Workshop
workshop
Scaling Up Bioimaging with Microfluidic Chips
Explore how microfluidic chips can enhance your imaging experiments by increasing control, throughput, or flexibility. In this remote, personalized workshop, participants will receive expert guidance, support and chips to run tests on their own microscopes.
COSYNE 2025
The COSYNE 2025 conference was held in Montreal with post-conference workshops in Mont-Tremblant, continuing to provide a premier forum for computational and systems neuroscience. Attendees exchanged cutting-edge research in a single-track main meeting and in-depth specialized workshops, reflecting Cosyne’s mission to understand how neural systems function:contentReference[oaicite:6]{index=6}:contentReference[oaicite:7]{index=7}.
Brain Emulation Challenge Workshop
Brain Emulation Challenge workshop will tackle cutting-edge topics such as ground-truthing for validation, leveraging artificial datasets generated from virtual brain tissue, and the transformative potential of virtual brain platforms, such as applied to the forthcoming Brain Emulation Challenge.
Brain Emulation Challenge Workshop
Brain Emulation Challenge workshop will tackle cutting-edge topics such as ground-truthing for validation, leveraging artificial datasets generated from virtual brain tissue, and the transformative potential of virtual brain platforms, such as applied to the forthcoming Brain Emulation Challenge.
Brain Emulation Challenge Workshop
Brain Emulation Challenge workshop will tackle cutting-edge topics such as ground-truthing for validation, leveraging artificial datasets generated from virtual brain tissue, and the transformative potential of virtual brain platforms, such as applied to the forthcoming Brain Emulation Challenge.
Brain Emulation Challenge Workshop
Brain Emulation Challenge workshop will tackle cutting-edge topics such as ground-truthing for validation, leveraging artificial datasets generated from virtual brain tissue, and the transformative potential of virtual brain platforms, such as applied to the forthcoming Brain Emulation Challenge.
Brain Emulation Challenge Workshop
Brain Emulation Challenge workshop will tackle cutting-edge topics such as ground-truthing for validation, leveraging artificial datasets generated from virtual brain tissue, and the transformative potential of virtual brain platforms, such as applied to the forthcoming Brain Emulation Challenge.
Brain Connectivity Workshop
Founded in 2002, the Brain Connectivity Workshop (BCW) is an annual international meeting for in-depth discussions of all aspects of brain connectivity research. By bringing together experts in computational neuroscience, neuroscience methodology and experimental neuroscience, it aims to improve the understanding of the relationship between anatomical connectivity, brain dynamics and cognitive function. These workshops have a unique format, featuring only short presentations followed by intense discussion. This year’s workshop is co-organised by Wellcome, putting the spotlight on brain connectivity in mental health disorders. We look forward to having you join us for this exciting, thought-provoking and inclusive event.
Bernstein Student Workshop Series
The Bernstein Student Workshop Series is an initiative of the student members of the Bernstein Network. It provides a unique opportunity to enhance the technical exchange on a peer-to-peer basis. The series is motivated by the idea of bridging the gap between theoretical and experimental neuroscience by bringing together methodological expertise in the network. Unlike conventional workshops, a talented junior scientist will first give a tutorial about a specific theoretical or experimental technique, and then give a talk about their own research to demonstrate how the technique helps to address neuroscience questions. The workshop series is designed to cover a wide range of theoretical and experimental techniques and to elucidate how different techniques can be applied to answer different types of neuroscience questions. Combining the technical tutorial and the research talk, the workshop series aims to promote knowledge sharing in the community and enhance in-depth discussions among students from diverse backgrounds.
Bernstein Student Workshop Series
The Bernstein Student Workshop Series is an initiative of the student members of the Bernstein Network. It provides a unique opportunity to enhance the technical exchange on a peer-to-peer basis. The series is motivated by the idea of bridging the gap between theoretical and experimental neuroscience by bringing together methodological expertise in the network. Unlike conventional workshops, a talented junior scientist will first give a tutorial about a specific theoretical or experimental technique, and then give a talk about their own research to demonstrate how the technique helps to address neuroscience questions. The workshop series is designed to cover a wide range of theoretical and experimental techniques and to elucidate how different techniques can be applied to answer different types of neuroscience questions. Combining the technical tutorial and the research talk, the workshop series aims to promote knowledge sharing in the community and enhance in-depth discussions among students from diverse backgrounds.
Bernstein Student Workshop Series
The Bernstein Student Workshop Series is an initiative of the student members of the Bernstein Network. It provides a unique opportunity to enhance the technical exchange on a peer-to-peer basis. The series is motivated by the idea of bridging the gap between theoretical and experimental neuroscience by bringing together methodological expertise in the network. Unlike conventional workshops, a talented junior scientist will first give a tutorial about a specific theoretical or experimental technique, and then give a talk about their own research to demonstrate how the technique helps to address neuroscience questions. The workshop series is designed to cover a wide range of theoretical and experimental techniques and to elucidate how different techniques can be applied to answer different types of neuroscience questions. Combining the technical tutorial and the research talk, the workshop series aims to promote knowledge sharing in the community and enhance in-depth discussions among students from diverse backgrounds.
COSYNE 2023
The COSYNE 2023 conference provided an inclusive forum for exchanging experimental and theoretical approaches to problems in systems neuroscience, continuing the tradition of bringing together the computational neuroscience community:contentReference[oaicite:5]{index=5}. The main meeting was held in Montreal followed by post-conference workshops in Mont-Tremblant, fostering intensive discussions and collaboration.
An open-source miniature two-photon microscope for large-scale calcium imaging in freely moving mice
Due to the unsuitability of benchtop imaging for tasks that require unrestrained movement, investigators have tried, for almost two decades, to develop miniature 2P microscopes-2P miniscopes–that can be carried on the head of freely moving animals. In this talk, I would first briefly review the development history of this technique, and then report our latest progress on developing the new generation of 2P miniscopes, MINI2P, that overcomes the limits of previous versions by both meeting requirements for fatigue-free exploratory behavior during extended recording periods and satisfying demands for further increasing the cell yield by an order of magnitude, to thousands of neurons. The performance and reliability of MINI2P are validated by recordings of spatially tuned neurons in three brain regions and in three behavioral assays. All information about MINI2P is open access, with instruction videos, code, and manuals on public repositories, and workshops will be organized to help new users getting started. MINI2P permits large-scale and high-resolution calcium imaging in freely-moving mice, and opens the door to investigating brain functions during unconstrained natural behaviors.
The evolution and development of visual complexity: insights from stomatopod visual anatomy, physiology, behavior, and molecules
Bioluminescence, which is rare on land, is extremely common in the deep sea, being found in 80% of the animals living between 200 and 1000 m. These animals rely on bioluminescence for communication, feeding, and/or defense, so the generation and detection of light is essential to their survival. Our present knowledge of this phenomenon has been limited due to the difficulty in bringing up live deep-sea animals to the surface, and the lack of proper techniques needed to study this complex system. However, new genomic techniques are now available, and a team with extensive experience in deep-sea biology, vision, and genomics has been assembled to lead this project. This project is aimed to study three questions 1) What are the evolutionary patterns of different types of bioluminescence in deep-sea shrimp? 2) How are deep-sea organisms’ eyes adapted to detect bioluminescence? 3) Can bioluminescent organs (called photophores) detect light in addition to emitting light? Findings from this study will provide valuable insight into a complex system vital to communication, defense, camouflage, and species recognition. This study will bring monumental contributions to the fields of deep sea and evolutionary biology, and immediately improve our understanding of bioluminescence and light detection in the marine environment. In addition to scientific advancement, this project will reach K-college aged students through the development and dissemination of educational tools, a series of molecular and organismal-based workshops, museum exhibits, public seminars, and biodiversity initiatives.
COSYNE 2022
The annual Cosyne meeting provides an inclusive forum for the exchange of empirical and theoretical approaches to problems in systems neuroscience, in order to understand how neural systems function:contentReference[oaicite:2]{index=2}. The main meeting is single-track, with invited talks selected by the Executive Committee and additional talks and posters selected by the Program Committee based on submitted abstracts:contentReference[oaicite:3]{index=3}. The workshops feature in-depth discussion of current topics of interest in a small group setting:contentReference[oaicite:4]{index=4}.
Efficient GPU training of SNNs using approximate RTRL
Last year’s SNUFA workshop report concluded “Moving toward neuron numbers comparable with biology and applying these networks to real-world data-sets will require the development of novel algorithms, software libraries, and dedicated hardware accelerators that perform well with the specifics of spiking neural networks” [1]. Taking inspiration from machine learning libraries — where techniques such as parallel batch training minimise latency and maximise GPU occupancy — as well as our previous research on efficiently simulating SNNs on GPUs for computational neuroscience [2,3], we are extending our GeNN SNN simulator to pursue this vision. To explore GeNN’s potential, we use the eProp learning rule [4] — which approximates RTRL — to train SNN classifiers on the Spiking Heidelberg Digits and the Spiking Sequential MNIST datasets. We find that the performance of these classifiers is comparable to those trained using BPTT [5] and verify that the theoretical advantages of neuron models with adaptation dynamics [5] translate to improved classification performance. We then measured execution times and found that training an SNN classifier using GeNN and eProp becomes faster than SpyTorch and BPTT after less than 685 timesteps and much larger models can be trained on the same GPU when using GeNN. Furthermore, we demonstrate that our implementation of parallel batch training improves training performance by over 4⨉ and enables near-perfect scaling across multiple GPUs. Finally, we show that performing inference using a recurrent SNN using GeNN uses less energy and has lower latency than a comparable LSTM simulated with TensorFlow [6].
Spiking Neural networks as Universal Function Approximators - SNUFA 2021
Like last year this online workshop brings together researchers in the field to present their work and discuss ways of translating these findings into a better understanding of neural circuits. Topics include artificial and biologically plausible learning algorithms and the dissection of trained spiking circuits toward understanding neural processing. We have a manageable number of talks with ample time for discussions. This year’s executive committee comprises Chiara Bartolozzi, Sander Bohté, Dan Goodman, and Friedemann Zenke.
Fundamentals of PyTorch: Building a Model Step-by-Step
In this workshop you'll learn the fundamentals of PyTorch using an incremental, from-first-principles approach. We'll start with tensors, autograd, and the dynamic computation graph, and then move on to developing and training a simple model using PyTorch's model classes, datasets, data loaders, optimizers, and more. You should be comfortable using Python, Jupyter notebooks, Google Colab, Numpy and, preferably, object oriented programming.
Evolving Neural Networks
Evolution has shaped neural circuits in a very specific manner, slowly and aimlessly incorporating computational innovations that increased the chances to survive and reproduce of the newly born species. The discoveries done by the Evolutionary Developmental (Evo-Devo) biology field during the last decades have been crucial for our understanding of the gradual emergence of such innovations. In turn, Computational Neuroscience practitioners modeling the brain are becoming increasingly aware of the need to build models that incorporate these innovations to replicate the computational strategies used by the brain to solve a given task. The goal of this workshop is to bring together experts from Systems and Computational Neuroscience, Machine Learning and the Evo-Devo field to discuss if and how knowing the evolutionary history of neural circuits can help us understand the way the brain works, as well as the relative importance of learned VS innate neural mechanisms.
Workshop: Spatial Brain Dynamics
Traditionally, the term dynamics means changes in a system evolving over time. However, in the brain action potentials propagate along axons to induce postsynaptic currents with different delays at many sites simultaneously. This fundamental computational mechanism evolves spatially to engage the neuron populations involved in brain functions. To identify and understand the spatial processing in brains, this workshop will focus on the spatial principles of brain dynamics that determine how action potentials and membrane currents propagate in the networks of neurons that brains are made of. We will focus on non-artificial dynamics, which excludes in vitro dynamics, interference, electrical and optogenetic stimulations of brains in vivo. Recent non-artificial studies of spatial brain dynamics can actually explain how sensory, motor and internal brain functions evolve. The purpose of this workshop is to discuss these recent results and identify common principles of spatial brain dynamics.
Workshop: Spatial Brain Dynamics
Traditionally, the term dynamics means changes in a system evolving over time. However, in the brain action potentials propagate along axons to induce postsynaptic currents with different delays at many sites simultaneously. This fundamental computational mechanism evolves spatially to engage the neuron populations involved in brain functions. To identify and understand the spatial processing in brains, this workshop will focus on the spatial principles of brain dynamics that determine how action potentials and membrane currents propagate in the networks of neurons that brains are made of. We will focus on non-artificial dynamics, which excludes in vitro dynamics, interference, electrical and optogenetic stimulations of brains in vivo. Recent non-artificial studies of spatial brain dynamics can actually explain how sensory, motor and internal brain functions evolve. The purpose of this workshop is to discuss these recent results and identify common principles of spatial brain dynamics.
Workshop: Spatial Brain Dynamics
Traditionally, the term dynamics means changes in a system evolving over time. However, in the brain action potentials propagate along axons to induce postsynaptic currents with different delays at many sites simultaneously. This fundamental computational mechanism evolves spatially to engage the neuron populations involved in brain functions. To identify and understand the spatial processing in brains, this workshop will focus on the spatial principles of brain dynamics that determine how action potentials and membrane currents propagate in the networks of neurons that brains are made of. We will focus on non-artificial dynamics, which excludes in vitro dynamics, interference, electrical and optogenetic stimulations of brains in vivo. Recent non-artificial studies of spatial brain dynamics can actually explain how sensory, motor and internal brain functions evolve. The purpose of this workshop is to discuss these recent results and identify common principles of spatial brain dynamics.
Brainstorms Festival
The Brainstorms Festival is the No1 online neuroscience and AI event for scientists, businesses, investors and startups. Join and listen to talks from leading scientists, take part in interactive discussions, and network with the people driving neurotech and AI innovation globally. The festival provides a digital playground for visionaries with dozens of medical innovations, panel discussions, workshops, a hackathon, and a neuroethics panel discussion which is crucial topic for neurodiversity and disability rights. Register now and be part of our amazing crowd!
Brain Awareness Week by IIT Gandhinagar
The Brain Awareness Week by the Centre for Cognitive and Brain Sciences, IIT Gandhinagar spans across 7 days and invites you for a series of talks, panel discussions, competitions and workshops on topics ranging from 'Using songbirds to understand how the brain initiates movements' to 'Cognitive Science and UX in Game Design' by speakers from prestigious Indian and International institutes. Explore the marvels of the brain by joining us on 15th March. Free Registration.
CURE-ND Neurotechnology Workshop - Innovative models of neurodegenerative diseases
One of the major roadblocks to medical progress in the field of neurodegeneration is the absence of animal models that fully recapitulate features of the human diseases. Unprecedented opportunities to tackle this challenge are emerging e.g. from genome engineering and stem cell technologies, and there are intense efforts to develop models with a high translational value. Simultaneously, single-cell, multi-omics and optogenetics technologies now allow longitudinal, molecular and functional analysis of human disease processes in these models at high resolution. During this workshop, 12 experts will present recent progress in the field and discuss: - What are the most advanced disease models available to date? - Which aspects of the human disease do these accurately models, which ones do they fail to replicate? - How should models be validated? Against which reference, which standards? - What are currently the best methods to analyse these models? - What is the field still missing in terms of modelling, and of technologies to analyse disease models? CURE-ND stands for 'Catalysing a United Response in Europe to Neurodegenerative Diseases'. It is a new alliance between the German Center for Neurodegenerative Diseases (DZNE), the Paris Brain Institute (ICM), Mission Lucidity (ML, a partnership between imec, KU Leuven, UZ Leuven and VIB in Belgium) and the UK Dementia Research Institute (UK DRI). Together, these partners embrace a joint effort to accelerate the pace of scientific discovery and nurture breakthroughs in the field of neurodegenerative diseases. This Neurotechnology Workshop is the first in a series of joint events aiming at exchanging expertise, promoting scientific collaboration and building a strong community of neurodegeneration researchers in Europe and beyond.
SARC-CoV-2 modeling: What have we learned from this pandemic about how (not) to model disease spread?
The SARS-CoV-2 pandemic is awash in data, including daily, spatially-resolved COVID case data, virus sequence data, patients `omics data, and mobility data. Journals are now also awash in studies that make use of quantitative modeling approaches to gain insight into the geographic spread of SARS-CoV-2 and its temporal dynamics, as well as studies that predict the impact of control strategies on SARS-CoV-2 circulation. Some, but by no means all, of these studies are informed by the massive amounts of available data. Some, but by no means all, of these studies have been useful — in that their predictions revealed something beyond simple back of the envelope calculations. To summarize some of these findings, in this symposium, we will address questions such as: What do we want from models of disease spread? What can and should be predicted? Which data are the most useful for predictions? When do we need mechanistic models? What have we learned about how to model disease spread from unmet and/or conflicting predictions? The workshop speakers will explore these questions from different perspectives on what data need to be considered and how models can be evaluated. As at other TMLS workshops, each speaker will deliver a 10-minute talk with ample time set aside for moderated questions/discussion. We expect the talks to be provocative and bold, while respecting different perspectives.
Simons-Emory Workshop on Neural Dynamics: What could neural dynamics have to say about neural computation, and do we know how to listen?
Speakers will deliver focused 10-minute talks, with periods reserved for broader discussion on topics at the intersection of neural dynamics and computation. Organizer & Moderator: Chethan Pandarinath - Emory University and Georgia Tech Speakers & Discussants: Adrienne Fairhall - U Washington Mehrdad Jazayeri - MIT John Krakauer - John Hopkins Francesca Mastrogiuseppe - Gatsby / UCL Abigail Person - U Colorado Abigail Russo - Princeton Krishna Shenoy - Stanford Saurabh Vyas - Columbia
3rd Annual Conference on Quantitative Approaches in Biology
This conference is a free event that includes a range of activities to stimulate the cross-fertilization of ideas, including invited speaker talks, workshops, micro talks, an undergraduate research competition, a contest to discover mathematical questions in biology, and plenty of networking opportunities. Today's speakers: Cassandra Extavour, William Bialek, Amy Shyer, Ankur Saxena, Jie Liang
3rd Annual Conference on Quantitative Approaches in Biology
This conference is a free event that includes a range of activities to stimulate the cross-fertilization of ideas, including invited speaker talks, workshops, micro talks, an undergraduate research competition, a contest to discover mathematical questions in biology, and plenty of networking opportunities. Today's speakers: Nathalie Dostatni, Christopher Obara, Hernan Garcia, Aaron Dinner, David Lubensky, Jianping Fu
On being the right size: Is the search for underlying physical principles a wild-goose chase?
When was the last time you ran into a giant? Chances are never. Almost 100 years ago, JBS Haldane posed an outwardly simple yet complex question – what is the most optimal size (for a biological system)? The living world around us contains a huge diversity of organisms, each with its own characteristic size. Even the size of subcellular organelles is tightly controlled. In absence of physical rulers, how do cells and organisms truly “know” how large is large enough? What are the mechanisms in place to enforce size control? Many of these questions have motivated generations of scientists to look for physical principles underlying size control in biological systems. In the next edition of Emory's Theory and Modeling of Living Systems (TMLS) workshop series, our panel of speakers will take a close look at these questions, across the entire scale - from the molecular, all the way to the ecosystem.
Neurocircuits in control of integrative physiology
This open colloquia session is part of the special workshop entitled "Obesity at the Interface of Neuroscience and Physiology II". Abstract: Proopiomelanocortin (POMC)- and agouti related peptide (AgRP)-expressing neurons in the arcuate nucleus of the hypothalamus (ARH) are critical regulators of food intake and energy homeostasis. They rapidly integrate the energy state of the organism through sensing fuel availability via hormones, nutrient components and even rapidly upon sensory food perception. Importantly, they not only regulate feeding responses, but numerous autonomic responses including glucose and lipid metabolism, inflammation and blood pressure. More recently, we could demonstrate that sensory food cue-dependent regulation of POMC neurons primes the hepatic endoplasmic reticulum (ER) stress response to prime liver metabolism for the postpramndial state. The presentation will focus on the regulation of these neurons in control of integrative physiology, the identification of distinct neuronal circuitries targeted by these cells and finally on the broad range implications resulting from dysregulation of these circuits as a consequence of altered maternal metabolism.
Biology is “messy”. So how can we take theory in biology seriously and plot predictions and experiments on the same axes?
Many of us came to biology from physics. There we have been trained on such classic examples as muon g-2, where experimental data and theoretical predictions agree to many significant digits. Now, working in biology, we routinely hear that it is messy, most details matter, and that the best hope for theory in biology is to be semi-qualitative, predict general trends, and to forgo the hope of ever making quantitative predictions with the precision that we are used to in physics. Colloquially, we should be satisfied even if data and models differ so much that plotting them on the same plot makes little sense. However, some of us won’t be satisfied by this. So can we take theory in biology seriously and predict experimental outcomes within (small) error bars? Certainly, we won’t be able to predict everything, but this is never required, even in traditional physics. But we should be able to choose some features of data that are nontrivial and interesting, and focus on them. We also should be able to find different classes of models --- maybe even null models --- that match biology better, and thus allow for a better agreement. It is even possible that large-dimensional datasets of modern high-throughput experiments, and the ensuing “more is different” statistical physics style models will make quantitative, precise theory easier. To explore the role of quantitative theory in biology, in this workshop, eight speakers will address some of the following general questions based on their specific work in different corners of biology: Which features of biological data are predictable? Which types of models are best suited to making quantitative predictions in different fields? Should theorists interested in quantitative predictions focus on different questions, not typically asked by biologists? Do large, multidimensional datasets make theories (and which theories?) more or less likely to succeed? This will be an unapologetically theoretical physics workshop — we won’t focus on a specific subfield of biology, but will explore these questions across the fields, hoping that the underlying theoretical frameworks will help us find the missing connections.
Workshop on "Spiking neural networks as universal function approximators: Learning algorithms and applications
This is a two-day workshop. Sign up and see titles and abstracts on website.
Virtual Workshop Presentation
(What) can soft matter physics teach us about biological function?
The “soft, active, and living matter” community has grown tremendously in recent years, conducting exciting research at the interface between soft matter and biological systems. But are all living systems also soft matter systems? Do the ideas of function (or purpose) in biological systems require us to introduce deep new ideas into the framework of soft matter theories? Does the (often) qualitatively different character of data in biological experiments require us to change the types of experiments we conduct and the goals of our theoretical treatments? Eight speakers will anchor the workshop, exploring these questions across a range of biological system scales. Each speaker will deliver a 10-minute talk with another 10 minutes set aside for moderated questions/discussion. We expect the talks to be broad, bold, and provocative, discussing both the nature of the theoretical tools and experimental techniques we have at present and also those we think we will ultimately need to answer deep questions at the interface of soft matter and biology.
Can machine learning learn new physics, or do we need to put it in by hand?"\
There has been a surge of publications on using machine learning (ML) on experimental data from physical systems: social, biological, statistical, and quantum. However, can these methods discover fundamentally new physics? It can be that their biggest impact is in better data preprocessing, while inferring new physics is unrealistic without specifically adapting the learning machine to find what we are looking for — that is, without the “intuition” — and hence without having a good a priori guess about what we will find. Is machine learning a useful tool for physics discovery? Which minimal knowledge should we endow the machines with to make them useful in such tasks? How do we do this? Eight speakers below will anchor the workshop, exploring these questions in contexts of diverse systems (from quantum to biological), and from general theoretical advances to specific applications. Each speaker will deliver a 10 min talk with another 10 minutes set aside for moderated questions/discussion. We expect the talks to be broad, bold, and provocative, discussing where the field is heading, and what is needed to get us there.
Physics of Behavior: Now that we can track (most) everything, what can we do with the data?
We will organize the workshop around one question: “Now that we can track (most) everything, what can we do with the data?” Given the recent dramatic advances in technology, we now have behavioral data sets with orders of magnitude more accuracy, dimensionality, diversity, and size than we had even a few years ago. That being said, there is still little agreement as to what theoretical frameworks can inform our understanding of these data sets and suggest new experiments we can perform. We hope that after this workshop we’ll see a variety of new ideas and perhaps gain some inspiration. We have invited eight speakers, each studying different systems, scales, and topics, to provide 10 minute presentations focused on the above question, with another 10 minutes set aside for questions/discussions (moderated by the two of us). Although we naturally expect speakers to include aspects of their own work, we have encouraged all of them to think broadly and provocatively. We are also hoping to organize some breakout sessions after the talks so that we can have some more expanded discussions about topics arising during the meeting.
Tips of MRI Data Acquisition at CCBBI
MRI data quality is crucial to the result. This workshop talks some aspects we need to pay attention during the data acquisition, including FoV/slice brain coverage, synchronization between image acquisition and stimulus presentation, instruction to participant, real time quality monitoring, the usage of physiological data. Prior to the meeting, we are collecting questions for Xiangrui on anything related to mri protocol/parameters: https://www.tricider.com/admin/2YW93TsWZJ3/2DBkJUoE5Ot