Trkb
TrkB
Pharmacological exploitation of neurotrophins and their receptors to develop novel therapeutic approaches against neurodegenerative diseases and brain trauma
Neurotrophins (NGF, BDNF, NT-3) are endogenous growth factors that exert neuroprotective effects by preventing neuronal death and promoting neurogenesis. They act by binding to their respective high-affinity, pro-survival receptors TrkA, TrkB or TrkC, as well as to p75NTR death receptor. While these molecules have been shown to significantly slow or prevent neurodegeneration, their reduced bioavailability and inability to penetrate the blood-brain-barrier limit their use as potential therapeutics. To bypass these limitations, our research team has developed and patented small-sized, lipophilic compounds which selectively resemble neurotrophins’ effects, presenting preferable pharmacological properties and promoting neuroprotection and repair against neurodegeneration. In addition, the combination of these molecules with 3D cultured human neuronal cells, and their targeted delivery in the brain ventricles through soft robotic systems, could offer novel therapeutic approaches against neurodegenerative diseases and brain trauma.
Malignant synaptic plasticity in pediatric high-grade gliomas
Pediatric high-grade gliomas (pHGG) are a devastating group of diseases that urgently require novel therapeutic options. We have previously demonstrated that pHGGs directly synapse onto neurons and the subsequent tumor cell depolarization, mediated by calcium-permeable AMPA channels, promotes their proliferation. The regulatory mechanisms governing these postsynaptic connections are unknown. Here, we investigated the role of BDNF-TrkB signaling in modulating the plasticity of the malignant synapse. BDNF ligand activation of its canonical receptor, TrkB (which is encoded for by the gene NTRK2), has been shown to be one important modulator of synaptic regulation in the normal setting. Electrophysiological recordings of glioma cell membrane properties, in response to acute neurotransmitter stimulation, demonstrate in an inward current resembling AMPA receptor (AMPAR) mediated excitatory neurotransmission. Extracellular BDNF increases the amplitude of this glutamate-induced tumor cell depolarization and this effect is abrogated in NTRK2 knockout glioma cells. Upon examining tumor cell excitability using in situ calcium imaging, we found that BDNF increases the intensity of glutamate-evoked calcium transients in GCaMP6s expressing glioma cells. Western blot analysis indicates the tumors AMPAR properties are altered downstream of BDNF induced TrkB activation in glioma. Cell membrane protein capture (via biotinylation) and live imaging of pH sensitive GFP-tagged AMPAR subunits demonstrate an increase of calcium permeable channels at the tumors postsynaptic membrane in response to BDNF. We find that BDNF-TrkB signaling promotes neuron-to-glioma synaptogenesis as measured by high-resolution confocal and electron microscopy in culture and tumor xenografts. Our analysis of published pHGG transcriptomic datasets, together with brain slice conditioned medium experiments in culture, indicates the tumor microenvironment as the chief source of BDNF ligand. Disruption of the BDNF-TrkB pathway in patient-derived orthotopic glioma xenograft models, both genetically and pharmacologically, results in an increased overall survival and reduced tumor proliferation rate. These findings suggest that gliomas leverage normal mechanisms of plasticity to modulate the excitatory channels involved in synaptic neurotransmission and they reveal the potential to target the regulatory components of glioma circuit dynamics as a therapeutic strategy for these lethal cancers.
Neuronal plasticity and neurotrophin signaling as the common mechanism for antidepressant effect
Neuronal plasticity has for a long time been considered important for the recovery from depression and for the antidepressant drug action, but how the drug action is translated to plasticity has remained unclear. Brain-derived neurotrophic factor (BDNF) and its receptor TRKB are critical regulators of neuronal plasticity and have been implicated in the antidepressant action. We have recently found that many, if not all, different antidepressants, including serotonin selective SSRIs, tricyclic as well as fast-acting ketamine, directly bind to TRKB, thereby promoting TRKB translocation to synaptic membranes, which increases BDNF signaling. We have previously shown that antidepressant treatment induces a juvenile-like state of activity in the cortex that facilitates beneficial rewiring of abnormal networks. We recently showed that activation of TRKB receptors in parvalbumin-containing interneurons orchestrates cortical activation states and is both necessary and sufficient for the antidepressantinduced cortical plasticity. Our findings open a new framework how the action of antidepressants act: rather than regulating brain monoamine concentrations, antidepressants directly bind to TRKB and allosterically promote BDNF signaling, thereby inducing a state of plasticity that allows re-wiring of abnormal networks for better functionality.
BDNF/TrkB signalling, in cooperation with muscarinic signalling, retrogradely regulates PKA pathway to phosphorylate SNAP-25 and Synapsin-1 at the NMJ
FENS Forum 2024
Differential effects of psychedelics and classical antidepressants on TrkB dimerization and neurotrophic signalling
FENS Forum 2024
Melatonin deficiency related to pinealectomy has an age-specific impact on memory decline in rats through ERK/CREB/BDNF/TrkB signaling in the hippocampus
FENS Forum 2024
A potential new source of TrkB dysregulation: Microglia possess the machinery for BDNF receptor cleavage
FENS Forum 2024
TrkB receptor interacts with mGlu2 receptor and mediates antipsychotic-like effects of mGlu2 receptor activation in the mouse
FENS Forum 2024