Whole Cell Patch Clamp
Whole Cell Patch Clamp
Synaptic health in Parkinson's Disease
Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting 1% of over 65's; there is currently no effective treatment. Dopaminergic neuronal loss is hallmark in PD and yet despite decades of intensive research there is still no known therapeutic which will completely halt the disorder. As a result, identification of interventive therapies to reverse or prevent PD are essential. Using genetically faithful models (induced pluripotent stem cells and knock-in mice) of familial late onset PD (LRRK2 G2019S and GBA N370S) we have contributed to the literature that neuronal dysfunction precedes degeneration. Specifically, using whole cell patch clamp electrophysiology, biochemical, behavioural and molecular biological techniques, we have begun to investigate the fundamental processes that make neurons specialised i.e., synaptic function and neurotransmission. We illustrate those alterations to spontaneous neurotransmitter release, neuronal firing, and short-term plasticity as well as Ca2+ and energy dyshomeostasis, are some of the earliest observable pathological dysfunctions and are likely precursors to late-stage degeneration. These pathologies represent targets which can be manipulated to address causation, rather than the symptoms of the PD, and represent a marker that, if measurable in patients, could form the basis of early PD detection and intervention.