Young Children
young children
Prof. Dr. Yee Lee Shing, Prof. Dr. Gemma Roig
The DFG funded project Learning From Environment Through the Eyes of Children within SPP 2431 New Data Spaces for the Social Sciences, situated at Goethe University Frankfurt, is looking for candidates for two positions: 1 PostDoc position in Psychology and 1 PhD or PostDoc position in Computer Science. The project aims to establish a new mode of data acquisition capturing young children’s first-person experience in naturalistic settings and develop AI systems to characterize the nature and complexity of these experiences. This interdisciplinary project involves collaboration between the psychology and computer science departments, contributing to the SPP programme's goals of establishing a new multimodal data approach in social science studies.
Learning through the eyes and ears of a child
Young children have sophisticated representations of their visual and linguistic environment. Where do these representations come from? How much knowledge arises through generic learning mechanisms applied to sensory data, and how much requires more substantive (possibly innate) inductive biases? We examine these questions by training neural networks solely on longitudinal data collected from a single child (Sullivan et al., 2020), consisting of egocentric video and audio streams. Our principal findings are as follows: 1) Based on visual only training, neural networks can acquire high-level visual features that are broadly useful across categorization and segmentation tasks. 2) Based on language only training, networks can acquire meaningful clusters of words and sentence-level syntactic sensitivity. 3) Based on paired visual and language training, networks can acquire word-referent mappings from tens of noisy examples and align their multi-modal conceptual systems. Taken together, our results show how sophisticated visual and linguistic representations can arise through data-driven learning applied to one child’s first-person experience.
Fragile minds in a scary world: trauma and post traumatic stress in very young children
Post traumatic stress disorder (PTSD) is a prevalent and disabling condition that affects larger numbers of children and adolescents worldwide. Until recently, we have understood little about the nature of PTSD reactions in our youngest children (aged under 8 years old). This talk describes our work over the last 15 years working with this very young age group. It overviews how we need a markedly different PTSD diagnosis for very young children, data on the prevalence of this new diagnostic algorithm, and the development of a psychological intervention and its evaluation in a clinical trial.
Learning from others, helping others learn: Cognitive foundations of distinctively human social learning
Learning does not occur in isolation. From parent-child interactions to formal classroom environments, humans explore, learn, and communicate in rich, diverse social contexts. Rather than simply observing and copying their conspecifics, humans engage in a range of epistemic practices that actively recruit those around them. What makes human social learning so distinctive, powerful, and smart? In this talk, I will present a series of studies that reveal the remarkably sophisticated inferential abilities that young children show not only in how they learn from others but also in how they help others learn. Children interact with others as learners and as teachers to learn and communicate about the world, about others, and even about the self. The results collectively paint a picture of human social learning that is far more than copying and imitation: It is active, bidirectional, and cooperative. I will end by discussing ongoing work that extends this picture beyond what we typically call “social learning”, with implications for building better machines that learn from and interact with humans.
Children’s inference of verb meanings: Inductive, analogical and abductive inference
Children need inference in order to learn the meanings of words. They must infer the referent from the situation in which a target word is said. Furthermore, to be able to use the word in other situations, they also need to infer what other referents the word can be generalized to. As verbs refer to relations between arguments, verb learning requires relational analogical inference, something which is challenging to young children. To overcome this difficulty, young children recruit a diverse range of cues in their inference of verb meanings, including, but not limited to, syntactic cues and social and pragmatic cues as well as statistical cues. They also utilize perceptual similarity (object similarity) in progressive alignment to extract relational verb meanings and further to gain insights about relational verb meanings. However, just having a list of these cues is not useful: the cues must be selected, combined, and coordinated to produce the optimal interpretation in a particular context. This process involves abductive reasoning, similar to what scientists do to form hypotheses from a range of facts or evidence. In this talk, I discuss how children use a chain of inferences to learn meanings of verbs. I consider not only the process of analogical mapping and progressive alignment, but also how children use abductive inference to find the source of analogy and gain insights into the general principles underlying verb learning. I also present recent findings from my laboratory that show that prelinguistic human infants use a rudimentary form of abductive reasoning, which enables the first step of word learning.
Scaffolding up from Social Interactions: A proposal of how social interactions might shape learning across development
Social learning and analogical reasoning both provide exponential opportunities for learning. These skills have largely been studied independently, but my future research asks how combining skills across previously independent domains could add up to more than the sum of their parts. Analogical reasoning allows individuals to transfer learning between contexts and opens up infinite opportunities for innovation and knowledge creation. Its origins and development, so far, have largely been studied in purely cognitive domains. Constraining analogical development to non-social domains may mistakenly lead researchers to overlook its early roots and limit ideas about its potential scope. Building a bridge between social learning and analogy could facilitate identification of the origins of analogical reasoning and broaden its far-reaching potential. In this talk, I propose that the early emergence of social learning, its saliency, and its meaningful context for young children provides a springboard for learning. In addition to providing a strong foundation for early analogical reasoning, the social domain provides an avenue for scaling up analogies in order to learn to learn from others via increasingly complex and broad routes.
Novel word generalization in comparison designs: How do young children align stimuli when they learn object nouns and relational nouns?
It is well established that the opportunity to compare learning stimuli in a novel word learning/extension task elicits a larger number of conceptually relevant generalizations than standard no-comparison conditions. I will present results suggesting that the effectiveness of comparison depends on factors such as semantic distance, number of training items, dimension distinctiveness and interactions with age. I will address these issues in the case of familiar and unfamiliar object nouns and relational nouns. The alignment strategies followed by children during learning and at test (i.e., when learning items are compared and how children reach a solution) will be described with eye-tracking data. We will also assess the extent to which children’s performance in these tasks are associated with executive functions (inhibition and flexibility) and world knowledge. Finally, we will consider these issues in children with cognitive deficits (Intellectual deficiency, DLD)
Achieving Abstraction: Early Competence & the Role of the Learning Context
Children's emerging ability to acquire and apply relational same-different concepts is often cited as a defining feature of human cognition, providing the foundation for abstract thought. Yet, young learners often struggle to ignore irrelevant surface features to attend to structural similarity instead. I will argue that young children have--and retain--genuine relational concepts from a young age, but tend to neglect abstract similarity due to a learned bias to attend to objects and their properties. Critically, this account predicts that differences in the structure of children's environmental input should lead to differences in the type of hypotheses they privilege and apply. I will review empirical support for this proposal that has (1) evaluated the robustness of early competence in relational reasoning, (2) identified cross-cultural differences in relational and object bias, and (3) provided evidence that contextual factors play a causal role in relational reasoning. Together, these studies suggest that the development of abstract thought may be more malleable and context-sensitive than initially believed.
Models of Core Knowledge (Physics, Really)
Even young children seem to have an early understanding of the world around them, and the people in it. Before children can reliably say "ball", "wall", or "Saul", they expect balls to not go through walls, and for Saul to go right for a ball (if there's no wall). What is the formal conceptual structure underlying this commonsense reasoning about objects and agents? I will raise several possibilities for models underlying core intuitive physics as a way of talking about models of core knowledge and intuitive theories more generally. In particular, I will present some recent ML work trying to capture early expectations about object solidly, cohesion, and permanence, that relies on a rough-derendering approach.