Understanding
understanding
Consciousness at the edge of chaos
Over the last 20 years, neuroimaging and electrophysiology techniques have become central to understanding the mechanisms that accompany loss and recovery of consciousness. Much of this research is performed in the context of healthy individuals with neurotypical brain dynamics. Yet, a true understanding of how consciousness emerges from the joint action of neurons has to account for how severely pathological brains, often showing phenotypes typical of unconsciousness, can nonetheless generate a subjective viewpoint. In this presentation, I will start from the context of Disorders of Consciousness and will discuss recent work aimed at finding generalizable signatures of consciousness that are reliable across a spectrum of brain electrophysiological phenotypes focusing in particular on the notion of edge-of-chaos criticality.
Competing Rhythms: Understanding and Modulating Auditory Neural Entrainment
Cellular Crosstalk in Brain Development, Evolution and Disease
Cellular crosstalk is an essential process during brain development and is influenced by numerous factors, including cell morphology, adhesion, the local extracellular matrix and secreted vesicles. Inspired by mutations associated with neurodevelopmental disorders, we focus on understanding the role of extracellular mechanisms essential for the proper development of the human brain. Therefore, we combine 2D and 3D in vitro human models to better understand the molecular and cellular mechanisms involved in progenitor proliferation and fate, migration and maturation of excitatory and inhibitory neurons during human brain development and tackle the causes of neurodevelopmental disorders.
How the presynapse forms and functions”
Nervous system function relies on the polarized architecture of neurons, established by directional transport of pre- and postsynaptic cargoes. While delivery of postsynaptic components depends on the secretory pathway, the identity of the membrane compartment(s) that supply presynaptic active zone (AZ) and synaptic vesicle (SV) proteins is largely unknown. I will discuss our recent advances in our understanding of how key components of the presynaptic machinery for neurotransmitter release are transported and assembled focussing on our studies in genome-engineered human induced pluripotent stem cell-derived neurons. Specifically, I will focus on the composition and cell biological identity of the axonal transport vesicles that shuttle key components of neurotransmission to nascent synapses and on machinery for axonal transport and its control by signaling lipids. Our studies identify a crucial mechanism mediating the delivery of SV and active zone proteins to developing synapses and reveal connections to neurological disorders. In the second part of my talk, I will discuss how exocytosis and endocytosis are coupled to maintain presynaptic membrane homeostasis. I will present unpublished data regarding the role of membrane tension in the coupling of exocytosis and endocytosis at synapses. We have identified an endocytic BAR domain protein that is capable of sensing alterations in membrane tension caused by the exocytotic fusion of SVs to initiate compensatory endocytosis to restore plasma membrane area. Interference with this mechanism results in defects in the coupling of presynaptic exocytosis and SV recycling at human synapses.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany
Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.
A personal journey on understanding intelligence
The focus of this talk is not about my research in AI or Robotics but my own journey on trying to do research and understand intelligence in a rapidly evolving research landscape. I will trace my path from conducting early-stage research during graduate school, to working on practical solutions within a startup environment, and finally to my current role where I participate in more structured research at a major tech company. Through these varied experiences, I will provide different perspectives on research and talk about how my core beliefs on intelligence have changed and sometimes even been compromised. There are no lessons to be learned from my stories, but hopefully they will be entertaining.
Understanding reward-guided learning using large-scale datasets
Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.
Digital Traces of Human Behaviour: From Political Mobilisation to Conspiracy Narratives
Digital platforms generate unprecedented traces of human behaviour, offering new methodological approaches to understanding collective action, polarisation, and social dynamics. Through analysis of millions of digital traces across multiple studies, we demonstrate how online behaviours predict offline action: Brexit-related tribal discourse responds to real-world events, machine learning models achieve 80% accuracy in predicting real-world protest attendance from digital signals, and social validation through "likes" emerges as a key driver of mobilization. Extending this approach to conspiracy narratives reveals how digital traces illuminate psychological mechanisms of belief and community formation. Longitudinal analysis of YouTube conspiracy content demonstrates how narratives systematically address existential, epistemic, and social needs, while examination of alt-tech platforms shows how emotions of anger, contempt, and disgust correlate with violence-legitimating discourse, with significant differences between narratives associated with offline violence versus peaceful communities. This work establishes digital traces as both methodological innovation and theoretical lens, demonstrating that computational social science can illuminate fundamental questions about polarisation, mobilisation, and collective behaviour across contexts from electoral politics to conspiracy communities.
Neurobiological constraints on learning: bug or feature?
Understanding how brains learn requires bridging evidence across scales—from behaviour and neural circuits to cells, synapses, and molecules. In our work, we use computational modelling and data analysis to explore how the physical properties of neurons and neural circuits constrain learning. These include limits imposed by brain wiring, energy availability, molecular noise, and the 3D structure of dendritic spines. In this talk I will describe one such project testing if wiring motifs from fly brain connectomes can improve performance of reservoir computers, a type of recurrent neural network. The hope is that these insights into brain learning will lead to improved learning algorithms for artificial systems.
Understanding reward-guided learning using large-scale datasets
Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.
Harnessing Big Data in Neuroscience: From Mapping Brain Connectivity to Predicting Traumatic Brain Injury
Neuroscience is experiencing unprecedented growth in dataset size both within individual brains and across populations. Large-scale, multimodal datasets are transforming our understanding of brain structure and function, creating opportunities to address previously unexplored questions. However, managing this increasing data volume requires new training and technology approaches. Modern data technologies are reshaping neuroscience by enabling researchers to tackle complex questions within a Ph.D. or postdoctoral timeframe. I will discuss cloud-based platforms such as brainlife.io, that provide scalable, reproducible, and accessible computational infrastructure. Modern data technology can democratize neuroscience, accelerate discovery and foster scientific transparency and collaboration. Concrete examples will illustrate how these technologies can be applied to mapping brain connectivity, studying human learning and development, and developing predictive models for traumatic brain injury (TBI). By integrating cloud computing and scalable data-sharing frameworks, neuroscience can become more impactful, inclusive, and data-driven..
Relating circuit dynamics to computation: robustness and dimension-specific computation in cortical dynamics
Neural dynamics represent the hard-to-interpret substrate of circuit computations. Advances in large-scale recordings have highlighted the sheer spatiotemporal complexity of circuit dynamics within and across circuits, portraying in detail the difficulty of interpreting such dynamics and relating it to computation. Indeed, even in extremely simplified experimental conditions, one observes high-dimensional temporal dynamics in the relevant circuits. This complexity can be potentially addressed by the notion that not all changes in population activity have equal meaning, i.e., a small change in the evolution of activity along a particular dimension may have a bigger effect on a given computation than a large change in another. We term such conditions dimension-specific computation. Considering motor preparatory activity in a delayed response task we utilized neural recordings performed simultaneously with optogenetic perturbations to probe circuit dynamics. First, we revealed a remarkable robustness in the detailed evolution of certain dimensions of the population activity, beyond what was thought to be the case experimentally and theoretically. Second, the robust dimension in activity space carries nearly all of the decodable behavioral information whereas other non-robust dimensions contained nearly no decodable information, as if the circuit was setup to make informative dimensions stiff, i.e., resistive to perturbations, leaving uninformative dimensions sloppy, i.e., sensitive to perturbations. Third, we show that this robustness can be achieved by a modular organization of circuitry, whereby modules whose dynamics normally evolve independently can correct each other’s dynamics when an individual module is perturbed, a common design feature in robust systems engineering. Finally, we will recent work extending this framework to understanding the neural dynamics underlying preparation of speech.
Fear learning induces synaptic potentiation between engram neurons in the rat lateral amygdala
Fear learning induces synaptic potentiation between engram neurons in the rat lateral amygdala. This study by Marios Abatis et al. demonstrates how fear conditioning strengthens synaptic connections between engram cells in the lateral amygdala, revealed through optogenetic identification of neuronal ensembles and electrophysiological measurements. The work provides crucial insights into memory formation mechanisms at the synaptic level, with implications for understanding anxiety disorders and developing targeted interventions. Presented by Dr. Kenneth Hayworth, this journal club will explore the paper's methodology linking engram cell reactivation with synaptic plasticity measurements, and discuss implications for memory decoding research.
Impact of High Fat Diet on Central Cardiac Circuits: When The Wanderer is Lost
Cardiac vagal motor drive originates in the brainstem's cardiac vagal motor neurons (CVNs). Despite well-established cardioinhibitory functions in health, our understanding of CVNs in disease is limited. There is a clear connection of cardiovascular regulation with metabolic and energy expenditure systems. Using high fat diet as a model, this talk will explore how metabolic dysfunction impacts the regulation of cardiac tissue through robust inhibition of CVNs. Specifically, it will present an often overlooked modality of inhibition, tonic gamma-aminobuytric acid (GABA) A-type neurotransmission using an array of techniques from single cell patch clamp electrophysiology to transgenic in vivo whole animal physiology. It also will highlight a unique interaction with the delta isoform of protein kinase C to facilitate GABA A-type receptor expression.
What it’s like is all there is: The value of Consciousness
Over the past thirty years or so, cognitive neuroscience has made spectacular progress understanding the biological mechanisms of consciousness. Consciousness science, as this field is now sometimes called, was not only inexistent thirty years ago, but its very name seemed like an oxymoron: how can there be a science of consciousness? And yet, despite this scepticism, we are now equipped with a rich set of sophisticated behavioural paradigms, with an impressive array of techniques making it possible to see the brain in action, and with an ever-growing collection of theories and speculations about the putative biological mechanisms through which information processing becomes conscious. This is all good and fine, even promising, but we also seem to have thrown the baby out with the bathwater, or at least to have forgotten it in the crib: consciousness is not just mechanisms, it’s what it feels like. In other words, while we know thousands of informative studies about access-consciousness, we have little in the way of phenomenal consciousness. But that — what it feels like — is truly what “consciousness” is about. Understanding why it feels like something to be me and nothing (panpsychists notwithstanding) for a stone to be a stone is what the field has always been after. However, while it is relatively easy to study access-consciousness through the contrastive approach applied to reports, it is much less clear how to study phenomenology, its structure and its function. Here, I first overview work on what consciousness does (the "how"). Next, I ask what difference feeling things makes and what function phenomenology might play. I argue that subjective experience has intrinsic value and plays a functional role in everything that we do.
Structural & Functional Neuroplasticity in Children with Hemiplegia
About 30% of children with cerebral palsy have congenital hemiplegia, resulting from periventricular white matter injury, which impairs the use of one hand and disrupts bimanual co-ordination. Congenital hemiplegia has a profound effect on each child's life and, thus, is of great importance to the public health. Changes in brain organization (neuroplasticity) often occur following periventricular white matter injury. These changes vary widely depending on the timing, location, and extent of the injury, as well as the functional system involved. Currently, we have limited knowledge of neuroplasticity in children with congenital hemiplegia. As a result, we provide rehabilitation treatment to these children almost blindly based exclusively on behavioral data. In this talk, I will present recent research evidence of my team on understanding neuroplasticity in children with congenital hemiplegia by using a multimodal neuroimaging approach that combines data from structural and functional neuroimaging methods. I will further present preliminary data regarding functional improvements of upper extremities motor and sensory functions as a result of rehabilitation with a robotic system that involves active participation of the child in a video-game setup. Our research is essential for the development of novel or improved neurological rehabilitation strategies for children with congenital hemiplegia.
Contentopic mapping and object dimensionality - a novel understanding on the organization of object knowledge
Our ability to recognize an object amongst many others is one of the most important features of the human mind. However, object recognition requires tremendous computational effort, as we need to solve a complex and recursive environment with ease and proficiency. This challenging feat is dependent on the implementation of an effective organization of knowledge in the brain. Here I put forth a novel understanding of how object knowledge is organized in the brain, by proposing that the organization of object knowledge follows key object-related dimensions, analogously to how sensory information is organized in the brain. Moreover, I will also put forth that this knowledge is topographically laid out in the cortical surface according to these object-related dimensions that code for different types of representational content – I call this contentopic mapping. I will show a combination of fMRI and behavioral data to support these hypotheses and present a principled way to explore the multidimensionality of object processing.
Rethinking Attention: Dynamic Prioritization
Decades of research on understanding the mechanisms of attentional selection have focused on identifying the units (representations) on which attention operates in order to guide prioritized sensory processing. These attentional units fit neatly to accommodate our understanding of how attention is allocated in a top-down, bottom-up, or historical fashion. In this talk, I will focus on attentional phenomena that are not easily accommodated within current theories of attentional selection – the “attentional platypuses,” as they allude to an observation that within biological taxonomies the platypus does not fit into either mammal or bird categories. Similarly, attentional phenomena that do not fit neatly within current attentional models suggest that current models need to be revised. I list a few instances of the ‘attentional platypuses” and then offer a new approach, the Dynamically Weighted Prioritization, stipulating that multiple factors impinge onto the attentional priority map, each with a corresponding weight. The interaction between factors and their corresponding weights determines the current state of the priority map which subsequently constrains/guides attention allocation. I propose that this new approach should be considered as a supplement to existing models of attention, especially those that emphasize categorical organizations.
Gene regulatory mechanisms of neocortex development and evolution
The neocortex is considered to be the seat of higher cognitive functions in humans. During its evolution, most notably in humans, the neocortex has undergone considerable expansion, which is reflected by an increase in the number of neurons. Neocortical neurons are generated during development by neural stem and progenitor cells. Epigenetic mechanisms play a pivotal role in orchestrating the behaviour of stem cells during development. We are interested in the mechanisms that regulate gene expression in neural stem cells, which have implications for our understanding of neocortex development and evolution, neural stem cell regulation and neurodevelopmental disorders.
LLMs and Human Language Processing
This webinar convened researchers at the intersection of Artificial Intelligence and Neuroscience to investigate how large language models (LLMs) can serve as valuable “model organisms” for understanding human language processing. Presenters showcased evidence that brain recordings (fMRI, MEG, ECoG) acquired while participants read or listened to unconstrained speech can be predicted by representations extracted from state-of-the-art text- and speech-based LLMs. In particular, text-based LLMs tend to align better with higher-level language regions, capturing more semantic aspects, while speech-based LLMs excel at explaining early auditory cortical responses. However, purely low-level features can drive part of these alignments, complicating interpretations. New methods, including perturbation analyses, highlight which linguistic variables matter for each cortical area and time scale. Further, “brain tuning” of LLMs—fine-tuning on measured neural signals—can improve semantic representations and downstream language tasks. Despite open questions about interpretability and exact neural mechanisms, these results demonstrate that LLMs provide a promising framework for probing the computations underlying human language comprehension and production at multiple spatiotemporal scales.
Learning and Memory
This webinar on learning and memory features three experts—Nicolas Brunel, Ashok Litwin-Kumar, and Julijana Gjorgieva—who present theoretical and computational approaches to understanding how neural circuits acquire and store information across different scales. Brunel discusses calcium-based plasticity and how standard “Hebbian-like” plasticity rules inferred from in vitro or in vivo datasets constrain synaptic dynamics, aligning with classical observations (e.g., STDP) and explaining how synaptic connectivity shapes memory. Litwin-Kumar explores insights from the fruit fly connectome, emphasizing how the mushroom body—a key site for associative learning—implements a high-dimensional, random representation of sensory features. Convergent dopaminergic inputs gate plasticity, reflecting a high-dimensional “critic” that refines behavior. Feedback loops within the mushroom body further reveal sophisticated interactions between learning signals and action selection. Gjorgieva examines how activity-dependent plasticity rules shape circuitry from the subcellular (e.g., synaptic clustering on dendrites) to the cortical network level. She demonstrates how spontaneous activity during development, Hebbian competition, and inhibitory-excitatory balance collectively establish connectivity motifs responsible for key computations such as response normalization.
How do we sleep?
There is no consensus on if sleep is for the brain, body or both. But the difference in how we feel following disrupted sleep or having a good night of continuous sleep is striking. Understanding how and why we sleep will likely give insights into many aspects of health. In this talk I will outline our recent work on how the prefrontal cortex can signal to the hypothalamus to regulate sleep preparatory behaviours and sleep itself, and how other brain regions, including the ventral tegmental area, respond to psychosocial stress to induce beneficial sleep. I will also outline our work on examining the function of the glymphatic system, and whether clearance of molecules from the brain is enhanced during sleep or wakefulness.
Understanding the complex behaviors of the ‘simple’ cerebellar circuit
Every movement we make requires us to precisely coordinate muscle activity across our body in space and time. In this talk I will describe our efforts to understand how the brain generates flexible, coordinated movement. We have taken a behavior-centric approach to this problem, starting with the development of quantitative frameworks for mouse locomotion (LocoMouse; Machado et al., eLife 2015, 2020) and locomotor learning, in which mice adapt their locomotor symmetry in response to environmental perturbations (Darmohray et al., Neuron 2019). Combined with genetic circuit dissection, these studies reveal specific, cerebellum-dependent features of these complex, whole-body behaviors. This provides a key entry point for understanding how neural computations within the highly stereotyped cerebellar circuit support the precise coordination of muscle activity in space and time. Finally, I will present recent unpublished data that provide surprising insights into how cerebellar circuits flexibly coordinate whole-body movements in dynamic environments.
Brain-Wide Compositionality and Learning Dynamics in Biological Agents
Biological agents continually reconcile the internal states of their brain circuits with incoming sensory and environmental evidence to evaluate when and how to act. The brains of biological agents, including animals and humans, exploit many evolutionary innovations, chiefly modularity—observable at the level of anatomically-defined brain regions, cortical layers, and cell types among others—that can be repurposed in a compositional manner to endow the animal with a highly flexible behavioral repertoire. Accordingly, their behaviors show their own modularity, yet such behavioral modules seldom correspond directly to traditional notions of modularity in brains. It remains unclear how to link neural and behavioral modularity in a compositional manner. We propose a comprehensive framework—compositional modes—to identify overarching compositionality spanning specialized submodules, such as brain regions. Our framework directly links the behavioral repertoire with distributed patterns of population activity, brain-wide, at multiple concurrent spatial and temporal scales. Using whole-brain recordings of zebrafish brains, we introduce an unsupervised pipeline based on neural network models, constrained by biological data, to reveal highly conserved compositional modes across individuals despite the naturalistic (spontaneous or task-independent) nature of their behaviors. These modes provided a scaffolding for other modes that account for the idiosyncratic behavior of each fish. We then demonstrate experimentally that compositional modes can be manipulated in a consistent manner by behavioral and pharmacological perturbations. Our results demonstrate that even natural behavior in different individuals can be decomposed and understood using a relatively small number of neurobehavioral modules—the compositional modes—and elucidate a compositional neural basis of behavior. This approach aligns with recent progress in understanding how reasoning capabilities and internal representational structures develop over the course of learning or training, offering insights into the modularity and flexibility in artificial and biological agents.
Trackoscope: A low-cost, open, autonomous tracking microscope for long-term observations of microscale organisms
Cells and microorganisms are motile, yet the stationary nature of conventional microscopes impedes comprehensive, long-term behavioral and biomechanical analysis. The limitations are twofold: a narrow focus permits high-resolution imaging but sacrifices the broader context of organism behavior, while a wider focus compromises microscopic detail. This trade-off is especially problematic when investigating rapidly motile ciliates, which often have to be confined to small volumes between coverslips affecting their natural behavior. To address this challenge, we introduce Trackoscope, an 2-axis autonomous tracking microscope designed to follow swimming organisms ranging from 10μm to 2mm across a 325 square centimeter area for extended durations—ranging from hours to days—at high resolution. Utilizing Trackoscope, we captured a diverse array of behaviors, from the air-water swimming locomotion of Amoeba to bacterial hunting dynamics in Actinosphaerium, walking gait in Tardigrada, and binary fission in motile Blepharisma. Trackoscope is a cost-effective solution well-suited for diverse settings, from high school labs to resource-constrained research environments. Its capability to capture diverse behaviors in larger, more realistic ecosystems extends our understanding of the physics of living systems. The low-cost, open architecture democratizes scientific discovery, offering a dynamic window into the lives of previously inaccessible small aquatic organisms.
How the brain barriers ensure CNSimmune privilege”
Britta Engelhard’s research is devoted to understanding thefunction of the different brain barriers in regulating CNS immunesurveillance and how their impaired function contributes toneuroinflammatory diseases such as Multiple Sclerosis (MS) orAlzheimer’s disease (AD). Her laboratory combines expertise invascular biology, neuroimmunology and live cell imaging and hasdeveloped sophisticated in vitro and in vivo approaches to studyimmune cell interactions with the brain barriers in health andneuroinflammation.
Cerebrospinal fluid and the meninges : Understanding brain immunology from its borders
Neural mechanisms governing the learning and execution of avoidance behavior
The nervous system orchestrates adaptive behaviors by intricately coordinating responses to internal cues and environmental stimuli. This involves integrating sensory input, managing competing motivational states, and drawing on past experiences to anticipate future outcomes. While traditional models attribute this complexity to interactions between the mesocorticolimbic system and hypothalamic centers, the specific nodes of integration have remained elusive. Recent research, including our own, sheds light on the midline thalamus's overlooked role in this process. We propose that the midline thalamus integrates internal states with memory and emotional signals to guide adaptive behaviors. Our investigations into midline thalamic neuronal circuits have provided crucial insights into the neural mechanisms behind flexibility and adaptability. Understanding these processes is essential for deciphering human behavior and conditions marked by impaired motivation and emotional processing. Our research aims to contribute to this understanding, paving the way for targeted interventions and therapies to address such impairments.
Exploring the cerebral mechanisms of acoustically-challenging speech comprehension - successes, failures and hope
Comprehending speech under acoustically challenging conditions is an everyday task that we can often execute with ease. However, accomplishing this requires the engagement of cognitive resources, such as auditory attention and working memory. The mechanisms that contribute to the robustness of speech comprehension are of substantial interest in the context of hearing mild to moderate hearing impairment, in which affected individuals typically report specific difficulties in understanding speech in background noise. Although hearing aids can help to mitigate this, they do not represent a universal solution, thus, finding alternative interventions is necessary. Given that age-related hearing loss (“presbycusis”) is inevitable, developing new approaches is all the more important in the context of aging populations. Moreover, untreated hearing loss in middle age has been identified as the most significant potentially modifiable predictor of dementia in later life. I will present research that has used a multi-methodological approach (fMRI, EEG, MEG and non-invasive brain stimulation) to try to elucidate the mechanisms that comprise the cognitive “last mile” in speech acousticallychallenging speech comprehension and to find ways to enhance them.
Modelling the fruit fly brain and body
Through recent advances in microscopy, we now have an unprecedented view of the brain and body of the fruit fly Drosophila melanogaster. We now know the connectivity at single neuron resolution across the whole brain. How do we translate these new measurements into a deeper understanding of how the brain processes sensory information and produces behavior? I will describe two computational efforts to model the brain and the body of the fruit fly. First, I will describe a new modeling method which makes highly accurate predictions of neural activity in the fly visual system as measured in the living brain, using only measurements of its connectivity from a dead brain [1], joint work with Jakob Macke. Second, I will describe a whole body physics simulation of the fruit fly which can accurately reproduce its locomotion behaviors, both flight and walking [2], joint work with Google DeepMind.
The Role of Cognitive Appraisal in the Relationship between Personality and Emotional Reactivity
Emotion is defined as a rapid psychological process involving experiential, expressive and physiological responses. These emerge following an appraisal process that involves cognitive evaluations of the environment assessing its relevance, implication, coping potential, and normative significance. It has been suggested that changes in appraisal processes lead to changes in the resulting emotional nature. Simultaneously, it was demonstrated that personality can be seen as a predisposition to feel more frequently certain emotions, but the personality-appraisal-emotional response chain is rarely fully investigated. The present project thus sought to investigate the extent to which personality traits influence certain appraisals, which in turn influence the subsequent emotional reactions via a systematic analysis of the link between personality traits of different current models, specific appraisals, and emotional response patterns at the experiential, expressive, and physiological levels. Major results include the coherence of emotion components clustering, and the centrality of the pleasantness, coping potential and consequences appraisals, in context; and the differentiated mediating role of cognitive appraisal in the relation between personality and the intensity and duration of an emotional state, and autonomic arousal, such as Extraversion-pleasantness-experience, and Neuroticism-powerlessness-arousal. Elucidating these relationships deepens our understanding of individual differences in emotional reactivity and spot routes of action on appraisal processes to modify upcoming adverse emotional responses, with a broader societal impact on clinical and non-clinical populations.
Characterizing the causal role of large-scale network interactions in supporting complex cognition
Neuroimaging has greatly extended our capacity to study the workings of the human brain. Despite the wealth of knowledge this tool has generated however, there are still critical gaps in our understanding. While tremendous progress has been made in mapping areas of the brain that are specialized for particular stimuli, or cognitive processes, we still know very little about how large-scale interactions between different cortical networks facilitate the integration of information and the execution of complex tasks. Yet even the simplest behavioral tasks are complex, requiring integration over multiple cognitive domains. Our knowledge falls short not only in understanding how this integration takes place, but also in what drives the profound variation in behavior that can be observed on almost every task, even within the typically developing (TD) population. The search for the neural underpinnings of individual differences is important not only philosophically, but also in the service of precision medicine. We approach these questions using a three-pronged approach. First, we create a battery of behavioral tasks from which we can calculate objective measures for different aspects of the behaviors of interest, with sufficient variance across the TD population. Second, using these individual differences in behavior, we identify the neural variance which explains the behavioral variance at the network level. Finally, using covert neurofeedback, we perturb the networks hypothesized to correspond to each of these components, thus directly testing their casual contribution. I will discuss our overall approach, as well as a few of the new directions we are currently pursuing.
Exploring Lifespan Memory Development and Intervention Strategies for Memory Decline through a Unified Model-Based Assessment
Understanding and potentially reversing memory decline necessitates a comprehensive examination of memory's evolution throughout life. Traditional memory assessments, however, suffer from a lack of comparability across different age groups due to the diverse nature of the tests employed. Addressing this gap, our study introduces a novel, ACT-R model-based memory assessment designed to provide a consistent metric for evaluating memory function across a lifespan, from 5 to 85-year-olds. This approach allows for direct comparison across various tasks and materials tailored to specific age groups. Our findings reveal a pronounced U-shaped trajectory of long-term memory function, with performance at age 5 mirroring those observed in elderly individuals with impairments, highlighting critical periods of memory development and decline. Leveraging this unified assessment method, we further investigate the therapeutic potential of rs-fMRI-guided TBS targeting area 8AV in individuals with early-onset Alzheimer’s Disease—a region implicated in memory deterioration and mood disturbances in this population. This research not only advances our understanding of memory's lifespan dynamics but also opens new avenues for targeted interventions in Alzheimer’s Disease, marking a significant step forward in the quest to mitigate memory decay.
Vision Unveiled: Understanding Face Perception in Children Treated for Congenital Blindness
Modeling human brain development and disease: the role of primary cilia
Neurodevelopmental disorders (NDDs) impose a global burden, affecting an increasing number of individuals. While some causative genes have been identified, understanding the human-specific mechanisms involved in these disorders remains limited. Traditional gene-driven approaches for modeling brain diseases have failed to capture the diverse and convergent mechanisms at play. Centrosomes and cilia act as intermediaries between environmental and intrinsic signals, regulating cellular behavior. Mutations or dosage variations disrupting their function have been linked to brain formation deficits, highlighting their importance, yet their precise contributions remain largely unknown. Hence, we aim to investigate whether the centrosome/cilia axis is crucial for brain development and serves as a hub for human-specific mechanisms disrupted in NDDs. Towards this direction, we first demonstrated species-specific and cell-type-specific differences in the cilia-genes expression during mouse and human corticogenesis. Then, to dissect their role, we provoked their ectopic overexpression or silencing in the developing mouse cortex or in human brain organoids. Our findings suggest that cilia genes manipulation alters both the numbers and the position of NPCs and neurons in the developing cortex. Interestingly, primary cilium morphology is disrupted, as we find changes in their length, orientation and number that lead to disruption of the apical belt and altered delamination profiles during development. Our results give insight into the role of primary cilia in human cortical development and address fundamental questions regarding the diversity and convergence of gene function in development and disease manifestation. It has the potential to uncover novel pharmacological targets, facilitate personalized medicine, and improve the lives of individuals affected by NDDs through targeted cilia-based therapies.
Improving Language Understanding by Generative Pre Training
Natural language understanding comprises a wide range of diverse tasks such as textual entailment, question answering, semantic similarity assessment, and document classification. Although large unlabeled text corpora are abundant, labeled data for learning these specific tasks is scarce, making it challenging for discriminatively trained models to perform adequately. We demonstrate that large gains on these tasks can be realized by generative pre-training of a language model on a diverse corpus of unlabeled text, followed by discriminative fine-tuning on each specific task. In contrast to previous approaches, we make use of task-aware input transformations during fine-tuning to achieve effective transfer while requiring minimal changes to the model architecture. We demonstrate the effectiveness of our approach on a wide range of benchmarks for natural language understanding. Our general task-agnostic model outperforms discriminatively trained models that use architectures specifically crafted for each task, significantly improving upon the state of the art in 9 out of the 12 tasks studied. For instance, we achieve absolute improvements of 8.9% on commonsense reasoning (Stories Cloze Test), 5.7% on question answering (RACE), and 1.5% on textual entailment (MultiNLI).
How are the epileptogenesis clocks ticking?
The epileptogenesis process is associated with large-scale changes in gene expression, which contribute to the remodelling of brain networks permanently altering excitability. About 80% of the protein coding genes are under the influence of the circadian rhythms. These are 24-hour endogenous rhythms that determine a large number of daily changes in physiology and behavior in our bodies. In the brain, the master clock regulates a large number of pathways that are important during epileptogenesis and established-epilepsy, such as neurotransmission, synaptic homeostasis, inflammation, blood-brain barrier among others. In-depth mapping of the molecular basis of circadian timing in the brain is key for a complete understanding of the cellular and molecular events connecting genes to phenotypes.
Brain-heart interactions at the edges of consciousness
Various clinical cases have provided evidence linking cardiovascular, neurological, and psychiatric disorders to changes in the brain-heart interaction. Our recent experimental evidence on patients with disorders of consciousness revealed that observing brain-heart interactions helps to detect residual consciousness, even in patients with absence of behavioral signs of consciousness. Those findings support hypotheses suggesting that visceral activity is involved in the neurobiology of consciousness and sum to the existing evidence in healthy participants in which the neural responses to heartbeats reveal perceptual and self-consciousness. Furthermore, the presence of non-linear, complex, and bidirectional communication between brain and heartbeat dynamics can provide further insights into the physiological state of the patient following severe brain injury. These developments on methodologies to analyze brain-heart interactions open new avenues for understanding neural functioning at a large-scale level, uncovering that peripheral bodily activity can influence brain homeostatic processes, cognition, and behavior.
Learning produces a hippocampal cognitive map in the form of an orthogonalized state machine
Cognitive maps confer animals with flexible intelligence by representing spatial, temporal, and abstract relationships that can be used to shape thought, planning, and behavior. Cognitive maps have been observed in the hippocampus, but their algorithmic form and the processes by which they are learned remain obscure. Here, we employed large-scale, longitudinal two-photon calcium imaging to record activity from thousands of neurons in the CA1 region of the hippocampus while mice learned to efficiently collect rewards from two subtly different versions of linear tracks in virtual reality. The results provide a detailed view of the formation of a cognitive map in the hippocampus. Throughout learning, both the animal behavior and hippocampal neural activity progressed through multiple intermediate stages, gradually revealing improved task representation that mirrored improved behavioral efficiency. The learning process led to progressive decorrelations in initially similar hippocampal neural activity within and across tracks, ultimately resulting in orthogonalized representations resembling a state machine capturing the inherent struture of the task. We show that a Hidden Markov Model (HMM) and a biologically plausible recurrent neural network trained using Hebbian learning can both capture core aspects of the learning dynamics and the orthogonalized representational structure in neural activity. In contrast, we show that gradient-based learning of sequence models such as Long Short-Term Memory networks (LSTMs) and Transformers do not naturally produce such orthogonalized representations. We further demonstrate that mice exhibited adaptive behavior in novel task settings, with neural activity reflecting flexible deployment of the state machine. These findings shed light on the mathematical form of cognitive maps, the learning rules that sculpt them, and the algorithms that promote adaptive behavior in animals. The work thus charts a course toward a deeper understanding of biological intelligence and offers insights toward developing more robust learning algorithms in artificial intelligence.
Conversations with Caves? Understanding the role of visual psychological phenomena in Upper Palaeolithic cave art making
How central were psychological features deriving from our visual systems to the early evolution of human visual culture? Art making emerged deep in our evolutionary history, with the earliest art appearing over 100,000 years ago as geometric patterns etched on fragments of ochre and shell, and figurative representations of prey animals flourishing in the Upper Palaeolithic (c. 40,000 – 15,000 years ago). The latter reflects a complex visual process; the ability to represent something that exists in the real world as a flat, two-dimensional image. In this presentation, I argue that pareidolia – the psychological phenomenon of seeing meaningful forms in random patterns, such as perceiving faces in clouds – was a fundamental process that facilitated the emergence of figurative representation. The influence of pareidolia has often been anecdotally observed in Upper Palaeolithic art examples, particularly cave art where the topographic features of cave wall were incorporated into animal depictions. Using novel virtual reality (VR) light simulations, I tested three hypotheses relating to pareidolia in the caves of Upper Palaeolithic cave art in the caves of Las Monedas and La Pasiega (Cantabria, Spain). To evaluate this further, I also developed an interdisciplinary VR eye-tracking experiment, where participants were immersed in virtual caves based on the cave of El Castillo (Cantabria, Spain). Together, these case studies suggest that pareidolia was an intrinsic part of artist-cave interactions (‘conversations’) that influenced the form and placement of figurative depictions in the cave. This has broader implications for conceiving of the role of visual psychological phenomena in the emergence and development of figurative art in the Palaeolithic.
Unifying the mechanisms of hippocampal episodic memory and prefrontal working memory
Remembering events in the past is crucial to intelligent behaviour. Flexible memory retrieval, beyond simple recall, requires a model of how events relate to one another. Two key brain systems are implicated in this process: the hippocampal episodic memory (EM) system and the prefrontal working memory (WM) system. While an understanding of the hippocampal system, from computation to algorithm and representation, is emerging, less is understood about how the prefrontal WM system can give rise to flexible computations beyond simple memory retrieval, and even less is understood about how the two systems relate to each other. Here we develop a mathematical theory relating the algorithms and representations of EM and WM by showing a duality between storing memories in synapses versus neural activity. In doing so, we develop a formal theory of the algorithm and representation of prefrontal WM as structured, and controllable, neural subspaces (termed activity slots). By building models using this formalism, we elucidate the differences, similarities, and trade-offs between the hippocampal and prefrontal algorithms. Lastly, we show that several prefrontal representations in tasks ranging from list learning to cue dependent recall are unified as controllable activity slots. Our results unify frontal and temporal representations of memory, and offer a new basis for understanding the prefrontal representation of WM
From rare Genetic cohorts of Parkinsonism to biomarkers and to understanding broader neurodegenerative disease mechanisms
Using Adversarial Collaboration to Harness Collective Intelligence
There are many mysteries in the universe. One of the most significant, often considered the final frontier in science, is understanding how our subjective experience, or consciousness, emerges from the collective action of neurons in biological systems. While substantial progress has been made over the past decades, a unified and widely accepted explanation of the neural mechanisms underpinning consciousness remains elusive. The field is rife with theories that frequently provide contradictory explanations of the phenomenon. To accelerate progress, we have adopted a new model of science: adversarial collaboration in team science. Our goal is to test theories of consciousness in an adversarial setting. Adversarial collaboration offers a unique way to bolster creativity and rigor in scientific research by merging the expertise of teams with diverse viewpoints. Ideally, we aim to harness collective intelligence, embracing various perspectives, to expedite the uncovering of scientific truths. In this talk, I will highlight the effectiveness (and challenges) of this approach using selected case studies, showcasing its potential to counter biases, challenge traditional viewpoints, and foster innovative thought. Through the joint design of experiments, teams incorporate a competitive aspect, ensuring comprehensive exploration of problems. This method underscores the importance of structured conflict and diversity in propelling scientific advancement and innovation.
Neuromodulation of striatal D1 cells shapes BOLD fluctuations in anatomically connected thalamic and cortical regions
Understanding how macroscale brain dynamics are shaped by microscale mechanisms is crucial in neuroscience. We investigate this relationship in animal models by directly manipulating cellular properties and measuring whole-brain responses using resting-state fMRI. Specifically, we explore the impact of chemogenetically neuromodulating D1 medium spiny neurons in the dorsomedial caudate putamen (CPdm) on BOLD dynamics within a striato-thalamo-cortical circuit in mice. Our findings indicate that CPdm neuromodulation alters BOLD dynamics in thalamic subregions projecting to the dorsomedial striatum, influencing both local and inter-regional connectivity in cortical areas. This study contributes to understanding structure–function relationships in shaping inter-regional communication between subcortical and cortical levels.
Machine learning for reconstructing, understanding and intervening on neural interactions
Bayesian expectation in the perception of the timing of stimulus sequences
In the current virtual journal club Dr Di Luca will present findings from a series of psychophysical investigations where he measured sensitivity and bias in the perception of the timing of stimuli. He will present how improved detection with longer sequences and biases in reporting isochrony can be accounted for by optimal statistical predictions. Among his findings was also that the timing of stimuli that occasionally deviate from a regularly paced sequence is perceptually distorted to appear more regular. Such change depends on whether the context these sequences are presented is also regular. Dr Di Luca will present a Bayesian model for the combination of dynamically updated expectations, in the form of a priori probability, with incoming sensory information. These findings contribute to the understanding of how the brain processes temporal information to shape perceptual experiences.
Neuronal population interactions between brain areas
Most brain functions involve interactions among multiple, distinct areas or nuclei. Yet our understanding of how populations of neurons in interconnected brain areas communicate is in its infancy. Using a population approach, we found that interactions between early visual cortical areas (V1 and V2) occur through a low-dimensional bottleneck, termed a communication subspace. In this talk, I will focus on the statistical methods we have developed for studying interactions between brain areas. First, I will describe Delayed Latents Across Groups (DLAG), designed to disentangle concurrent, bi-directional (i.e., feedforward and feedback) interactions between areas. Second, I will describe an extension of DLAG applicable to three or more areas, and demonstrate its utility for studying simultaneous Neuropixels recordings in areas V1, V2, and V3. Our results provide a framework for understanding how neuronal population activity is gated and selectively routed across brain areas.
Piecing together the puzzle of emotional consciousness
Conscious emotional experiences are very rich in their nature, and can encompass anything ranging from the most intense panic when facing immediate threat, to the overwhelming love felt when meeting your newborn. It is then no surprise that capturing all aspects of emotional consciousness, such as intensity, valence, and bodily responses, into one theory has become the topic of much debate. Key questions in the field concern how we can actually measure emotions and which type of experiments can help us distill the neural correlates of emotional consciousness. In this talk I will give a brief overview of theories of emotional consciousness and where they disagree, after which I will dive into the evidence proposed to support these theories. Along the way I will discuss to what extent studying emotional consciousness is ‘special’ and will suggest several tools and experimental contrasts we have at our disposal to further our understanding on this intriguing topic.
Connectome-based models of neurodegenerative disease
Neurodegenerative diseases involve accumulation of aberrant proteins in the brain, leading to brain damage and progressive cognitive and behavioral dysfunction. Many gaps exist in our understanding of how these diseases initiate and how they progress through the brain. However, evidence has accumulated supporting the hypothesis that aberrant proteins can be transported using the brain’s intrinsic network architecture — in other words, using the brain’s natural communication pathways. This theory forms the basis of connectome-based computational models, which combine real human data and theoretical disease mechanisms to simulate the progression of neurodegenerative diseases through the brain. In this talk, I will first review work leading to the development of connectome-based models, and work from my lab and others that have used these models to test hypothetical modes of disease progression. Second, I will discuss the future and potential of connectome-based models to achieve clinically useful individual-level predictions, as well as to generate novel biological insights into disease progression. Along the way, I will highlight recent work by my lab and others that is already moving the needle toward these lofty goals.
Gut/Body interactions in health and disease
The adult intestine is a major barrier epithelium and coordinator of multi-organ functions. Stem cells constantly repair the intestinal epithelium by adjusting their proliferation and differentiation to tissue intrinsic as well as micro- and macro-environmental signals. How these signals integrate to control intestinal and whole-body homeostasis is largely unknown. Addressing this gap in knowledge is central to an improved understanding of intestinal pathophysiology and its systemic consequences. Combining Drosophila and mammalian model systems my laboratory has discovered fundamental mechanisms driving intestinal regeneration and tumourigenesis and outlined complex inter-organ signaling regulating health and disease. During my talk, I will discuss inter-related areas of research from my lab, including:1- Interactions between the intestine and its microenvironment influencing intestinal regeneration and tumourigenesis. 2- Long-range signals from the intestine impacting whole-body in health and disease.
Neuromodulation of subjective experience
Many psychoactive substances are used with the aim of altering experience, e.g. as analgesics, antidepressants or antipsychotics. These drugs act on specific receptor systems in the brain, including the opioid, serotonergic and dopaminergic systems. In this talk, I will summarise human drug studies targeting opioid receptors and their role for human experience, with focus on the experience of pain, stress, mood, and social connection. Opioids are only indicated for analgesia, due to their potential to cause addiction. When these regulations occurred, other known effects were relegated to side effects. This may be the cause of the prevalent myth that opioids are the most potent painkillers, despite evidence from head-to-head trials, Cochrane reviews and network meta-analyses that opioids are not superior to non-opioid analgesics in the treatment of acute or chronic non-cancer pain. However, due to the variability and diversity of opioid effects across contexts and experiences, some people under some circumstances may indeed benefit from prolonged treatment. I will present data on individual differences in opioid effects due to participant sex and stress induction. Understanding the effects of these commonly used medications on other aspects of the human experience is important to ensure correct use and to prevent unnecessary pain and addiction risk.
Understanding rat behavior in a complex task via non-deterministic policies
COSYNE 2022
Understanding rat behavior in a complex task via non-deterministic policies
COSYNE 2022
Towards understanding the microcircuit in monkey primary visual cortex in-vivo
COSYNE 2023
Understanding Auditory Cortex with Deep Neural Networks
COSYNE 2023
Understanding network dynamics of compact assemblies of neurons in zebrafish larvae optic tectum during spontaneous activation
COSYNE 2023
Probing Motion-Form Interactions in the Macaque Inferior Temporal Cortex and Artificial Neural Networks for Complex Scene Understanding
COSYNE 2025
Understanding Bi-directional Changes and Rotation in Mitral Cell Population Codes During Repeated Odor Exposure
COSYNE 2025
Understanding the effects of neural perturbations using cell-type dynamical systems
COSYNE 2025
Understanding sensory-motor integration in the PIVC through ensemble analysis
COSYNE 2025
Understanding stochastic decision-making in competitive multi-agent environments
COSYNE 2025
Combining electrophysiology, tissue clearing, and light sheet microscopy for an integrated approach towards brain circuit understanding
FENS Forum 2024
NETSseq enhances the understanding of cerebellar transcriptomic changes in ataxia-telangiectasia
FENS Forum 2024
Neurocognitive profiles of childhood maltreatment subtypes: Understanding the effects of childhood emotional abuse on the adult social brain
FENS Forum 2024
ProB13 and ProD20: Understanding the role of two potential novel retinal amacrine cell types
FENS Forum 2024
Understanding the altered brain metabolism and oxidative stress: Insights into metabolic syndrome and premature aging in a novel obese rodent model
FENS Forum 2024
Understanding CaV2.1 dysfunction in neurological disorders: Insights from novel CRISPR/Cas9 mouse model and iPSC-derived neurons
FENS Forum 2024
Understanding the consequences of prenatal CBD exposure on insular cortex neurons: Sex-specific alterations and the loss of subregional functional differentiation
FENS Forum 2024
Understanding the effects of protons versus x-rays on radiation-induced lymphopenia after brain irradiation: A preclinical study
FENS Forum 2024
Understanding the functions of claudins in primary neurons
FENS Forum 2024
Understanding the influence of the gut microbiome on the mesolimbic system and its response to nicotine
FENS Forum 2024
Understanding LZK-mediated reactive astrogliosis and neuronal repair using mouse molecular genetics and transcriptomic profiling
FENS Forum 2024
Understanding midbrain dopaminergic cell fate acquisition using midbrain-like organoids for Parkinson’s disease cell therapy
FENS Forum 2024
Understanding molecular mechanisms in oligodendrocyte development in vitro using human fetal neural stem cells
FENS Forum 2024
Understanding the neurobiological basis of the rewarding properties of flavored nicotine in e-cigarettes
FENS Forum 2024
Understanding neuromodulation pathways in tDCS: Brainstem recording following DC-TNS in anesthetized rats
FENS Forum 2024
Understanding the pathogenic mechanisms underlying a rare genetic form of hereditary spastic paraplegia (aka SINO syndrome) caused by mutations in the KIDINS220 gene
FENS Forum 2024
Understanding the role of the hippocampal-thalamic-cortical coordination in memory consolidation
FENS Forum 2024
Understanding the role of microglia in ‘chemofog’ to resolve chemotherapy-induced cognitive impairment
FENS Forum 2024
Understanding the role of striatal cholinergic interneurons in reward and motivation processing
FENS Forum 2024
Understanding the synaptic basis of dystonia pathogenesis triggered by RIMBP1 mutations
FENS Forum 2024
Understanding trait anxiety through foraging decision
FENS Forum 2024
Integrative neurocognitive approaches to understanding cognition through simultaneous analysis of EEG and behavioral data on single trials
Neuromatch 5