← Back

Visual Signals

Topic spotlight
TopicWorld Wide

visual signals

Discover seminars, jobs, and research tagged with visual signals across World Wide.
9 curated items6 Seminars3 ePosters
Updated about 4 years ago
9 items · visual signals
9 results
SeminarNeuroscienceRecording

Physical Computation in Insect Swarms

Orit Peleg
University of Colorado Boulder & Santa Fe Institute
Oct 7, 2021

Our world is full of living creatures that must share information to survive and reproduce. As humans, we easily forget how hard it is to communicate within natural environments. So how do organisms solve this challenge, using only natural resources? Ideas from computer science, physics and mathematics, such as energetic cost, compression, and detectability, define universal criteria that almost all communication systems must meet. We use insect swarms as a model system for identifying how organisms harness the dynamics of communication signals, perform spatiotemporal integration of these signals, and propagate those signals to neighboring organisms. In this talk I will focus on two types of communication in insect swarms: visual communication, in which fireflies communicate over long distances using light signals, and chemical communication, in which bees serve as signal amplifiers to propagate pheromone-based information about the queen’s location.

SeminarNeuroscience

Multisensory encoding of self-motion in the retrosplenial cortex and beyond

Sepiedeh Keshavarzi
Sainsbury Wellcome Centre, UCL
Jun 29, 2021

In order to successfully navigate through the environment, animals must accurately estimate the status of their motion with respect to the surrounding scene and objects. In this talk, I will present our recent work on how retrosplenial cortical (RSC) neurons combine vestibular and visual signals to reliably encode the direction and speed of head turns during passive motion and active navigation. I will discuss these data in the context of RSC long-range connectivity and further show our ongoing work on building population-level models of motion representation across cortical and subcortical networks.

SeminarNeuroscienceRecording

Beyond energy - an unconventional role of mitochondria in cone photoreceptors

Wei Li
NIH Bethesda
Dec 7, 2020

The long-term goal of my research is to study the mammalian retina as a model for the central nervous system (CNS) -- to understand how it functions in physiological conditions, how it is formed, how it breaks down in pathological conditions, and how it can be repaired. I have focused on two research themes: 1) Photoreceptor structure, synapse, circuits, and development, 2) Hibernation and metabolic adaptations in the retina and beyond. As the first neuron of the visual system, photoreceptors are vital for photoreception and transmission of visual signals. I am particularly interested in cone photoreceptors, as they mediate our daylight vision with high resolution color information. Diseases affecting cone photoreceptors compromise visual functions in the central macular area of the human retina and are thus most detrimental to our vision. However, because cones are much less abundant compared to rods in most mammals, they are less well studied. We have used the ground squirrel (GS) as a model system to study cone vision, taking advantage of their unique cone-dominant retina. In particular, we have focused on short-wavelength sensitive cones (S-cones), which are not only essential for color vision, but are also an important origin of signals for biological rhythm, mood and cognitive functions, and the growth of the eye during development. We are studying critical cone synaptic structures – synaptic ribbons, the synaptic connections of S-cones, and the development of S-cones with regard to their specific connections. These works will provide knowledge of normal retinal development and function, which can also be extended to the rest of CNS; for example, the mechanisms of synaptic targeting during development. In addition, such knowledge will benefit the development of optimal therapeutic strategies for regeneration and repair in cases of retinal degenerative disease. Many neurodegenerative diseases, including retinal diseases, are rooted in metabolic stress in neurons and/or glial cells. Using the same GS model, we aim to learn from this hibernating mammal, which possesses an amazing capability to adapt to the extreme metabolic conditions during hibernation. By exploring the mechanisms of such adaptation, we hope to discover novel therapeutic tactics for neurodegenerative diseases.

ePoster

Distinct organization of visual and non-visual signals in visual cortex

Ali Haydaroglu, Michael Krumin, Jingkun Guo, Alipasha Vaziri, Kenneth Harris, Matteo Carandini

COSYNE 2023

ePoster

Neural representation and predictive processing of dynamic visual signals

Pierre-Étienne Fiquet & Eero Simoncelli

COSYNE 2023

ePoster

What you don’t see is what you get: Nonvisual signals dominate vestibulo-ocular reflex adaptation when retinal motion detection is impaired

Beerend Winkelman, Maarten Kamermans, Chris De Zeeuw

FENS Forum 2024