emotional state
Latest
Brain and behavioural impacts of early life adversity
Abuse, neglect, and other forms of uncontrollable stress during childhood and early adolescence can lead to adverse outcomes later in life, including especially perturbations in the regulation of mood and emotional states, and specifically anxiety disorders and depression. However, stress experiences vary from one individual to the next, meaning that causal relationships and mechanistic accounts are often difficult to establish in humans. This interdisciplinary talk considers the value of research in experimental animals where stressor experiences can be tightly controlled and detailed investigations of molecular, cellular, and circuit-level mechanisms can be carried out. The talk will focus on the widely used repeated maternal separation procedure in rats where rat offspring are repeatedly separated from maternal care during early postnatal life. This early life stress has remarkably persistent effects on behaviour with a general recognition that maternally-deprived animals are susceptible to depressive-like phenotypes. The validity of this conclusion will be critically appraised with convergent insights from a recent longitudinal study in maternally separated rats involving translational brain imaging, transcriptomics, and behavioural assessment.
“Mind reading” with brain scanners: Facts versus science fiction
Every thought is associated with a unique pattern of brain activity. Thus, in principle, it should be possible to use these activity patterns as "brain fingerprints" for different thoughts and to read out what a person is thinking based on their brain activity alone. Indeed, using machine learning considerable progress has been made in such "brainreading" in recent years. It is now possible to decode which image a person is viewing, which film sequence they are watching, which emotional state they are in or which intentions they hold in mind. This talk will provide an overview of the current state of the art in brain reading. It will also highlight the main challenges and limitations of this research field. For example, mathematical models are needed to cope with the high dimensionality of potential mental states. Furthermore, the ethical concerns raised by (often premature) commercial applications of brain reading will also be discussed.
Hypothalamic control of internal states underlying social behaviors in mice
Social interactions such as mating and fighting are driven by internal emotional states. How can we study internal states of an animal when it cannot tell us its subjective feelings? Especially when the meaning of the animal’s behavior is not clear to us, can we understand the underlying internal states of the animal? In this talk, I will introduce our recent work in which we used male mounting behavior in mice as an example to understand the underlying internal state of the animals. In many animal species, males exhibit mounting behavior toward females as part of the mating behavior repertoire. Interestingly, males also frequently show mounting behavior toward other males of the same species. It is not clear what the underlying motivation is - whether it is reproductive in nature or something distinct. Through detailed analysis of video and audio recordings during social interactions, we found that while male-directed and female-directed mounting behaviors are motorically similar, they can be distinguished by both the presence of ultrasonic vocalization during female-directed mounting (reproductive mounting) and the display of aggression following male-directed mounting (aggressive mounting). Using optogenetics, we further identified genetically defined neural populations in the medial preoptic area (MPOA) that mediate reproductive mounting and the ventrolateral ventromedial hypothalamus (VMHvl) that mediate aggressive mounting. In vivo microendocsopic imaging in MPOA and VMHvl revealed distinct neural ensembles that mainly encode either a reproductive or an aggressive state during which male or female directed mounting occurs. Together, these findings demonstrate that internal states are represented in the hypothalamus and that motorically similar behaviors exhibited under different contexts may reflect distinct internal states.
Fish Feelings: Emotional states in larval zebrafish
I’ll give an overview of internal - or motivational - states in larval zebrafish. Specifically we will focus on the role of the Oxytocin system in regulating the detection of, and behavioral responses to, conspecifics. The appeal here is that Oxytocin has likely conserved roles across all vertebrates, including humans, and that the larval zebrafish allows us to study some of the general principles across the brain but nonetheless at cellular resolution. This allows us to propose mechanistic models of emotional states.
‘Optimistic’ and ‘pessimistic’ decision-making as an indicator of animal emotion and welfare
Reliable and validated measures of emotion in animals are of great import; they are crucial to better understanding and developing treatments for human mood disorders, and they are necessary for ensuring good animal welfare. We have developed a novel measure of emotion in animals that is grounded in theory and psychological research – decision-making under ambiguity. Specifically, we consider that more ‘optimistic’ decisions about ambiguous stimuli reflect more positive emotional states, while the opposite is true for more ‘pessimistic’ decisions. In this talk, we will outline the background behind and implementation of this measure, meta-analyses that have been conducted to validate the measure, and discuss how computational modelling has been used to further understand the cognitive processes underlying ‘optimistic’ and ‘pessimistic’ decision-making as an indicator of animal emotion and welfare.
Student´s Oral Presentation III: Emotional State Classification Using Low-Cost Single-Channel Electroencephalography
Although electroencephalography (EEG) has been used in clinical and research studies for almost a century, recent technological advances have made the equipment and processing tools more accessible outside laboratory settings. These low-cost alternatives can achieve satisfactory results in experiments such as detecting event-related potentials and classifying cognitive states. In our research, we use low-cost single-channel EEG to classify brain activity during the presentation of images of opposite emotional valence from the OASIS database. Emotional classification has already been achieved using research-grade and commercial-grade equipment, but our approach pioneers the use of educational-grade equipment for said task. EEG data is collected with a Backyard Brains SpikerBox, a low-cost and open-source bioamplifier that can record a single-channel electric signal from a pair of electrodes placed on the scalp, and used to train machine learning classifiers.
Integration of autonomic readouts to study neural emotional states in freely moving mice
FENS Forum 2024
Non-invasive vagus nerve stimulation normalizes psychoemotional state shifting “sympatho-vagal balance”
FENS Forum 2024
emotional state coverage
8 items