← Back

Virus Tracing

Topic spotlight
TopicWorld Wide

virus tracing

Discover seminars, jobs, and research tagged with virus tracing across World Wide.
3 curated items3 Seminars
Updated about 2 years ago
3 items · virus tracing
3 results
SeminarNeuroscience

Reconstructing inhibitory circuits in a damaged brain

Robert Hunt
University of California-Irvine
May 17, 2022

Inhibitory interneurons govern the sparse activation of principal cells that permits appropriate behaviors, but they among the most vulnerable to brain damage. Our recent work has demonstrated important roles for inhibitory neurons in disorders of brain development, injury and epilepsy. These studies have motivated our ongoing efforts to understand how these cells operate at the synaptic, circuit and behavioral levels and in designing new technologies targeting specific populations of interneurons for therapy. I will discuss our recent efforts examining the role of interneurons in traumatic brain injury and in designing cell transplantation strategies - based on the generation of new inhibitory interneurons - that enable precise manipulation of inhibitory circuits in the injured brain. I will also discuss our ongoing efforts using monosynaptic virus tracing and whole-brain clearing methods to generate brain-wide maps of inhibitory circuits in the rodent brain. By comprehensively mapping the wiring of individual cell types on a global scale, we have uncovered a fundamental strategy to sustain and optimize inhibition following traumatic brain injury that involves spatial reorganization of local and long-range inputs to inhibitory neurons. These recent findings suggest that brain damage, even when focally restricted, likely has a far broader affect on brain-wide neural function than previously appreciated.

SeminarNeuroscienceRecording

Anterior Cingulate inputs to nucleus accumbens control the social transfer of pain and analgesia

Monique Smith
Malenka lab, Stanford University
Apr 6, 2021

Empathy plays a critical role in social interactions, and many species, including rodents, display evolutionarily conserved behavioral antecedents of empathy. In both humans and rodents, the anterior cingulate cortex (ACC) encodes information about the affective state of others. However, little is known about which downstream targets of the ACC contribute to empathy behaviors. We optimized a protocol for the social transfer of pain behavior in mice and compared the ACC-dependent neural circuitry responsible for this behavior with the neural circuitry required for the social transfer of two related states: analgesia and fear. We found that a 1-hour social interaction between a bystander mouse and a cagemate experiencing inflammatory pain led to congruent mechanical hyperalgesia in the bystander. This social transfer led to activation of neurons in the ACC and several downstream targets, including the nucleus accumbens (NAc), which was revealed by monosynaptic rabies virus tracing to be directly connected to the ACC. Bidirectional manipulation of activity in ACC-to-NAc inputs influenced the acquisition of socially transferred pain. Further, the social transfer of analgesia also depended upon ACC-NAc inputs. By contrast, the social transfer of fear instead required activity in ACC projections to the basolateral amygdala. This shows that mice rapidly adopt the sensory-affective state of a social partner, regardless of the valance of the information (pain, fear, or pain relief). We find that the ACC generates specific and appropriate empathic behavioral responses through distinct downstream targets. More sophisticated understanding of evolutionarily conserved brain mechanisms of empathy will also expedite the development of new therapies for the empathy-related deficits associated with a broad range of neuropsychiatric disorders.