TopicNeuro

characterization

40 ePosters20 Seminars

Latest

SeminarNeuroscience

The quest for brain identification

Enrico Amico
Aston University
Mar 21, 2024

In the 17th century, physician Marcello Malpighi observed the existence of distinctive patterns of ridges and sweat glands on fingertips. This was a major breakthrough, and originated a long and continuing quest for ways to uniquely identify individuals based on fingerprints, a technique massively used until today. It is only in the past few years that technologies and methodologies have achieved high-quality measures of an individual’s brain to the extent that personality traits and behavior can be characterized. The concept of “fingerprints of the brain” is very novel and has been boosted thanks to a seminal publication by Finn et al. in 2015. They were among the firsts to show that an individual’s functional brain connectivity profile is both unique and reliable, similarly to a fingerprint, and that it is possible to identify an individual among a large group of subjects solely on the basis of her or his connectivity profile. Yet, the discovery of brain fingerprints opened up a plethora of new questions. In particular, what exactly is the information encoded in brain connectivity patterns that ultimately leads to correctly differentiating someone’s connectome from anybody else’s? In other words, what makes our brains unique? In this talk I am going to partially address these open questions while keeping a personal viewpoint on the subject. I will outline the main findings, discuss potential issues, and propose future directions in the quest for identifiability of human brain networks.

SeminarNeuroscienceRecording

Molecular Characterization of Retinal Cell Types: Insights into Evolutionary Origins and Regional Specializations

Yirong Peng
UCLA Stein Eye Institute
Mar 4, 2024
SeminarNeuroscience

Epigenetic rewiring in Schinzel-Giedion syndrome

Alessandro Sessa, PhD
San Raffaele Scientific Institute, Milan (Italy), Stem Cell & Neurogenesis Unit
May 3, 2023

During life, a variety of specialized cells arise to grant the right and timely corrected functions of tissues and organs. Regulation of chromatin in defining specialized genomic regions (e.g. enhancers) plays a key role in developmental transitions from progenitors into cell lineages. These enhancers, properly topologically positioned in 3D space, ultimately guide the transcriptional programs. It is becoming clear that several pathologies converge in differential enhancer usage with respect to physiological situations. However, why some regulatory regions are physiologically preferred, while some others can emerge in certain conditions, including other fate decisions or diseases, remains obscure. Schinzel-Giedion syndrome (SGS) is a rare disease with symptoms such as severe developmental delay, congenital malformations, progressive brain atrophy, intractable seizures, and infantile death. SGS is caused by mutations in the SETBP1 gene that results in its accumulation further leading to the downstream accumulation of SET. The oncoprotein SET has been found as part of the histone chaperone complex INHAT that blocks the activity of histone acetyltransferases suggesting that SGS may (i) represent a natural model of alternative chromatin regulation and (ii) offer chances to study downstream (mal)adaptive mechanisms. I will present our work on the characterization of SGS in appropriate experimental models including iPSC-derived cultures and mouse.

SeminarNeuroscienceRecording

Convex neural codes in recurrent networks and sensory systems

Vladimir Itskov
The Pennsylvania State University
Dec 14, 2022

Neural activity in many sensory systems is organized on low-dimensional manifolds by means of convex receptive fields. Neural codes in these areas are constrained by this organization, as not every neural code is compatible with convex receptive fields. The same codes are also constrained by the structure of the underlying neural network. In my talk I will attempt to provide answers to the following natural questions: (i) How do recurrent circuits generate codes that are compatible with the convexity of receptive fields? (ii) How can we utilize the constraints imposed by the convex receptive field to understand the underlying stimulus space. To answer question (i), we describe the combinatorics of the steady states and fixed points of recurrent networks that satisfy the Dale’s law. It turns out the combinatorics of the fixed points are completely determined by two distinct conditions: (a) the connectivity graph of the network and (b) a spectral condition on the synaptic matrix. We give a characterization of exactly which features of connectivity determine the combinatorics of the fixed points. We also find that a generic recurrent network that satisfies Dale's law outputs convex combinatorial codes. To address question (ii), I will describe methods based on ideas from topology and geometry that take advantage of the convex receptive field properties to infer the dimension of (non-linear) neural representations. I will illustrate the first method by inferring basic features of the neural representations in the mouse olfactory bulb.

SeminarNeuroscienceRecording

A draft connectome for ganglion cell types of the mouse retina

David Berson
Brown University
May 16, 2022

The visual system of the brain is highly parallel in its architecture. This is clearly evident in the outputs of the retina, which arise from neurons called ganglion cells. Work in our lab has shown that mammalian retinas contain more than a dozen distinct types of ganglion cells. Each type appears to filter the retinal image in a unique way and to relay this processed signal to a specific set of targets in the brain. My students and I are working to understand the meaning of this parallel organization through electrophysiological and anatomical studies. We record from light-responsive ganglion cells in vitro using the whole-cell patch method. This allows us to correlate directly the visual response properties, intrinsic electrical behavior, synaptic pharmacology, dendritic morphology and axonal projections of single neurons. Other methods used in the lab include neuroanatomical tracing techniques, single-unit recording and immunohistochemistry. We seek to specify the total number of ganglion cell types, the distinguishing characteristics of each type, and the intraretinal mechanisms (structural, electrical, and synaptic) that shape their stimulus selectivities. Recent work in the lab has identified a bizarre new ganglion cell type that is also a photoreceptor, capable of responding to light even when it is synaptically uncoupled from conventional (rod and cone) photoreceptors. These ganglion cells appear to play a key role in resetting the biological clock. It is just this sort of link, between a specific cell type and a well-defined behavioral or perceptual function, that we seek to establish for the full range of ganglion cell types. My research concerns the structural and functional organization of retinal ganglion cells, the output cells of the retina whose axons make up the optic nerve. Ganglion cells exhibit great diversity both in their morphology and in their responses to light stimuli. On this basis, they are divisible into a large number of types (>15). Each ganglion-cell type appears to send its outputs to a specific set of central visual nuclei. This suggests that ganglion cell heterogeneity has evolved to provide each visual center in the brain with pre-processed representations of the visual scene tailored to its specific functional requirements. Though the outline of this story has been appreciated for some time, it has received little systematic exploration. My laboratory is addressing in parallel three sets of related questions: 1) How many types of ganglion cells are there in a typical mammalian retina and what are their structural and functional characteristics? 2) What combination of synaptic networks and intrinsic membrane properties are responsible for the characteristic light responses of individual types? 3) What do the functional specializations of individual classes contribute to perceptual function or to visually mediated behavior? To pursue these questions, we label retinal ganglion cells by retrograde transport from the brain; analyze in vitro their light responses, intrinsic membrane properties and synaptic pharmacology using the whole-cell patch clamp method; and reveal their morphology with intracellular dyes. Recently, we have discovered a novel ganglion cell in rat retina that is intrinsically photosensitive. These ganglion cells exhibit robust light responses even when all influences from classical photoreceptors (rods and cones) are blocked, either by applying pharmacological agents or by dissociating the ganglion cell from the retina. These photosensitive ganglion cells seem likely to serve as photoreceptors for the photic synchronization of circadian rhythms, the mechanism that allows us to overcome jet lag. They project to the circadian pacemaker of the brain, the suprachiasmatic nucleus of the hypothalamus. Their temporal kinetics, threshold, dynamic range, and spectral tuning all match known properties of the synchronization or "entrainment" mechanism. These photosensitive ganglion cells innervate various other brain targets, such as the midbrain pupillary control center, and apparently contribute to a host of behavioral responses to ambient lighting conditions. These findings help to explain why circadian and pupillary light responses persist in mammals, including humans, with profound disruption of rod and cone function. Ongoing experiments are designed to elucidate the phototransduction mechanism, including the identity of the photopigment and the nature of downstream signaling pathways. In other studies, we seek to provide a more detailed characterization of the photic responsiveness and both morphological and functional evidence concerning possible interactions with conventional rod- and cone-driven retinal circuits. These studies are of potential value in understanding and designing appropriate therapies for jet lag, the negative consequences of shift work, and seasonal affective disorder.

SeminarNeuroscience

Homeostatic Plasticity in Health and Disease

Graeme Davis
UCSF, Department of Biochemistry and Biophysics Director, Kavli Institute for Fundamental Neuroscience
Apr 4, 2022

Dr. Davis will present a summary regarding the identification and characterization of mechanisms of homeostatic plasticity as they relate to the control of synaptic transmission. He will then provide evidence of translation to the mammalian neuromuscular junction and central synapses, and provide tangible links to the etiology of neurological disease.

SeminarNeuroscienceRecording

NMC4 Short Talk: Maggot brain, mirror image? A statistical analysis of bilateral symmetry in an insect brain connectome

Benjamin Pedigo (he/him)
Johns Hopkins University
Dec 1, 2021

Neuroscientists have many questions about connectomes that revolve around the ability to compare networks. For example, comparing connectomes could help explain how neural wiring is related to individual differences, genetics, disease, development, or learning. One such question is that of bilateral symmetry: are the left and right sides of a connectome the same? Here, we investigate the bilateral symmetry of a recently presented connectome of an insect brain, the Drosophila larva. We approach this question from the perspective of two-sample testing for networks. First, we show how this question of “sameness” can be framed as a variety of different statistical hypotheses, each with different assumptions. Then, we describe test procedures for each of these hypotheses. We show how these different test procedures perform on both the observed connectome as well as a suite of synthetic perturbations to the connectome. We also point out that these tests require careful attention to parameter alignment and differences in network density in order to provide biologically meaningful results. Taken together, these results provide the first statistical characterization of bilateral symmetry for an entire brain at the single-neuron level, while also giving practical recommendations for future comparisons of connectome networks.

SeminarNeuroscienceRecording

NMC4 Short Talk: Synchronization in the Connectome: Metastable oscillatory modes emerge from interactions in the brain spacetime network

Francesca Castaldo
University College London
Dec 1, 2021

The brain exhibits a rich repertoire of oscillatory patterns organized in space, time and frequency. However, despite ever more-detailed characterizations of spectrally-resolved network patterns, the principles governing oscillatory activity at the system-level remain unclear. Here, we propose that the transient emergence of spatially organized brain rhythms are signatures of weakly stable synchronization between subsets of brain areas, naturally occurring at reduced collective frequencies due to the presence of time delays. To test this mechanism, we build a reduced network model representing interactions between local neuronal populations (with damped oscillatory response at 40Hz) coupled in the human neuroanatomical network. Following theoretical predictions, weakly stable cluster synchronization drives a rich repertoire of short-lived (or metastable) oscillatory modes, whose frequency inversely depends on the number of units, the strength of coupling and the propagation times. Despite the significant degree of reduction, we find a range of model parameters where the frequencies of collective oscillations fall in the range of typical brain rhythms, leading to an optimal fit of the power spectra of magnetoencephalographic signals from 89 heathy individuals. These findings provide a mechanistic scenario for the spontaneous emergence of frequency-specific long-range phase-coupling observed in magneto- and electroencephalographic signals as signatures of resonant modes emerging in the space-time structure of the Connectome, reinforcing the importance of incorporating realistic time delays in network models of oscillatory brain activity.

SeminarNeuroscienceRecording

Anatomical and functional characterization of the neuronal circuits underlying ejaculation

Constanze Lenschow
Lima lab, Champalimaud Centre for the Unknown
May 19, 2021

During sexual behavior, copulation related sensory information and modulatory signals from the brain must be integrated and converted into the motor and secretory outputs that characterize ejaculation (Lenschow and Lima, Current Opinion in Neurobiology, 2020). Studies in humans and rats suggest the existence of interneurons in the lumbar spinal cord that mediates that step: the spinal ejaculation generator (SEG). My work aimed at gaining mechanistic insights about the neuronal circuits controlling ejaculation thereby applying cutting-edge techniques. More specifically, we mapped anatomically and functionally the spinal circuit for ejaculation starting from the main muscle being involved in sperm expulsion: the bulbospongiosus muscle (BSM). Combining viral tracing strategies with electrophysiology, we specifically show that the BSM motoneurons receive direct synaptic input from a group of interneurons located in between lumbar segment 2 and 3 and expressing the peptide galanin. Electrically and optogenetically activating the galanin positive cells (the SEG) lead to the activation of the motoneurons innervating the BSM and the muscle itself. Finally, inhibition of SEG cells using DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) in sexual behaving animals is currently conducted to reveal whether ejaculation can be prevented.

SeminarNeuroscience

From genetics to neurobiology through transcriptomic data analysis

Ahmed Mahfouz
Leiden University Medical Center (LUMC)
May 6, 2021

Over the past years, genetic studies have uncovered hundreds of genetic variants to be associated with complex brain disorders. While this really represents a big step forward in understanding the genetic etiology of brain disorders, the functional interpretation of these variants remains challenging. We aim to help with the functional characterization of variants through transcriptomic data analysis. For instance, we rely on brain transcriptome atlases, such as Allen Brain Atlases, to infer functional relations between genes. One example of this is the identification of signaling mechanisms of steroid receptors. Further, by integrating brain transcriptome atlases with neuropathology and neuroimaging data, we identify key genes and pathways associated with brain disorders (e.g. Parkinson's disease). With technological advances, we can now profile gene expression in single-cells at large scale. These developments have presented significant computational developments. Our lab focuses on developing scalable methods to identify cells in single-cell data through interactive visualization, scalable clustering, classification, and interpretable trajectory modelling. We also work on methods to integrate single-cell data across studies and technologies.

SeminarNeuroscienceRecording

Deciphering the Dynamics of the Unconscious Brain Under General Anesthesia

Emery N Brown
Massachusetts Institute of Technology
Jan 27, 2021

General anesthesia is a drug-induced, reversible condition comprised of five behavioral states: unconsciousness, amnesia (loss of memory), antinociception (loss of pain sensation), akinesia (immobility), and hemodynamic stability with control of the stress response. Our work shows that a primary mechanism through which anesthetics create these altered states of arousal is by initiating and maintaining highly structured oscillations. These oscillations impair communication among brain regions. We illustrate this effect by presenting findings from our human studies of general anesthesia using high-density EEG recordings and intracranial recordings. These studies have allowed us to give a detailed characterization of the neurophysiology of loss and recovery of consciousness due to propofol. We show how these dynamics change systematically with different anesthetic classes and with age. As a consequence, we have developed a principled, neuroscience-based paradigm for using the EEG to monitor the brain states of patients receiving general anesthesia. We demonstrate that the state of general anesthesia can be rapidly reversed by activating specific brain circuits. Finally, we demonstrate that the state of general anesthesia can be controlled using closed loop feedback control systems. The success of our research has depended critically on tight coupling of experiments, signal processing research and mathematical modeling.

SeminarNeuroscience

Defining new multimodal neuroimaging marker for grey matter characterization

Fabrice Crivello
Institut des Maladies Neurodégénératives - CNRS UMR 5293 - Université de bordeaux
Dec 14, 2020

The human cortical ribbon varies during the lifespan, from childhood to senescence. To study the effects of genetic and environmental factors on these dynamics, one needs to measure specific phenotypes (cortical volume, surface area, thickness, new neuroimaging phenotypes such as intracortical myelination or multimodal ones based on their combination, or their asymmetries) that characterize the cerebral grey matter accurately

SeminarNeuroscience

Functional characterization and therapeutic targeting of gene regulatory elements

Nadav Ahituv
UCSF
Dec 10, 2020
SeminarNeuroscience

Biomedical Image and Genetic Data Analysis with machine learning; applications in neurology and oncology

Wiro Niessen
Erasmus MC
Nov 9, 2020

In this presentation I will show the opportunities and challenges of big data analytics with AI techniques in medical imaging, also in combination with genetic and clinical data. Both conventional machine learning techniques, such as radiomics for tumor characterization, and deep learning techniques for studying brain ageing and prognosis in dementia, will be addressed. Also the concept of deep imaging, a full integration of medical imaging and machine learning, will be discussed. Finally, I will address the challenges of how to successfully integrate these technologies in daily clinical workflow.

SeminarNeuroscience

K+ Channel Gain of Function in Epilepsy, from Currents to Networks

Matthew Weston
University of Vermont
Oct 21, 2020

Recent human gene discovery efforts show that gain-of-function (GOF) variants in the KCNT1gene, which encodes a Na+-activated K+ channel subunit, cause severe epilepsies and other neurodevelopmental disorders. Although the impact of these variants on the biophysical properties of the channels is well characterized, the mechanisms that link channel dysfunction to cellular and network hyperexcitability and human disease are unknown. Furthermore, precision therapies that correct channel biophysics in non-neuronal cells have had limited success in treating human disease, highlighting the need for a deeper understanding of how these variants affect neurons and networks. To address this gap, we developed a new mouse model with a pathogenic human variant knocked into the mouse Kcnt1gene. I will discuss our findings on the in vivo phenotypes of this mouse, focusing on our characterization of epileptiform neural activity using electrophysiology and widefield Ca++imaging. I will also talk about our investigations at the synaptic, cellular, and circuit levels, including the main finding that cortical inhibitory neurons in this model show a reduction in intrinsic excitability and action potential generation. Finally, I will discuss future directions to better understand the mechanisms underlying the cell-type specific effects, as well as the link between the cellular and network level effects of KCNT1 GOF.

ePosterNeuroscience

Bayesian active learning for closed-loop synaptic characterization

Camille Gontier,Simone Carlo Surace,Jean-Pascal Pfister

COSYNE 2022

ePosterNeuroscience

Characterization of neuronal resonance and inter-areal transfer using optogenetics

Ana Clara Silveira Broggini,Athanasia Tzanou,Irene Onorato,Cem Uran,Martin Vinck

COSYNE 2022

ePosterNeuroscience

Anatomical, electrophysiological, and functional characterization of lateral septal cholinergic neurons

Dániel Schlingloff, Ágnes Simon, Victoria Lyakhova, Balázs Hangya

FENS Forum 2024

ePosterNeuroscience

Anatomofunctional characterization of the tail of the ventral tegmental area (tVTA/RMTg) in mice

Benjamin Muller, Pierre-Alexis Derrien, Pierre Hener, Michel Barrot, Jennifer Kaufling

FENS Forum 2024

ePosterNeuroscience

Behavioral, electrophysiological and enzymatic characterization of new preclinical rodent model exposed to different sub-lethal doses of soman

Rosalie Bel, Assia Belkebir, Lucie Lepinard, Alexandre Champault, Julie Knoertzer, Karine Thibault, Grégory Dal Bo

FENS Forum 2024

ePosterNeuroscience

Behavioural characterization of the CAG-hACE2 transgenic mice

Ilenia Pinna, Carlotta Siddi, Simona Dedoni, Eleonora Cocco, Maria Scherma, Paola Fadda

FENS Forum 2024

ePosterNeuroscience

Behavioural and multi-omic characterization of lrrtm4l1-/- zebrafish

Eva Tatzl, Giovanny Rodriguez Blanco, Florian Reichmann

FENS Forum 2024

ePosterNeuroscience

Characterization of multi-target ligands comprising opioid/non-opioid pharmacophores for the treatment of pain

Emile Breault, Jolien De Neve, Santo Previti, Esaü Vangeloven, Rebecca Brouillette, Magali Chartier, Brian Holleran, Émilie Eiselt, Frédérique Lussier, Annik Lanoie, Jean-Michel Longpré, Louis Gendron, Steven Ballet, Philippe Sarret

FENS Forum 2024

ePosterNeuroscience

Cellular and molecular characterization of serotonergic synapses in a mouse model of depression and raphe synucleinopathy

Unai Sarriés-Serrano, Lluis Miquel-Rio, Sarka Jelinkova, Vincent Paget-Blanc, Verónica Paz, J Javier Meana, Etienne Herzog, Analia Bortolozzi

FENS Forum 2024

ePosterNeuroscience

Characterization of adult neurogenesis in Acomys cahirinus by lineage tracing analysis

Inês Araújo, Joana Nobre Rodrigues, David Brito, Clévio Nóbrega, Gustavo Tiscornia, Sónia Simão, Marta Vitorino

FENS Forum 2024

ePosterNeuroscience

Characterization of astroglia-noradrenergic neuron communication in the locus coeruleus

Wei-Chen Hung, Hsiu-Wen Yang, Ming-Yuan Min

FENS Forum 2024

ePosterNeuroscience

Characterization of ASD-associated FoxP genes in neural circuit formation

Hanna Yeliseyeva, Martin Müller, Esther Stoeckli

FENS Forum 2024

ePosterNeuroscience

Characterization of the biological effect of new molecules as potential therapeutic agents for Alzheimer's disease

Patricia Llanes Fernández, Ricardo Márquez, Diego Samper, Adrian Orjuela, Max Pizarro, Johant Lakey-Beitia, Jorge Alí-Torres, Oleg Larionov

FENS Forum 2024

ePosterNeuroscience

Characterization of the cerebral dopamine neurotrophic factor (CDNF) in nucleus accumbens of rodents

Merce Correa, Carla Carratala-Ros, Paula Matas-Navarro, Andrea Martínez-Verdú, Regulo Olivares-Garcia, Edgar Arias-Sandoval, John D. Salamone

FENS Forum 2024

ePosterNeuroscience

Characterization of the autophagic-lysosomal pathway in Parkinson’s disease using patient iPSC-derived dopaminergic neurons containing a LRRK2 G2019S mutation

Sandra Coveney, Virginia Bain, Kayley LeFrancois, Maia Zoller, Supriya Singh, Coby Carlson, A Fathi, Scott Schachtele, Richard Cho

FENS Forum 2024

ePosterNeuroscience

Characterization of dendritic spine morphology through a segmentation-clusterization approach

Ester Bruno, Chiara Magliaro, Arti Ahluwalia, Nicola Vanello

FENS Forum 2024

ePosterNeuroscience

Characterization of CNS-LNC in primary mouse astrocytes

Uğur Coşkun, Nina Hempel, Dennis M. Krüger, Susanne Burkhardt, Anna-Lena Schuetz, Farahnaz Sananbenesi, André Fischer

FENS Forum 2024

ePosterNeuroscience

Characterization of early post-natal development and ultrasonic vocalizations in mouse models of GRIN1 disorder

Megan Sullivan, Wendy Horsfall, Ali Salahpour, Amy J. Ramsey

FENS Forum 2024

ePosterNeuroscience

Characterization of MDMA analogue 1,3-benzodioxolylbutanamine (BDB) and its structural analogues

Nina Kastner, Julian Maier, Marion Holy, Fatemeh Kooti, Bruce E Blough, Joseph Wilson, Kevin Murnane, Harald H. Sitte

FENS Forum 2024

ePosterNeuroscience

Characterization of a hippocampal model of epileptiform activity

Pablo Reyes Velasquez, Lucia Sangroniz-Beltrán, Juan Cobos, Lorena Ruiz-Clavijo, Nicolas Landgraf, Jon Egaña-Huguet, María Ceprian, Diego Mateos, Pavel Rueda, Raimundo Baéz-Mendoza, Juan Manuel Encinas-Perez, Edgar Soria-Gomez

FENS Forum 2024

ePosterNeuroscience

Characterization of cell type distribution and development of mouse area centralis

Diana Petre, Daria Madan, Mălina Barbu, Ana-Maria Sisman (Taranciuc), Elangovan Boobalan, Brian Brooks, Tudor Constantin Badea

FENS Forum 2024

ePosterNeuroscience

Characterization of exosomes isolated from glioblastoma (U-87) cells and their use as prophylactic in Alzheimer's disease

Büşra Yılmaz, Hizlan Hincal Agus, Nelisa Turkoglu

FENS Forum 2024

ePosterNeuroscience

Characterization of the expression of dopaminergic markers in the Cntnap2 knockout mouse model of autism

María Prieto, Olga Peñagarikano

FENS Forum 2024

ePosterNeuroscience

Characterization of medial septal glutamatergic neurons projecting along the dorso-ventral hippocampal axis

Saskia Moritz, Sameera Chowdhury, Abibat Akande, Julie Ebert, Endre Levente Marosi, Sanja Mikulovic

FENS Forum 2024

ePosterNeuroscience

Characterization of a new human co-culture model of endothelial cells, pericytes, and brain organoids in a microfluidic device

Anna Kocsis, Judit P. Vigh, Ana R. Santa-Maria, Nóra Kucsápszky, Silvia Bolognin, Jens C. Schwamborn, András Kincses, Anikó Szecskó, Szilvia Veszelka, Mária Mészáros, András Dér, Mára A. Deli, Fruzsina R. Walter

FENS Forum 2024

ePosterNeuroscience

Characterization of a novel mouse model for CHD2-related neurodevelopmental disorder

Anat Mavashov Arzuan, Shaked Turk, Marina Brusel, Shir Quinn, Yael Sarusi, Igor Ulitsky, Moran Rubinstein

FENS Forum 2024

ePosterNeuroscience

Characterization of a novel missense mutation in the α2 subunit of the neuronal nicotinic acetylcholine receptor linked to sleep-related generalized seizures with cognitive deficit

Chiara Villa, Laura Clara Grandi, Valerio Conti, Simone Meneghini, Eleonora Giagnorio, Renzo Guerrini, Romina Combi, Andrea Becchetti

FENS Forum 2024

ePosterNeuroscience

Characterization of peripheral and brain-specific innate immune responses in a murine model of NMDAR encephalitis

Laura Marmolejo Alcaide, Estibaliz Maudes, Chiara Milano, Claudia Papi, Josep Dalmau, Marianna Spatola

FENS Forum 2024

ePosterNeuroscience

Characterization of CA2 oscillatory activity in social memory in a non-transgenic model of early Alzheimer’s disease in female and male mice

Raquel Jiménez Herrera, Ana Contreras, Juan D. Navarro López, Lydia Jiménez Díaz

FENS Forum 2024

ePosterNeuroscience

Characterization of Rx-Cre;DicerF/F mice as a novel animal model for embryonal tumors with multilayered rosettes

Anna Prieto Colomina, Rafael Soler, Virginia Fernández, Alexandre Espinós, Esther Llorens, Pep Mullet, Cristina Alenda, Víctor Borrell

FENS Forum 2024

ePosterNeuroscience

Characterization of the pathophysiological mechanisms of KCNQ2-developmental and epileptic encephalopathy (KCNQ2-DEE) in the KV7.2Thr274Met/+ mouse model

Shaimaa Haiba, Kilian Lüdicke, Laurent Villard, Maurizio Taglialatela, Carmine Ostacolo, Holger Lerche, Thomas V. Wuttke

FENS Forum 2024

ePosterNeuroscience

Characterization of the transcriptional landscape of endogenous retroviruses at the fetal-maternal interface in a mouse model of autism spectrum disorder

Martina Giudice, Antonella Camaioni, Anna Maria Tartaglione, Vita Petrone, Claudia Matteucci, Gemma Calamandrei, Paola Sinibaldi-Vallebona, Laura Ricceri, Emanuela Balestrieri, Chiara Cipriani

FENS Forum 2024

ePosterNeuroscience

Characterization of transcranial focused ultrasound stimulation using calcium imaging with fiber photometry in mice

Zahraa Jishi, Mohammad Nasreddine, Jamal Charara, Alexandre Surget, Ayache Bouakaz

FENS Forum 2024

ePosterNeuroscience

Characterization of retinal signal transformation in the mouse superior colliculus

Firdaouss Zemmouri, Hiroki Asari

FENS Forum 2024

ePosterNeuroscience

Characterization of transgenic mouse lines overexpressing the ovine prion protein using well-defined scrapie and bovine spongiform encephalopathy strains

Olanrewaju Fatola, Markus Keller, Anne Balkema-Buschmann, James Olopade, Martin H. Groschup, Christine Fast

FENS Forum 2024

ePosterNeuroscience

Characterization of zebrafish larvae with knockouts in the NMDA receptor subunit genes grin2Aa and grin2Ab

Vera Abramova, Bohdan Kysilov, Ales Balik, Eni Tomovic, Tereza Smejkalova, Miloslav Korinek, Klevinda Fili, Mark Dobrovolskii, Paulina Bozikova, Jiri Cerny, Ladislav Vyklicky

FENS Forum 2024

ePosterNeuroscience

Characterization of ventral forebrain organoids derived from human induced pluripotent stem cells

Michael Gordon, Gregor Gryglewski, Jessica Mariani, Davide Capauto, Flora Vaccarino

FENS Forum 2024

ePosterNeuroscience

Clinical and molecular characterization of ATP1A1-related Charcot-Marie-Tooth disease

Cheng-Tsung Hsiao, Ssu-Ju Fu, Yi-Chun Lee, Chih-Yung Tang, Chung-Jiuan Jeng

FENS Forum 2024

ePosterNeuroscience

Combined electrophysiologic and transcriptomic characterization reveals different functional populations of GABAergic spinal neurons in neuropathic pain mouse model

Charline Kambrun, Florian Specque, Vanessa Rouglan, Alexis Groppi, Macha Nikolski, Alexandre Favereaux, Yves Le Feuvre

FENS Forum 2024

ePosterNeuroscience

Comprehensive characterization of cerebrovascular oxygenation dynamics in awake mice using high-resolution photoacoustic imaging

Juri Aparicio Arias, Philippe Trochet, Chrystel Lafont, Patrice Mollard, Dieter Fuchs, Pierre Sicard

FENS Forum 2024

characterization coverage

60 items

ePoster40
Seminar20
Domain spotlight

Explore how characterization research is advancing inside Neuro.

Visit domain