gedroyc, Brynmor Jones, Dipankar Nandi, Peter Bain

FENS Forum 2024

ePoster

Continued treatment of D-Pinitol ameliorates cognitive spatial flexibility of Alzheimer’s disease 5xFAD transgenic mice

Dina Medina-Vera, Cristina Rosell-Valle, Antonio J. López-Gambero, Juan A. Navarro, Carlos Sanjuan, Elena Baixeras, Patricia Rivera, Francisco J. Pavon, Fernando Rodríguez de Fonseca

FENS Forum 2024

ePoster

Continuous theta-burst stimulation improves learning/memory deficits and behavioral disturbances in the trimethyltin-induced Alzheimer's-like disease model - relevance for the treatment of neurodegenerative disorders?

Marina Zaric Kontic, Milica Zeljkovic Jovanovic, Andjela Stekic, Jelena Stanojevic, Ivana Stevanovic, Dejan Stevic, Milica Ninkovic, Milorad Dragic

FENS Forum 2024

ePoster

Corticosterone as a preventive treatment for a PTSD-like animal model and its impact on the neural activity of the basolateral amygdala

Leire Rodriguez Romero, Laura Perez-Caballero, Lucas Perez-Molina, Antonio Florido, Ignacio Marin-Blasco, Giorgia Vanzo, Neha Acharya, Jaime Fabregat-Nabás, Raul Andero

FENS Forum 2024

ePoster

Cytokine production in dams with maternal depression and their adolescent offspring and effect of mirtazapine treatment

Stanislava Bukatova, Marek Lepacek, Mireia Viñas Noguera, Michal Dubovicky

FENS Forum 2024

ePoster

Design and development of nanoliposomes based on soy lecithin for the delivery of molecules to the CNS as strategy for the treatment of neurodegenerative diseases

Alvaro Barrera-Ocampo, Andres Camilo Arana Linares, Paola Andrea Caicedo Burbano, Natalie Charlotte Cortés Rendón, Edison Humberto Osorio López, María Francisca Villegas Torres, Andrés Fernando González Barrios

FENS Forum 2024

ePoster

Developing gene therapy vector for the treatment of creatine transporter deficiency syndrome

Ludovica Iovino, Federica Di Vetta, Lorenzo Dadà, Caterina Montani, Elsa Ghirardini, Francesco Calugi, Giulia Sagona, Tommaso Pizzorusso, Alessandro Gozzi, Laura Baroncelli

FENS Forum 2024

ePoster

The developmental effects of repeated antenatal dexamethasone treatment on ADP-mediated and adenosinergic signaling system in the auditory brainstem of C57BL/6 mice

Dunja Dimitrijević, Irena Lavrnja, Marija Adžić-Bukvić, Milorad Dragić, Anđela Stekić, Katarina Mihajlović, Ivan Milenković, Danijela Laketa

FENS Forum 2024

ePoster

Diet-induced MAFLD: Unraveling liver-brain axis alterations and therapeutic potential of combined OLHHA and liraglutide treatment

Marialuisa de Ceglia, Ruben Tovar, Miguel Rodriguez-Pozo, Antonio Vargas, Ana Luisa Gavito, Carlo Cifani, Fernando Rodriguez de Fonseca, Juan Decara

FENS Forum 2024

ePoster

Discovery of dual inhibitors for the treatment of Alzheimer's disease

Aina Bellver Sanchis, Ainoha Sanchez-Arfelis, Alba Irisarri, Santiago Vázquez, Carmen Escolano, Christian Griñán-Ferré

FENS Forum 2024

ePoster

Dopaminergic treatments for autistic-like behaviour in lysosomal storage disorders: Preclinical and clinical evidence

Maria De Risi, Lorenzo Cusimano, Xabier Bujanda Cundin, Mariateresa Pizzo, Simona Fecarotta, Giancarlo Parenti, Elvira De Leonibus

FENS Forum 2024

ePoster

DREAM protein inhibition as a potential treatment against NAFLD and metabolic syndrome and its associated neurologic signs in mice

José Manuel Hernández Curiel, Ángel Manuel Carrión Rodríguez, Juan Antonio Fernández Cabrera, Inés Sánchez Romero

FENS Forum 2024

ePoster

Effectiveness of action observation treatment integrated with virtual reality in the motor rehabilitation of stroke patients: A randomized controlled clinical trial

Antonino Errante, Donatella Saviola, Matteo Cantoni, Katia Iannuzzelli, Settimio Ziccarelli, Fabrizio Togni, Marcello Simonini, Carolina Malchiodi, Debora Bertoni, Maria Grazia Inzaghi, Francesca Bozzetti, Annamaria Quarenghi, Paola Quarenghi, Daniele Bosone, Leonardo Fogassi, Giovanni Pietro Salvi, Antonio De Tanti

FENS Forum 2024

ePoster

Effects of chronic treatment with extracted active ingredients from Chinese traditional medicine formula: Yueju on alleviating depression in animal models

Sonata Suk-yu Yau, Kai Le, Ping Wang, Jiaqi Li, Can Huang, Jiasui Yu, Gang Chen

FENS Forum 2024

ePoster

Electrophysiological correlates of neuroactive steroids treatment in the perinatal focal cerebral ischemia model in immature rats

Iqra Bano, Viera Kutna, Hana Chodounska, Eva Kudova, Grygoriy Tsenov

FENS Forum 2024

ePoster

Evaluation of the effects of taurine treatment on apoptotic processes, miR-34a, oxidative stress, and inflammatory markers in intracerebroventricular Amyloid Beta 1-42 injected rats

Burak Kayabasi, Nida Aslan Karakelle, Sibel Dincer

FENS Forum 2024

ePoster

Evaluation and treatment of imbalance in patients with Alzheimer’s disease

Ioseb Burduladze

FENS Forum 2024

ePoster

Extracellular matrix and sharp wave ripple complex changes following treatment with Zuranolone

Samantha Deasy, Matthew Amontree, Eric Thorland, Katherine Conant

FENS Forum 2024

ePoster

GnRH and miR-200b treatments boost cognition in Down syndrome

María Manfredi-Lozano, Valerie Leysen, Michela Adamo, Samuel A. Malone, Mauro S.B. Silva, Andrea Messina, Paolo Giacobini, Nelly Pitteloud, Vincent Prevot

FENS Forum 2024

ePoster

Hippocampal plasticity in the Wistar-Kyoto rat: Effects of chronic mild stress, acute and chronic ketamine treatment

Vincent Loizeau, Sylvain Hugel, Robin Kuster, Alexandra Barbelivien, Lucas Lecourtier

FENS Forum 2024

ePoster

The impact of combination therapy in spinal cord injury treatment

Martina Magurova, Maria Bacova, Stefania Papcunova, Jan Galik

FENS Forum 2024

ePoster

Individual behavioral profiling as a translational approach for assessing treatment responsiveness in an animal model of PTSD

Maja Snippe Strauss, Ishita Sarkar, Amir Benhos, Adi Tenenhaus Zamir, Gal Richter-Levin

FENS Forum 2024

ePoster

Inhibition of glial scar formation after spinal cord injury in Noggin conditional knockout mice and by anti-Noggin antibody treatment

Satoru Yamagishi, Shuo Li, Yuki Wakayama, Juntan Li, Yibo Han, Yashuang Ping, Hideyuki Arima, Kohji Sato, Yukihiro Matsuyama

FENS Forum 2024