Visual Cognition
visual cognition
The development of visual experience
Vision and visual cognition is experience-dependent with likely multiple sensitive periods, but we know very little about statistics of visual experience at the scale of everyday life and how they might change with development. By traditional assumptions, the world at the massive scale of daily life presents pretty much the same visual statistics to all perceivers. I will present an overview our work on ego-centric vision showing that this is not the case. The momentary image received at the eye is spatially selective, dependent on the location, posture and behavior of the perceiver. If a perceiver’s location, possible postures and/or preferences for looking at some kinds of scenes over others are constrained, then their sampling of images from the world and thus the visual statistics at the scale of daily life could be biased. I will present evidence with respect to both low-level and higher level visual statistics about the developmental changes in the visual input over the first 18 months post-birth.
Successes and failures of current AI as a model of visual cognition
Towards a neurally mechanistic understanding of visual cognition
I am interested in developing a neurally mechanistic understanding of how primate brains represent the world through its visual system and how such representations enable a remarkable set of intelligent behaviors. In this talk, I will primarily highlight aspects of my current research that focuses on dissecting the brain circuits that support core object recognition behavior (primates’ ability to categorize objects within hundreds of milliseconds) in non-human primates. On the one hand, my work empirically examines how well computational models of the primate ventral visual pathways embed knowledge of the visual brain function (e.g., Bashivan*, Kar*, DiCarlo, Science, 2019). On the other hand, my work has led to various functional and architectural insights that help improve such brain models. For instance, we have exposed the necessity of recurrent computations in primate core object recognition (Kar et al., Nature Neuroscience, 2019), one that is strikingly missing from most feedforward artificial neural network models. Specifically, we have observed that the primate ventral stream requires fast recurrent processing via ventrolateral PFC for robust core object recognition (Kar and DiCarlo, Neuron, 2021). In addition, I have been currently developing various chemogenetic strategies to causally target specific bidirectional neural circuits in the macaque brain during multiple object recognition tasks to further probe their relevance during this behavior. I plan to transform these data and insights into tangible progress in neuroscience via my collaboration with various computational groups and building improved brain models of object recognition. I hope to end the talk with a brief glimpse of some of my planned future work!
Stereo vision and prey detection in the praying mantis
Praying mantises are the only insects known to have stereo vision. We used a comparative approach to determine how the mechanisms underlying stereopsis in mantises differ from those underlying primate stereo vision. By testing mantises with virtual 3D targets we showed that mantis stereopsis enables prey capture in complex scenes but the mechanisms underlying it differ from those underlying primate stereopsis. My talk will further discuss how stereopsis combines with second-order motion perception to enable the detection of camouflaged prey by mantises. The talk will highlight the benefits of a comparative approach towards understanding visual cognition.
Shared neural network interactions underlying visual cognition, attentional reorientation, and executive function across developmental stages
FENS Forum 2024