Visual Processing
visual processing
Dr. Tom Franken
A postdoctoral position is available in Dr. Tom Franken’s laboratory in the Department of Neuroscience at the Washington University School of Medicine in St. Louis. The project will study the neural circuits that parse visual scenes into organized collections of objects. We use a variety of techniques including high-density electrophysiology, behavior, optogenetics, and viral targeting in non-human primates. For more information on the lab, please visit sites.wustl.edu/frankenlab/. The PI is committed to mentoring and to nurturing a creative, thoughtful and collaborative lab culture. The laboratory is in an academic setting in the Department of Neuroscience at the Washington University School of Medicine in St. Louis, a large and collaborative scientific community. This provides an ideal environment to train, conduct research, and launch a career in science. Postdoctoral appointees at Washington University receive a competitive salary and a generous benefits package (hr.wustl.edu/benefits/). WashU Neuroscience is consistently ranked as one of the top 10 places worldwide for neuroscience research and offers an outstanding interdisciplinary training environment for early career researchers. In addition to high-quality research facilities, career and professional development training for postdoctoral researchers is provided through the Career Center, Teaching Center, Office of Postdoctoral Affairs, and campus groups. St. Louis is a city rich in culture, green spaces, free museums, world-class restaurants, and thriving music and arts scenes. On top of it all, St. Louis is affordable and commuting to campus is stress-free, whether you go by foot, bike, public transit, or car. The area combines the attractions of a major city with affordable lifestyle opportunities (postdoc.wustl.edu/prospective-postdocs/why-st-louis/). Washington University is dedicated to building a diverse community of individuals who are committed to contributing to an inclusive environment – fostering respect for all and welcoming individuals from diverse backgrounds, experiences and perspectives. Individuals with a commitment to these values are encouraged to apply. Additional information on being a postdoc at Washington University in St. Louis can be found at neuroscience.wustl.edu/education/postdoctoral-research/ and postdoc.wustl.edu/prospective-postdocs. Required Qualifications Ph.D. (or equivalent doctoral) degree in neuroscience (broadly defined). Strong background in either electrophysiology, behavioral techniques or scientific programming/machine learning. Preferred Qualifications Experience with training of larger animals. Experience with electrophysiology. Experience with studies of the visual system. Ability to think creatively to solve problems. Well organized and attention to detail. Excellent oral and written communication skills. Team player with a high level of initiative and motivation. Working Conditions This position works in a laboratory environment with potential exposure to biological and chemical hazards. The individual must be physically able to wear protective equipment and to provide standard care to research animals. Salary Range Base pay is commensurate with experience. Applicant Special Instructions Applicants should submit the following materials to Dr. Tom Franken at ftom@wustl.edu: 1) A cover letter explaining how their interest in the position matches their background and career goals. 2) CV or Biosketch. 3) Contact information for at least three professional references. Accommodation If you are unable to use our online application system and would like an accommodation, please email CandidateQuestions@wustl.edu or call the dedicated accommodation inquiry number at 314-935-1149 and leave a voicemail with the nature of your request. Pre-Employment Screening All external candidates receiving an offer for employment will be required to submit to pre-employment screening for this position. The screenings will include criminal background check and, as applicable for the position, other background checks, drug screen, an employment and education or licensure/certification verification, physical examination, certain vaccinations and/or governmental registry checks. All offers are contingent upon successful completion of required screening. Benefits Statement Washington University in St. Louis is committed to providing a comprehensive and competitive benefits package to our employees. Benefits eligibility is subject to employment status, full-time equivalent (FTE) workload, and weekly standard hours. Please visit our website at https://hr.wustl.edu/benefits/ to view a summary of benefits. EEO/AA Statement Washington University in St. Louis is committed to the principles and practices of equal employment opportunity and especially encourages applications by those from underrepresented groups. It is the University’s policy to provide equal opportunity and access to persons in all job titles without regard to race, ethnicity, color, national origin, age, religion, sex, sexual orientation, gender identity or expression, disability, protected veteran status, or genetic information. Diversity Statement Washington University is dedicated to building a diverse community of individuals who are committed to contributing to an inclusive environment – fostering respect for all and welcoming individuals from diverse backgrounds, experiences and perspectives. Individuals with a commitment to these values are encouraged to apply.
Leena Ali Ibrahim
A funded postdoctoral position is available in the laboratory of Leena Ali Ibrahim at KAUST, Saudi Arabia A major focus of the laboratory is understanding the circuit mechanisms of how internal states of an animal via top-down circuits influences sensory processing during development and learning. In addition we are interested in exploring how the balance of bottom-up and top-down signaling is disrupted in neurodevelopmental and neuropsychiatric disorders. A number of potential projects can be supported depending on interest and expertise. We use a variety of approaches including in vivo two-photon microscopy and behavior, slice physiology, optogenetics and viral targeting of defined cell types.
Dr. Jessica Ausborn
Dr. Jessica Ausborn’s group at Drexel University College of Medicine, in the Department of Neurobiology & Anatomy has a postdoctoral position available for an exciting new research project involving computational models of sensorimotor integration based on neural and behavior data in Drosophila. The interdisciplinary collaboration with the experimental group of Dr. Katie von Reyn (School of Biomedical Engineering) will involve a variety of computational techniques including the development of biophysically detailed and more abstract mathematical models together with machine learning and data science techniques to identify and describe the algorithms computed in neuronal pathways that perform sensorimotor transformations. The Ausborn laboratory is part of an interdisciplinary group of Drexel’s Neuroengineering program that includes computational and experimental investigators. This collaborative, interdisciplinary environment enables us to probe biological systems in a way that would not be possible with either an exclusively experimental or computational approach. Applicants should forward a cover letter, curriculum vitae, statement of research interests, and contact information of three references to Jessica Ausborn (ja696@drexel.edu). Salary will be commensurate with experience based on NIH guidelines.
Prof. Jakob Macke
The Mackelab (Prof. Jakob Macke, University Tübingen) is looking for PhD, Postdoc and Scientific Programmer applicants interested in working with us on using deep learning to build, optimize and study mechanistic models of neural computations! In a first project, funded by the ERC Grant DeepCoMechTome, we want to make use of connectomic reconstructions of the fruit fly to build large-scale simulations of the fly brain that can explain visually driven behavior—see, e.g., our prior work with Srinivas Turaga’s group, described in Lappalainen et al., Nature, 2024. In a second project, funded by the DFG through the CRC Robust Vision, we want to use differentiable simulators of biophysical models (Deistler et al., 2024) to build data-driven models of visual processing in the retina. We are open to candidates who are more interested in neurobiological questions, as well as to ones more interested in machine learning aspects (e.g. training large-scale mechanistic neural networks, learning efficient emulators, coding frameworks for collaborative modelling, automated model discovery for mechanistic models, …) of these projects.
Using Fast Periodic Visual Stimulation to measure cognitive function in dementia
Fast periodic visual stimulation (FPVS) has emerged as a promising tool for assessing cognitive function in individuals with dementia. This technique leverages electroencephalography (EEG) to measure brain responses to rapidly presented visual stimuli, offering a non-invasive and objective method for evaluating a range of cognitive functions. Unlike traditional cognitive assessments, FPVS does not rely on behavioural responses, making it particularly suitable for individuals with cognitive impairment. In this talk I will highlight a series of studies that have demonstrated its ability to detect subtle deficits in recognition memory, visual processing and attention in dementia patients using EEG in the lab, at home and in clinic. The method is quick, cost-effective, and scalable, utilizing widely available EEG technology. FPVS holds significant potential as a functional biomarker for early diagnosis and monitoring of dementia, paving the way for timely interventions and improved patient outcomes.
Stability of visual processing in passive and active vision
The visual system faces a dual challenge. On the one hand, features of the natural visual environment should be stably processed - irrespective of ongoing wiring changes, representational drift, and behavior. On the other hand, eye, head, and body motion require a robust integration of pose and gaze shifts in visual computations for a stable perception of the world. We address these dimensions of stable visual processing by studying the circuit mechanism of long-term representational stability, focusing on the role of plasticity, network structure, experience, and behavioral state while recording large-scale neuronal activity with miniature two-photon microscopy.
Brain and Behavior: Employing Frequency Tagging as a Tool for Measuring Cognitive Abilities
Frequency tagging based on fast periodic visual stimulation (FPVS) provides a window into ongoing visual and cognitive processing and can be leveraged to measure rule learning and high-level categorization. In this talk, I will present data demonstrating highly proficient categorization as living and non-living in preschool children, and characterize the development of this ability during infancy. In addition to associating cognitive functions with development, an intriguing question is whether frequency tagging also captures enduring individual differences, e.g. in general cognitive abilities. First studies indicate high psychometric quality of FPVS categorization responses (XU et al., Dzhelyova), providing a basis for research on individual differences. I will present results from a pilot study demonstrating high correlations between FPVS categorization responses and behavioral measures of processing speed and fluid intelligences. Drawing upon this first evidence, I will discuss the potential of frequency tagging for diagnosing cognitive functions across development.
Multisensory influences on vision: Sounds enhance and alter visual-perceptual processing
Visual perception is traditionally studied in isolation from other sensory systems, and while this approach has been exceptionally successful, in the real world, visual objects are often accompanied by sounds, smells, tactile information, or taste. How is visual processing influenced by these other sensory inputs? In this talk, I will review studies from our lab showing that a sound can influence the perception of a visual object in multiple ways. In the first part, I will focus on spatial interactions between sound and sight, demonstrating that co-localized sounds enhance visual perception. Then, I will show that these cross-modal interactions also occur at a higher contextual and semantic level, where naturalistic sounds facilitate the processing of real-world objects that match these sounds. Throughout my talk I will explore to what extent sounds not only improve visual processing but also alter perceptual representations of the objects we see. Most broadly, I will argue for the importance of considering multisensory influences on visual perception for a more complete understanding of our visual experience.
Building System Models of Brain-Like Visual Intelligence with Brain-Score
Research in the brain and cognitive sciences attempts to uncover the neural mechanisms underlying intelligent behavior in domains such as vision. Due to the complexities of brain processing, studies necessarily had to start with a narrow scope of experimental investigation and computational modeling. I argue that it is time for our field to take the next step: build system models that capture a range of visual intelligence behaviors along with the underlying neural mechanisms. To make progress on system models, we propose integrative benchmarking – integrating experimental results from many laboratories into suites of benchmarks that guide and constrain those models at multiple stages and scales. We show-case this approach by developing Brain-Score benchmark suites for neural (spike rates) and behavioral experiments in the primate visual ventral stream. By systematically evaluating a wide variety of model candidates, we not only identify models beginning to match a range of brain data (~50% explained variance), but also discover that models’ brain scores are predicted by their object categorization performance (up to 70% ImageNet accuracy). Using the integrative benchmarks, we develop improved state-of-the-art system models that more closely match shallow recurrent neuroanatomy and early visual processing to predict primate temporal processing and become more robust, and require fewer supervised synaptic updates. Taken together, these integrative benchmarks and system models are first steps to modeling the complexities of brain processing in an entire domain of intelligence.
Perception during visual disruptions
Visual perception is perceived as continuous despite frequent disruptions in our visual environment. For example, internal events, such as saccadic eye-movements, and external events, such as object occlusion temporarily prevent visual information from reaching the brain. Combining evidence from these two models of visual disruption (occlusion and saccades), we will describe what information is maintained and how it is updated across the sensory interruption. Lina Teichmann will focus on dynamic occlusion and demonstrate how object motion is processed through perceptual gaps. Grace Edwards will then describe what pre-saccadic information is maintained across a saccade and how it interacts with post-saccadic processing in retinotopically relevant areas of the early visual cortex. Both occlusion and saccades provide a window into how the brain bridges perceptual disruptions. Our evidence thus far suggests a role for extrapolation, integration, and potentially suppression in both models. Combining evidence from these typically separate fields enables us to determine if there is a set of mechanisms which support visual processing during visual disruptions in general.
Perception during visual disruptions
Visual perception is perceived as continuous despite frequent disruptions in our visual environment. For example, internal events, such as saccadic eye-movements, and external events, such as object occlusion temporarily prevent visual information from reaching the brain. Combining evidence from these two models of visual disruption (occlusion and saccades), we will describe what information is maintained and how it is updated across the sensory interruption. Lina Teichmann will focus on dynamic occlusion and demonstrate how object motion is processed through perceptual gaps. Grace Edwards will then describe what pre-saccadic information is maintained across a saccade and how it interacts with post-saccadic processing in retinotopically relevant areas of the early visual cortex. Both occlusion and saccades provide a window into how the brain bridges perceptual disruptions. Our evidence thus far suggests a role for extrapolation, integration, and potentially suppression in both models. Combining evidence from these typically separate fields enables us to determine if there is a set of mechanisms which support visual processing during visual disruptions in general.
A draft connectome for ganglion cell types of the mouse retina
The visual system of the brain is highly parallel in its architecture. This is clearly evident in the outputs of the retina, which arise from neurons called ganglion cells. Work in our lab has shown that mammalian retinas contain more than a dozen distinct types of ganglion cells. Each type appears to filter the retinal image in a unique way and to relay this processed signal to a specific set of targets in the brain. My students and I are working to understand the meaning of this parallel organization through electrophysiological and anatomical studies. We record from light-responsive ganglion cells in vitro using the whole-cell patch method. This allows us to correlate directly the visual response properties, intrinsic electrical behavior, synaptic pharmacology, dendritic morphology and axonal projections of single neurons. Other methods used in the lab include neuroanatomical tracing techniques, single-unit recording and immunohistochemistry. We seek to specify the total number of ganglion cell types, the distinguishing characteristics of each type, and the intraretinal mechanisms (structural, electrical, and synaptic) that shape their stimulus selectivities. Recent work in the lab has identified a bizarre new ganglion cell type that is also a photoreceptor, capable of responding to light even when it is synaptically uncoupled from conventional (rod and cone) photoreceptors. These ganglion cells appear to play a key role in resetting the biological clock. It is just this sort of link, between a specific cell type and a well-defined behavioral or perceptual function, that we seek to establish for the full range of ganglion cell types. My research concerns the structural and functional organization of retinal ganglion cells, the output cells of the retina whose axons make up the optic nerve. Ganglion cells exhibit great diversity both in their morphology and in their responses to light stimuli. On this basis, they are divisible into a large number of types (>15). Each ganglion-cell type appears to send its outputs to a specific set of central visual nuclei. This suggests that ganglion cell heterogeneity has evolved to provide each visual center in the brain with pre-processed representations of the visual scene tailored to its specific functional requirements. Though the outline of this story has been appreciated for some time, it has received little systematic exploration. My laboratory is addressing in parallel three sets of related questions: 1) How many types of ganglion cells are there in a typical mammalian retina and what are their structural and functional characteristics? 2) What combination of synaptic networks and intrinsic membrane properties are responsible for the characteristic light responses of individual types? 3) What do the functional specializations of individual classes contribute to perceptual function or to visually mediated behavior? To pursue these questions, we label retinal ganglion cells by retrograde transport from the brain; analyze in vitro their light responses, intrinsic membrane properties and synaptic pharmacology using the whole-cell patch clamp method; and reveal their morphology with intracellular dyes. Recently, we have discovered a novel ganglion cell in rat retina that is intrinsically photosensitive. These ganglion cells exhibit robust light responses even when all influences from classical photoreceptors (rods and cones) are blocked, either by applying pharmacological agents or by dissociating the ganglion cell from the retina. These photosensitive ganglion cells seem likely to serve as photoreceptors for the photic synchronization of circadian rhythms, the mechanism that allows us to overcome jet lag. They project to the circadian pacemaker of the brain, the suprachiasmatic nucleus of the hypothalamus. Their temporal kinetics, threshold, dynamic range, and spectral tuning all match known properties of the synchronization or "entrainment" mechanism. These photosensitive ganglion cells innervate various other brain targets, such as the midbrain pupillary control center, and apparently contribute to a host of behavioral responses to ambient lighting conditions. These findings help to explain why circadian and pupillary light responses persist in mammals, including humans, with profound disruption of rod and cone function. Ongoing experiments are designed to elucidate the phototransduction mechanism, including the identity of the photopigment and the nature of downstream signaling pathways. In other studies, we seek to provide a more detailed characterization of the photic responsiveness and both morphological and functional evidence concerning possible interactions with conventional rod- and cone-driven retinal circuits. These studies are of potential value in understanding and designing appropriate therapies for jet lag, the negative consequences of shift work, and seasonal affective disorder.
Functional Divergence at the Mouse Bipolar Cell Terminal
Research in our lab focuses on the circuit mechanisms underlying sensory computation. We use the mouse retina as a model system because it allows us to stimulate the circuit precisely with its natural input, patterns of light, and record its natural output, the spike trains of retinal ganglion cells. We harness the power of genetic manipulations and detailed information about cell types to uncover new circuits and discover their role in visual processing. Our methods include electrophysiology, computational modeling, and circuit tracing using a variety of imaging techniques.
Mutation targeted gene therapy approaches to alter rod degeneration and retain cones
My research uses electrophysiological techniques to evaluate normal retinal function, dysfunction caused by blinding retinal diseases and the restoration of function using a variety of therapeutic strategies. We can use our understanding or normal retinal function and disease-related changes to construct optimal therapeutic strategies and evaluate how they ameliorate the effects of disease. Retinitis pigmentosa (RP) is a family of blinding eye diseases caused by photoreceptor degeneration. The absence of the cells that for this primary signal leads to blindness. My interest in RP involves the evaluation of therapies to restore vision: replacing degenerated photoreceptors either with: (1) new stem or other embryonic cells, manipulated to become photoreceptors or (2) prosthetics devices that replace the photoreceptor signal with an electronic signal to light. Glaucoma is caused by increased intraocular pressure and leads to ganglion cell death, which eliminates the link between the retinal output and central visual processing. We are parsing out of the effects of increased intraocular pressure and aging on ganglion cells. Congenital Stationary Night Blindness (CSNB) is a family of diseases in which signaling is eliminated between rod photoreceptors and their postsynaptic targets, rod bipolar cells. This deafferents the retinal circuit that is responsible for vision under dim lighting. My interest in CSNB involves understanding the basic interplay between excitation and inhibition in the retinal circuit and its normal development. Because of the targeted nature of this disease, we are hopeful that a gene therapy approach can be developed to restore night vision. My work utilizes rodent disease models whose mutations mimic those found in human patients. While molecular manipulation of rodents is a fairly common approach, we have recently developed a mutant NIH miniature swine model of a common form of autosomal dominant RP (Pro23His rhodopsin mutation) in collaboration with the National Swine Resource Research Center at University of Missouri. More genetically modified mini-swine models are in the pipeline to examine other retinal diseases.
What does the primary visual cortex tell us about object recognition?
Object recognition relies on the complex visual representations in cortical areas at the top of the ventral stream hierarchy. While these are thought to be derived from low-level stages of visual processing, this has not been shown, yet. Here, I describe the results of two projects exploring the contributions of primary visual cortex (V1) processing to object recognition using artificial neural networks (ANNs). First, we developed hundreds of ANN-based V1 models and evaluated how their single neurons approximate those in the macaque V1. We found that, for some models, single neurons in intermediate layers are similar to their biological counterparts, and that the distributions of their response properties approximately match those in V1. Furthermore, we observed that models that better matched macaque V1 were also more aligned with human behavior, suggesting that object recognition is derived from low-level. Motivated by these results, we then studied how an ANN’s robustness to image perturbations relates to its ability to predict V1 responses. Despite their high performance in object recognition tasks, ANNs can be fooled by imperceptibly small, explicitly crafted perturbations. We observed that ANNs that better predicted V1 neuronal activity were also more robust to adversarial attacks. Inspired by this, we developed VOneNets, a new class of hybrid ANN vision models. Each VOneNet contains a fixed neural network front-end that simulates primate V1 followed by a neural network back-end adapted from current computer vision models. After training, VOneNets were substantially more robust, outperforming state-of-the-art methods on a set of perturbations. While current neural network architectures are arguably brain-inspired, these results demonstrate that more precisely mimicking just one stage of the primate visual system leads to new gains in computer vision applications and results in better models of the primate ventral stream and object recognition behavior.
NMC4 Short Talk: Hypothesis-neutral response-optimized models of higher-order visual cortex reveal strong semantic selectivity
Modeling neural responses to naturalistic stimuli has been instrumental in advancing our understanding of the visual system. Dominant computational modeling efforts in this direction have been deeply rooted in preconceived hypotheses. In contrast, hypothesis-neutral computational methodologies with minimal apriorism which bring neuroscience data directly to bear on the model development process are likely to be much more flexible and effective in modeling and understanding tuning properties throughout the visual system. In this study, we develop a hypothesis-neutral approach and characterize response selectivity in the human visual cortex exhaustively and systematically via response-optimized deep neural network models. First, we leverage the unprecedented scale and quality of the recently released Natural Scenes Dataset to constrain parametrized neural models of higher-order visual systems and achieve novel predictive precision, in some cases, significantly outperforming the predictive success of state-of-the-art task-optimized models. Next, we ask what kinds of functional properties emerge spontaneously in these response-optimized models? We examine trained networks through structural ( feature visualizations) as well as functional analysis (feature verbalizations) by running `virtual' fMRI experiments on large-scale probe datasets. Strikingly, despite no category-level supervision, since the models are solely optimized for brain response prediction from scratch, the units in the networks after optimization act as detectors for semantic concepts like `faces' or `words', thereby providing one of the strongest evidences for categorical selectivity in these visual areas. The observed selectivity in model neurons raises another question: are the category-selective units simply functioning as detectors for their preferred category or are they a by-product of a non-category-specific visual processing mechanism? To investigate this, we create selective deprivations in the visual diet of these response-optimized networks and study semantic selectivity in the resulting `deprived' networks, thereby also shedding light on the role of specific visual experiences in shaping neuronal tuning. Together with this new class of data-driven models and novel model interpretability techniques, our study illustrates that DNN models of visual cortex need not be conceived as obscure models with limited explanatory power, rather as powerful, unifying tools for probing the nature of representations and computations in the brain.
NMC4 Short Talk: Directly interfacing brain and deep networks exposes non-hierarchical visual processing
A recent approach to understanding the mammalian visual system is to show correspondence between the sequential stages of processing in the ventral stream with layers in a deep convolutional neural network (DCNN), providing evidence that visual information is processed hierarchically, with successive stages containing ever higher-level information. However, correspondence is usually defined as shared variance between brain region and model layer. We propose that task-relevant variance is a stricter test: If a DCNN layer corresponds to a brain region, then substituting the model’s activity with brain activity should successfully drive the model’s object recognition decision. Using this approach on three datasets (human fMRI and macaque neuron firing rates) we found that in contrast to the hierarchical view, all ventral stream regions corresponded best to later model layers. That is, all regions contain high-level information about object category. We hypothesised that this is due to recurrent connections propagating high-level visual information from later regions back to early regions, in contrast to the exclusively feed-forward connectivity of DCNNs. Using task-relevant correspondence with a late DCNN layer akin to a tracer, we used Granger causal modelling to show late-DCNN correspondence in IT drives correspondence in V4. Our analysis suggests, effectively, that no ventral stream region can be appropriately characterised as ‘early’ beyond 70ms after stimulus presentation, challenging hierarchical models. More broadly, we ask what it means for a model component and brain region to correspond: beyond quantifying shared variance, we must consider the functional role in the computation. We also demonstrate that using a DCNN to decode high-level conceptual information from ventral stream produces a general mapping from brain to model activation space, which generalises to novel classes held-out from training data. This suggests future possibilities for brain-machine interface with high-level conceptual information, beyond current designs that interface with the sensorimotor periphery.
The dynamics of temporal attention
Selection is the hallmark of attention: processing improves for attended items but is relatively impaired for unattended items. It is well known that visual spatial attention changes sensory signals and perception in this selective fashion. In the work I will present, we asked whether and how attentional selection happens across time. First, our experiments revealed that voluntary temporal attention (attention to specific points in time) is selective, resulting in perceptual tradeoffs across time. Second, we measured small eye movements called microsaccades and found that directing voluntary temporal attention increases the stability of the eyes in anticipation of an attended stimulus. Third, we developed a computational model of dynamic attention, which proposes specific mechanisms underlying temporal attention and its selectivity. Lastly, I will mention how we are testing predictions of the model with MEG. Altogether, this research shows how precisely timed voluntary attention helps manage inherent limits in visual processing across short time intervals, advancing our understanding of attention as a dynamic process.
Colour processing in the mouse brain for vision and beyond
Colour vision plays important roles in regulating animal behaviour, yet understanding of how such information is processed in the brain is still incomplete. Here I discuss our work addressing this issue in mice where, despite aspects of retinal organisation that might suggest limited capacity for colour vision, we find evidence of extensive cone-dependent spectral opponency across subcortical visual centres. In particular, our data both reveals important contributions of such colour signals to non-image-forming functions (regulation of the circadian system) but also indicate surprisingly sophisticated support for more conventional aspects of colour vision.
Novel Object Detection and Multiplexed Motion Representation in Retinal Bipolar Cells
Detection of motion is essential for survival, but how the visual system processes moving stimuli is not fully understood. Here, based on a detailed analysis of glutamate release from bipolar cells, we outline the rules that govern the representation of object motion in the early processing stages. Our main findings are as follows: (1) Motion processing begins already at the first retinal synapse. (2) The shape and the amplitude of motion responses cannot be reliably predicted from bipolar cell responses to stationary objects. (3) Enhanced representation of novel objects - particularly in bipolar cells with transient dynamics. (4) Response amplitude in bipolar cells matches visual salience reported in humans: suddenly appearing objects > novel motion > existing motion. These findings can be explained by antagonistic interactions in the center-surround receptive field, demonstrate that despite their simple operational concepts, classical center-surround receptive fields enable sophisticated visual computations.
Visual Processing in the Superior Colliculus
Efficient coding and receptive field coordination in the retina
My laboratory studies how the retina processes visual scenes and transmits this information to the brain. We use multi-electrode arrays to record the activity of hundreds of retina neurons simultaneously in conjunction with transgenic mouse lines and chemogenetics to manipulate neural circuit function. We are interested in three major areas. First, we work to understand how neurons in the retina are functionally connected. Second we are studying how light-adaptation and circadian rhythms alter visual processing in the retina. Finally, we are working to understand the mechanisms of retinal degenerative conditions and we are investigating potential treatments in animal models.
Visual processing of feedforward and feedback signals in mouse thalamus
Traditionally, the dorsolateral geniculate nucleus (dLGN) of the thalamus has been considered a feedforward relay station for retinal signals to reach primary visual cortex. The local and long-range circuits of dLGN, however, suggest that this view is not correct. Indeed, besides the thalamo-cortical relay cells, dLGN contains local inhibitory interneurons, and receives not only feedforward input from the retina, but also massive direct and indirect feedback from primary visual cortex. Furthermore, it is one of the earliest processing stages in the visual system that integrates visual information with neuromodulatory signals.
Genetics and Therapy of Inherited Retinal Diseases
Restoring Vision
Meta-analytic evidence of differential prefrontal and early sensory cortex activity during non-social sensory perception in autism
To date, neuroimaging research has had a limited focus on non-social features of autism. As a result, neurobiological explanations for atypical sensory perception in autism are lacking. To address this, we quantitively condensed findings from the non-social autism fMRI literature in line with the current best practices for neuroimaging meta-analyses. Using activation likelihood estimation (ALE), we conducted a series of robust meta-analyses across 83 experiments from 52 fMRI studies investigating differences between autistic (n = 891) and typical (n = 967) participants. We found that typical controls, compared to autistic people, show greater activity in the prefrontal cortex (BA9, BA10) during perception tasks. More refined analyses revealed that, when compared to typical controls, autistic people show greater recruitment of the extrastriate V2 cortex (BA18) during visual processing. Taken together, these findings contribute to our understanding of current theories of autistic perception, and highlight some of the challenges of cognitive neuroscience research in autism.
Neural mechanisms of active vision in the marmoset monkey
Human vision relies on rapid eye movements (saccades) 2-3 times every second to bring peripheral targets to central foveal vision for high resolution inspection. This rapid sampling of the world defines the perception-action cycle of natural vision and profoundly impacts our perception. Marmosets have similar visual processing and eye movements as humans, including a fovea that supports high-acuity central vision. Here, I present a novel approach developed in my laboratory for investigating the neural mechanisms of visual processing using naturalistic free viewing and simple target foraging paradigms. First, we establish that it is possible to map receptive fields in the marmoset with high precision in visual areas V1 and MT without constraints on fixation of the eyes. Instead, we use an off-line correction for eye position during foraging combined with high resolution eye tracking. This approach allows us to simultaneously map receptive fields, even at the precision of foveal V1 neurons, while also assessing the impact of eye movements on the visual information encoded. We find that the visual information encoded by neurons varies dramatically across the saccade to fixation cycle, with most information localized to brief post-saccadic transients. In a second study we examined if target selection prior to saccades can predictively influence how foveal visual information is subsequently processed in post-saccadic transients. Because every saccade brings a target to the fovea for detailed inspection, we hypothesized that predictive mechanisms might prime foveal populations to process the target. Using neural decoding from laminar arrays placed in foveal regions of area MT, we find that the direction of motion for a fixated target can be predictively read out from foveal activity even before its post-saccadic arrival. These findings highlight the dynamic and predictive nature of visual processing during eye movements and the utility of the marmoset as a model of active vision. Funding sources: NIH EY030998 to JM, Life Sciences Fellowship to JY
Stereo vision in humans and insects
Stereopsis – deriving information about distance by comparing views from two eyes – is widespread in vertebrates but so far known in only class of invertebrates, the praying mantids. Understanding stereopsis which has evolved independently in such a different nervous system promises to shed light on the constraints governing any stereo system. Behavioral experiments indicate that insect stereopsis is functionally very different from that studied in vertebrates. Vertebrate stereopsis depends on matching up the pattern of contrast in the two eyes; it works in static scenes, and may have evolved in order to break camouflage rather than to detect distances. Insect stereopsis matches up regions of the image where the luminance is changing; it is insensitive to the detailed pattern of contrast and operates to detect the distance to a moving target. Work from my lab has revealed a network of neurons within the mantis brain which are tuned to binocular disparity, including some that project to early visual areas. This is in contrast to previous theories which postulated that disparity was computed only at a single, late stage, where visual information is passed down to motor neurons. Thus, despite their very different properties, the underlying neural mechanisms supporting vertebrate and insect stereopsis may be computationally more similar than has been assumed.
The neuroscience of color and what makes primates special
Among mammals, excellent color vision has evolved only in certain non-human primates. And yet, color is often assumed to be just a low-level stimulus feature with a modest role in encoding and recognizing objects. The rationale for this dogma is compelling: object recognition is excellent in grayscale images (consider black-and-white movies, where faces, places, objects, and story are readily apparent). In my talk I will discuss experiments in which we used color as a tool to uncover an organizational plan in inferior temporal cortex (parallel, multistage processing for places, faces, colors, and objects) and a visual-stimulus functional representation in prefrontal cortex (PFC). The discovery of an extensive network of color-biased domains within IT and PFC, regions implicated in high-level object vision and executive functions, compels a re-evaluation of the role of color in behavior. I will discuss behavioral studies prompted by the neurobiology that uncover a universal principle for color categorization across languages, the first systematic study of the color statistics of objects and a chromatic mechanism by which the brain may compute animacy, and a surprising paradoxical impact of memory on face color. Taken together, my talk will put forward the argument that color is not primarily for object recognition, but rather for the assessment of the likely behavioral relevance, or meaning, of the stuff we see.
Visual processing beyond (rapid) serial visual presentations
Natural visual stimuli for mice
Vision for escape and pursuit
We want to understand how the visual system detects and tracks salient stimuli in the environment to initiate and guide specific behaviors (i.e., visual neuroethology). Predator avoidance and prey capture are central selection pressures of animal evolution. Mice use vision to detect aerial predators and hunt insects. I will discuss studies from my group that identify specific circuits and pathways in the early visual system (i.e., the retina and its subcortical targets) mediating predator avoidance and prey capture in mice. Our results highlight the importance of subcellular visual processing in the retina and the alignment of viewing strategies with region- and cell-type-specific retinal ganglion cell projection patterns to the brain.
The neural basis of human face identity recognition
The face is the primary source of information for recognizing the identity of people around us, but the neural basis of this astonishing ability remains largely unknown. In this presentation, I will define the fundamental problem of face identity recognition, arguing that there is a specific expertise of the human species at this function. I will then attempt to integrate a large corpus of observations from lesion studies, neuroimaging, human intracerebral recordings and stimulation into a coherent framework to shed light on the neural mechanisms of human face identity recognition.
Using marmosets for the study of the visual cortex: unique opportunities, and some pitfalls
Marmosets (Callithrix jacchus) are small South American monkeys which are being increasingly becoming adopted as animal models in neuroscience. Knowledge about the marmoset visual system has developed rapidly over the last decade. But what are the comparative advantages, and disadvantages involved in adopting this emerging model, as opposed to the more traditionally used macaque monkey? In this talk I will present case studies where the simpler brain morphology and short developmental cycle of the marmoset have been key factors in facilitating discoveries about the anatomy and physiology of the visual system. Although no single species provides the “ideal” animal model for invasive studies of the neural bases of visual processing, I argue that the development of robust methodologies for the study of the marmoset brain provides exciting opportunities to address long-standing problems in neuroscience.
Higher-order thalamocortical interactions during visual processing
Predicting the future from the past: Motion processing in the primate retina
The Manookin lab is investigating the structure and function of neural circuits within the retina and developing techniques for treating blindness. Many blinding diseases, such as retinitis pigmentosa, cause death of the rods and cones, but spare other cell types within the retina. Thus, many techniques for restoring visual function following blindness are based on the premise that other cells within the retina remain viable and capable of performing their various roles in visual processing. There are more than 80 different neuronal types in the human retina and these form the components of the specialized circuits that transform the signals from photoreceptors into a neural code responsible for our perception of color, form, and motion, and thus visual experience. The Manookin laboratory is investigating the function and connectivity of neural circuits in the retina using a variety of techniques including electrophysiology, calcium imaging, and electron microscopy. This knowledge is being used to develop more effective techniques for restoring visual function following blindness.
The developing visual brain – answers and questions
We will start our talk with a short video of our research, illustrating methods (some old and new) and findings that have provided our current understanding of how visual capabilities develop in infancy and early childhood. However, our research poses some outstanding questions. We will briefly discuss three issues, which are linked by a common focus on the development of visual attentional processing: (1) How do recurrent cortical loops contribute to development? Cortical selectivity (e.g., to orientation, motion, and binocular disparity) develops in the early months of life. However, these systems are not purely feedforward but depend on parallel pathways, with recurrent feedback loops playing a critical role. The development of diverse networks, particularly for motion processing, may explain changes in dynamic responses and resolve developmental data obtained with different methodologies. One possible role for these loops is in top-down attentional control of visual processing. (2) Why do hyperopic infants become strabismic (cross-eyes)? Binocular interaction is a particularly sensitive area of development. Standard clinical accounts suppose that long-sighted (hyperopic) refractive errors require accommodative effort, putting stress on the accommodation-convergence link that leads to its breakdown and strabismus. Our large-scale population screening studies of 9-month infants question this: hyperopic infants are at higher risk of strabismus and impaired vision (amblyopia and impaired attention) but these hyperopic infants often under- rather than over-accommodate. This poor accommodation may reflect poor early attention processing, possibly a ‘soft sign’ of subtle cerebral dysfunction. (3) What do many neurodevelopmental disorders have in common? Despite similar cognitive demands, global motion perception is much more impaired than global static form across diverse neurodevelopmental disorders including Down and Williams Syndromes, Fragile-X, Autism, children with premature birth and infants with perinatal brain injury. These deficits in motion processing are associated with deficits in other dorsal stream functions such as visuo-motor co-ordination and attentional control, a cluster we have called ‘dorsal stream vulnerability’. However, our neuroimaging measures related to motion coherence in typically developing children suggest that the critical areas for individual differences in global motion sensitivity are not early motion-processing areas such as V5/MT, but downstream parietal and frontal areas for decision processes on motion signals. Although these brain networks may also underlie attentional and visuo-motor deficits , we still do not know when and how these deficits differ across different disorders and between individual children. Answering these questions provide necessary steps, not only increasing our scientific understanding of human visual brain development, but also in designing appropriate interventions to help each child achieve their full potential.
How behavioral and evolution constraints sculpt early visual processing
Towards hybrid models of retinal circuits - integrating biophysical realism, anatomical constraints and predictive performance
Visual processing in the retina has been studied in great detail at all levels such that a comprehensive picture of the retina's cell types and the many neural circuits they form is emerging. However, the currently best performing models of retinal function are black-box CNN models which are agnostic to such biological knowledge. Here, I present two of our recent attempts to develop computational models of processing in the inner retina, which both respect biophysical and anatomical constraints yet provide accurate predictions of retinal activity
What the eye tells the brain: Visual feature extraction in the mouse retina
Visual processing begins in the retina: within only two synaptic layers, multiple parallel feature channels emerge, which relay highly processed visual information to different parts of the brain. To functionally characterize these feature channels we perform calcium and glutamate population activity recordings at different levels of the mouse retina. This allows following the complete visual signal across consecutive processing stages in a systematic way. In my talk, I will summarize our recent findings on the functional diversity of retinal output channels and how they arise within the retinal network. Specifically, I will talk about the role of inhibition and cell-type specific dendritic processing in generating diverse visual channels. Then, I will focus on how color – a single visual feature – emerges across all retinal processing layers and link our results to behavioral output and the statistics of mouse natural scenes. With our approach, we hope to identify general computational principles of retinal signaling, thereby increasing our understanding of what the eye tells the brain.
Human reconstruction of local image structure from natural scenes
Retinal projections often poorly represent the structure of the physical world: well-defined boundaries within the eye may correspond to irrelevant features of the physical world, while critical features of the physical world may be nearly invisible at the retinal projection. Visual cortex is equipped with specialized mechanisms for sorting these two types of features according to their utility in interpreting the scene, however we know little or nothing about their perceptual computations. I will present novel paradigms for the characterization of these processes in human vision, alongside examples of how the associated empirical results can be combined with targeted models to shape our understanding of the underlying perceptual mechanisms. Although the emerging view is far from complete, it challenges compartmentalized notions of bottom-up/top-down object segmentation, and suggests instead that these two modes are best viewed as an integrated perceptual mechanism.
Domain Specificity in the Human Brain: What, Whether, and Why?
The last quarter century has provided extensive evidence that some regions of the human cortex are selectively engaged in processing a single specific domain of information, from faces, places, and bodies to language, music, and other people’s thoughts. This work dovetails with earlier theories in cognitive science highlighting domain specificity in human cognition, development, and evolution. But many questions remain unanswered about even the clearest cases of domain specificity in the brain, the selective engagement of the FFA, PPA, and EBA in the perception of faces, places, and bodies, respectively. First, these claims lack precision, saying little about what is computed and how, and relying on human judgements to decide what counts as a face, place, or body. Second, they provide no account of the reliably varying responses of these regions across different “preferred” images, or across different “nonpreferred” images for each category. Third, the category selectivity of each region is vulnerable to refutation if any of the vast set of as-yet-untested nonpreferred images turns out to produce a stronger response than preferred images for that region. Fourth, and most fundamentally, they provide no account of why, from a computational point of view, brains should exhibit this striking degree of functional specificity in the first place, and why we should have the particular visual specializations we do, for faces, places, and bodies, but not (apparently) for food or snakes. The advent of convolutional neural networks (CNNs) to model visual processing in the ventral pathway has opened up many opportunities to address these long-standing questions in new ways. I will describe ongoing efforts in our lab to harness CNNs to do just that.
Blindspots in Computer Vision - How can neuroscience guide AI?
Scientists have worked to recreate human vision in computers for the past 50 years. But how much about human vision do we actually know? And can the brain be useful in furthering computer vision? This talk will take a look at the similarities and differences between (modern) computer vision and human vision, as well as the important crossovers, collaborations, and applications that define the interface between computational neuroscience and computer vision. If you want to know more about how the brain sees (really sees), how computer vision developments are inspired by the brain, or how to apply AI to neuroscience, this talk is for you.
Inhibitory columnar feedback neurons are required for peripheral visual processing
Bernstein Conference 2024
A dynamic sequence of visual processing initiated by gaze shifts
COSYNE 2023
Modelling ecological constraints on visual processing with deep reinforcement learning
COSYNE 2023
A novel deep neural network models two streams of visual processing from retina to cortex
COSYNE 2023
A deep learning framework for center-periphery visual processing in mouse visual cortex
COSYNE 2025
Decoding visual processing in pigeon pallium
FENS Forum 2024
State-dependent visual processing of dark flash stimuli in the larval zebrafish
FENS Forum 2024
A thalamic action cue hub coordinates early visual processing and perception
FENS Forum 2024
Visual processing in the sleeping brain
FENS Forum 2024