performance
Latest
sensorimotor control, mouvement, touch, EEG
Traditionally, touch is associated with exteroception and is rarely considered a relevant sensory cue for controlling movements in space, unlike vision. We developed a technique to isolate and measure tactile involvement in controlling sliding finger movements over a surface. Young adults traced a 2D shape with their index finger under direct or mirror-reversed visual feedback to create a conflict between visual and somatosensory inputs. In this context, increased reliance on somatosensory input compromises movement accuracy. Based on the hypothesis that tactile cues contribute to guiding hand movements when in contact with a surface, we predicted poorer performance when the participants traced with their bare finger compared to when their tactile sensation was dampened by a smooth, rigid finger splint. The results supported this prediction. EEG source analyses revealed smaller current in the source-localized somatosensory cortex during sensory conflict when the finger directly touched the surface. This finding supports the hypothesis that, in response to mirror-reversed visual feedback, the central nervous system selectively gated task-irrelevant somatosensory inputs, thereby mitigating, though not entirely resolving, the visuo-somatosensory conflict. Together, our results emphasize touch’s involvement in movement control over a surface, challenging the notion that vision predominantly governs goal-directed hand or finger movements.
OpenNeuro FitLins GLM: An Accessible, Semi-Automated Pipeline for OpenNeuro Task fMRI Analysis
In this talk, I will discuss the OpenNeuro Fitlins GLM package and provide an illustration of the analytic workflow. OpenNeuro FitLins GLM is a semi-automated pipeline that reduces barriers to analyzing task-based fMRI data from OpenNeuro's 600+ task datasets. Created for psychology, psychiatry and cognitive neuroscience researchers without extensive computational expertise, this tool automates what is largely a manual process and compilation of in-house scripts for data retrieval, validation, quality control, statistical modeling and reporting that, in some cases, may require weeks of effort. The workflow abides by open-science practices, enhancing reproducibility and incorporates community feedback for model improvement. The pipeline integrates BIDS-compliant datasets and fMRIPrep preprocessed derivatives, and dynamically creates BIDS Statistical Model specifications (with Fitlins) to perform common mass univariate [GLM] analyses. To enhance and standardize reporting, it generates comprehensive reports which includes design matrices, statistical maps and COBIDAS-aligned reporting that is fully reproducible from the model specifications and derivatives. OpenNeuro Fitlins GLM has been tested on over 30 datasets spanning 50+ unique fMRI tasks (e.g., working memory, social processing, emotion regulation, decision-making, motor paradigms), reducing analysis times from weeks to hours when using high-performance computers, thereby enabling researchers to conduct robust single-study, meta- and mega-analyses of task fMRI data with significantly improved accessibility, standardized reporting and reproducibility.
From Spiking Predictive Coding to Learning Abstract Object Representation
In a first part of the talk, I will present Predictive Coding Light (PCL), a novel unsupervised learning architecture for spiking neural networks. In contrast to conventional predictive coding approaches, which only transmit prediction errors to higher processing stages, PCL learns inhibitory lateral and top-down connectivity to suppress the most predictable spikes and passes a compressed representation of the input to higher processing stages. We show that PCL reproduces a range of biological findings and exhibits a favorable tradeoff between energy consumption and downstream classification performance on challenging benchmarks. A second part of the talk will feature our lab’s efforts to explain how infants and toddlers might learn abstract object representations without supervision. I will present deep learning models that exploit the temporal and multimodal structure of their sensory inputs to learn representations of individual objects, object categories, or abstract super-categories such as „kitchen object“ in a fully unsupervised fashion. These models offer a parsimonious account of how abstract semantic knowledge may be rooted in children's embodied first-person experiences.
“Development and application of gaze control models for active perception”
Gaze shifts in humans serve to direct high-resolution vision provided by the fovea towards areas in the environment. Gaze can be considered a proxy for attention or indicator of the relative importance of different parts of the environment. In this talk, we discuss the development of generative models of human gaze in response to visual input. We discuss how such models can be learned, both using supervised learning and using implicit feedback as an agent interacts with the environment, the latter being more plausible in biological agents. We also discuss two ways such models can be used. First, they can be used to improve the performance of artificial autonomous systems, in applications such as autonomous navigation. Second, because these models are contingent on the human’s task, goals, and/or state in the context of the environment, observations of gaze can be used to infer information about user intent. This information can be used to improve human-machine and human robot interaction, by making interfaces more anticipative. We discuss example applications in gaze-typing, robotic tele-operation and human-robot interaction.
Neurobiological constraints on learning: bug or feature?
Understanding how brains learn requires bridging evidence across scales—from behaviour and neural circuits to cells, synapses, and molecules. In our work, we use computational modelling and data analysis to explore how the physical properties of neurons and neural circuits constrain learning. These include limits imposed by brain wiring, energy availability, molecular noise, and the 3D structure of dendritic spines. In this talk I will describe one such project testing if wiring motifs from fly brain connectomes can improve performance of reservoir computers, a type of recurrent neural network. The hope is that these insights into brain learning will lead to improved learning algorithms for artificial systems.
Neural mechanisms of optimal performance
Neural mechanisms of optimal performance
When we attend a demanding task, our performance is poor at low arousal (when drowsy) or high arousal (when anxious), but we achieve optimal performance at intermediate arousal. This celebrated Yerkes-Dodson inverted-U law relating performance and arousal is colloquially referred to as being "in the zone." In this talk, I will elucidate the behavioral and neural mechanisms linking arousal and performance under the Yerkes-Dodson law in a mouse model. During decision-making tasks, mice express an array of discrete strategies, whereby the optimal strategy occurs at intermediate arousal, measured by pupil, consistent with the inverted-U law. Population recordings from the auditory cortex (A1) further revealed that sound encoding is optimal at intermediate arousal. To explain the computational principle underlying this inverted-U law, we modeled the A1 circuit as a spiking network with excitatory/inhibitory clusters, based on the observed functional clusters in A1. Arousal induced a transition from a multi-attractor (low arousal) to a single attractor phase (high arousal), and performance is optimized at the transition point. The model also predicts stimulus- and arousal-induced modulations of neural variability, which we confirmed in the data. Our theory suggests that a single unifying dynamical principle, phase transitions in metastable dynamics, underlies both the inverted-U law of optimal performance and state-dependent modulations of neural variability.
Decision and Behavior
This webinar addressed computational perspectives on how animals and humans make decisions, spanning normative, descriptive, and mechanistic models. Sam Gershman (Harvard) presented a capacity-limited reinforcement learning framework in which policies are compressed under an information bottleneck constraint. This approach predicts pervasive perseveration, stimulus‐independent “default” actions, and trade-offs between complexity and reward. Such policy compression reconciles observed action stochasticity and response time patterns with an optimal balance between learning capacity and performance. Jonathan Pillow (Princeton) discussed flexible descriptive models for tracking time-varying policies in animals. He introduced dynamic Generalized Linear Models (Sidetrack) and hidden Markov models (GLM-HMMs) that capture day-to-day and trial-to-trial fluctuations in choice behavior, including abrupt switches between “engaged” and “disengaged” states. These models provide new insights into how animals’ strategies evolve under learning. Finally, Kenji Doya (OIST) highlighted the importance of unifying reinforcement learning with Bayesian inference, exploring how cortical-basal ganglia networks might implement model-based and model-free strategies. He also described Japan’s Brain/MINDS 2.0 and Digital Brain initiatives, aiming to integrate multimodal data and computational principles into cohesive “digital brains.”
Personalized medicine and predictive health and wellness: Adding the chemical component
Wearable sensors that detect and quantify biomarkers in retrievable biofluids (e.g., interstitial fluid, sweat, tears) provide information on human dynamic physiological and psychological states. This information can transform health and wellness by providing actionable feedback. Due to outdated and insufficiently sensitive technologies, current on-body sensing systems have capabilities limited to pH, and a few high-concentration electrolytes, metabolites, and nutrients. As such, wearable sensing systems cannot detect key low-concentration biomarkers indicative of stress, inflammation, metabolic, and reproductive status. We are revolutionizing sensing. Our electronic biosensors detect virtually any signaling molecule or metabolite at ultra-low levels. We have monitored serotonin, dopamine, cortisol, phenylalanine, estradiol, progesterone, and glucose in blood, sweat, interstitial fluid, and tears. The sensors are based on modern nanoscale semiconductor transistors that are straightforwardly scalable for manufacturing. We are developing sensors for >40 biomarkers for personalized continuous monitoring (e.g., smartwatch, wearable patch) that will provide feedback for treating chronic health conditions (e.g., perimenopause, stress disorders, phenylketonuria). Moreover, our sensors will enable female fertility monitoring and the adoption of more healthy lifestyles to prevent disease and improve physical and cognitive performance.
Applied cognitive neuroscience to improve learning and therapeutics
Advancements in cognitive neuroscience have provided profound insights into the workings of the human brain and the methods used offer opportunities to enhance performance, cognition, and mental health. Drawing upon interdisciplinary collaborations in the University of California San Diego, Human Performance Optimization Lab, this talk explores the application of cognitive neuroscience principles in three domains to improve human performance and alleviate mental health challenges. The first section will discuss studies addressing the role of vision and oculomotor function in athletic performance and the potential to train these foundational abilities to improve performance and sports outcomes. The second domain considers the use of electrophysiological measurements of the brain and heart to detect, and possibly predict, errors in manual performance, as shown in a series of studies with surgeons as they perform robot-assisted surgery. Lastly, findings from clinical trials testing personalized interventional treatments for mood disorders will be discussed in which the temporal and spatial parameters of transcranial magnetic stimulation (TMS) are individualized to test if personalization improves treatment response and can be used as predictive biomarkers to guide treatment selection. Together, these translational studies use the measurement tools and constructs of cognitive neuroscience to improve human performance and well-being.
Executive functions in the brain of deaf individuals – sensory and language effects
Executive functions are cognitive processes that allow us to plan, monitor and execute our goals. Using fMRI, we investigated how early deafness influences crossmodal plasticity and the organisation of executive functions in the adult human brain. Results from a range of visual executive function tasks (working memory, task switching, planning, inhibition) show that deaf individuals specifically recruit superior temporal “auditory” regions during task switching. Neural activity in auditory regions predicts behavioural performance during task switching in deaf individuals, highlighting the functional relevance of the observed cortical reorganisation. Furthermore, language grammatical skills were correlated with the level of activation and functional connectivity of fronto-parietal networks. Together, these findings show the interplay between sensory and language experience in the organisation of executive processing in the brain.
Maintaining Plasticity in Neural Networks
Nonstationarity presents a variety of challenges for machine learning systems. One surprising pathology which can arise in nonstationary learning problems is plasticity loss, whereby making progress on new learning objectives becomes more difficult as training progresses. Networks which are unable to adapt in response to changes in their environment experience plateaus or even declines in performance in highly non-stationary domains such as reinforcement learning, where the learner must quickly adapt to new information even after hundreds of millions of optimization steps. The loss of plasticity manifests in a cluster of related empirical phenomena which have been identified by a number of recent works, including the primacy bias, implicit under-parameterization, rank collapse, and capacity loss. While this phenomenon is widely observed, it is still not fully understood. This talk will present exciting recent results which shed light on the mechanisms driving the loss of plasticity in a variety of learning problems and survey methods to maintain network plasticity in non-stationary tasks, with a particular focus on deep reinforcement learning.
Deepfake Detection in Super-Recognizers and Police Officers
Using videos from the Deepfake Detection Challenge (cf. Groh et al., 2021), we investigated human deepfake detection performance (DDP) in two unique observer groups: Super-Recognizers (SRs) and "normal" officers from within the 18K members of the Berlin Police. SRs were identified either via previously proposed lab-based procedures (Ramon, 2021) or the only existing tool for SR identification involving increasingly challenging, authentic forensic material: beSure® (Berlin Test For Super-Recognizer Identification; Ramon & Rjosk, 2022). Across two experiments we examined deepfake detection performance (DDP) in participants who judged single videos and pairs of videos in a 2AFC decision setting. We explored speed-accuracy trade-offs in DDP, compared DDP between lab-identified SRs and non-SRs, and police officers whose face identity processing skills had been extensively tested using challenging. In this talk I will discuss our surprising findings and argue that further work is needed too determine whether face identity processing is related to DDP or not.
Neural Mechanisms of Subsecond Temporal Encoding in Primary Visual Cortex
Subsecond timing underlies nearly all sensory and motor activities across species and is critical to survival. While subsecond temporal information has been found across cortical and subcortical regions, it is unclear if it is generated locally and intrinsically or if it is a read out of a centralized clock-like mechanism. Indeed, mechanisms of subsecond timing at the circuit level are largely obscure. Primary sensory areas are well-suited to address these question as they have early access to sensory information and provide minimal processing to it: if temporal information is found in these regions, it is likely to be generated intrinsically and locally. We test this hypothesis by training mice to perform an audio-visual temporal pattern sensory discrimination task as we use 2-photon calcium imaging, a technique capable of recording population level activity at single cell resolution, to record activity in primary visual cortex (V1). We have found significant changes in network dynamics through mice’s learning of the task from naive to middle to expert levels. Changes in network dynamics and behavioral performance are well accounted for by an intrinsic model of timing in which the trajectory of q network through high dimensional state space represents temporal sensory information. Conversely, while we found evidence of other temporal encoding models, such as oscillatory activity, we did not find that they accounted for increased performance but were in fact correlated with the intrinsic model itself. These results provide insight into how subsecond temporal information is encoded mechanistically at the circuit level.
Trends in NeuroAI - SwiFT: Swin 4D fMRI Transformer
Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). Title: SwiFT: Swin 4D fMRI Transformer Abstract: Modeling spatiotemporal brain dynamics from high-dimensional data, such as functional Magnetic Resonance Imaging (fMRI), is a formidable task in neuroscience. Existing approaches for fMRI analysis utilize hand-crafted features, but the process of feature extraction risks losing essential information in fMRI scans. To address this challenge, we present SwiFT (Swin 4D fMRI Transformer), a Swin Transformer architecture that can learn brain dynamics directly from fMRI volumes in a memory and computation-efficient manner. SwiFT achieves this by implementing a 4D window multi-head self-attention mechanism and absolute positional embeddings. We evaluate SwiFT using multiple large-scale resting-state fMRI datasets, including the Human Connectome Project (HCP), Adolescent Brain Cognitive Development (ABCD), and UK Biobank (UKB) datasets, to predict sex, age, and cognitive intelligence. Our experimental outcomes reveal that SwiFT consistently outperforms recent state-of-the-art models. Furthermore, by leveraging its end-to-end learning capability, we show that contrastive loss-based self-supervised pre-training of SwiFT can enhance performance on downstream tasks. Additionally, we employ an explainable AI method to identify the brain regions associated with sex classification. To our knowledge, SwiFT is the first Swin Transformer architecture to process dimensional spatiotemporal brain functional data in an end-to-end fashion. Our work holds substantial potential in facilitating scalable learning of functional brain imaging in neuroscience research by reducing the hurdles associated with applying Transformer models to high-dimensional fMRI. Speaker: Junbeom Kwon is a research associate working in Prof. Jiook Cha’s lab at Seoul National University. Paper link: https://arxiv.org/abs/2307.05916
Prefrontal mechanisms involved in learning distractor-resistant working memory in a dual task
Working memory (WM) is a cognitive function that allows the short-term maintenance and manipulation of information when no longer accessible to the senses. It relies on temporarily storing stimulus features in the activity of neuronal populations. To preserve these dynamics from distraction it has been proposed that pre and post-distraction population activity decomposes into orthogonal subspaces. If orthogonalization is necessary to avoid WM distraction, it should emerge as performance in the task improves. We sought evidence of WM orthogonalization learning and the underlying mechanisms by analyzing calcium imaging data from the prelimbic (PrL) and anterior cingulate (ACC) cortices of mice as they learned to perform an olfactory dual task. The dual task combines an outer Delayed Paired-Association task (DPA) with an inner Go-NoGo task. We examined how neuronal activity reflected the process of protecting the DPA sample information against Go/NoGo distractors. As mice learned the task, we measured the overlap between the neural activity onto the low-dimensional subspaces that encode sample or distractor odors. Early in the training, pre-distraction activity overlapped with both sample and distractor subspaces. Later in the training, pre-distraction activity was strictly confined to the sample subspace, resulting in a more robust sample code. To gain mechanistic insight into how these low-dimensional WM representations evolve with learning we built a recurrent spiking network model of excitatory and inhibitory neurons with low-rank connections. The model links learning to (1) the orthogonalization of sample and distractor WM subspaces and (2) the orthogonalization of each subspace with irrelevant inputs. We validated (1) by measuring the angular distance between the sample and distractor subspaces through learning in the data. Prediction (2) was validated in PrL through the photoinhibition of ACC to PrL inputs, which induced early-training neural dynamics in well-trained animals. In the model, learning drives the network from a double-well attractor toward a more continuous ring attractor regime. We tested signatures for this dynamical evolution in the experimental data by estimating the energy landscape of the dynamics on a one-dimensional ring. In sum, our study defines network dynamics underlying the process of learning to shield WM representations from distracting tasks.
Virtual Brain Twins for Brain Medicine and Epilepsy
Over the past decade we have demonstrated that the fusion of subject-specific structural information of the human brain with mathematical dynamic models allows building biologically realistic brain network models, which have a predictive value, beyond the explanatory power of each approach independently. The network nodes hold neural population models, which are derived using mean field techniques from statistical physics expressing ensemble activity via collective variables. Our hybrid approach fuses data-driven with forward-modeling-based techniques and has been successfully applied to explain healthy brain function and clinical translation including aging, stroke and epilepsy. Here we illustrate the workflow along the example of epilepsy: we reconstruct personalized connectivity matrices of human epileptic patients using Diffusion Tensor weighted Imaging (DTI). Subsets of brain regions generating seizures in patients with refractory partial epilepsy are referred to as the epileptogenic zone (EZ). During a seizure, paroxysmal activity is not restricted to the EZ, but may recruit other healthy brain regions and propagate activity through large brain networks. The identification of the EZ is crucial for the success of neurosurgery and presents one of the historically difficult questions in clinical neuroscience. The application of latest techniques in Bayesian inference and model inversion, in particular Hamiltonian Monte Carlo, allows the estimation of the EZ, including estimates of confidence and diagnostics of performance of the inference. The example of epilepsy nicely underwrites the predictive value of personalized large-scale brain network models. The workflow of end-to-end modeling is an integral part of the European neuroinformatics platform EBRAINS and enables neuroscientists worldwide to build and estimate personalized virtual brains.
Movements and engagement during decision-making
When experts are immersed in a task, a natural assumption is that their brains prioritize task-related activity. Accordingly, most efforts to understand neural activity during well-learned tasks focus on cognitive computations and task-related movements. Surprisingly, we observed that during decision-making, the cortex-wide activity of multiple cell types is dominated by movements, especially “uninstructed movements”, that are spontaneously expressed. These observations argue that animals execute expert decisions while performing richly varied, uninstructed movements that profoundly shape neural activity. To understand the relationship between these movements and decision-making, we examined the movements more closely. We tested whether the magnitude or the timing of the movements was correlated with decision-making performance. To do this, we partitioned movements into two groups: task-aligned movements that were well predicted by task events (such as the onset of the sensory stimulus or choice) and task independent movement (TIM) that occurred independently of task events. TIM had a reliable, inverse correlation with performance in head-restrained mice and freely moving rats. This hinted that the timing of spontaneous movements could indicate periods of disengagement. To confirm this, we compared TIM to the latent behavioral states recovered by a hidden Markov model with Bernoulli generalized linear model observations (GLM-HMM) and found these, again, to be inversely correlated. Finally, we examined the impact of these behavioral states on neural activity. Surprisingly, we found that the same movement impacts neural activity more strongly when animals are disengaged. An intriguing possibility is that these larger movement signals disrupt cognitive computations, leading to poor decision-making performance. Taken together, these observations argue that movements and cognitionare closely intertwined, even during expert decision-making.
How Intermittent Bioenergetic Challenges Enhance Brain and Body Health
Humans and other animals evolved in habitats fraught with a range of environmental challenges to their bodies and brains. Accordingly, cells and organ systems possess adaptive stress-responsive signaling pathways that enable them to not only withstand environmental challenges, but also to prepare for future challenges and function more efficiently. These phylogenetically conserved processes are the foundation of the hormesis principle in which repeated exposures to low to moderate amounts of an environmental challenge improve cellular and organismal fitness. Here I describe cellular and molecular mechanisms by which cells in the brain and body respond to intermittent fasting and exercise in ways that enhance performance and counteract aging and disease processes. Switching back and forth between adaptive stress response (during fasting and exercise) and growth and plasticity (eating, resting, sleeping) modes enhances the performance and resilience of various organ systems. While pharmacological interventions that engage a particular hormetic mechanism are being developed, it seems unlikely that any will prove superior to fasting and exercise.
Sleep deprivation and the human brain: from brain physiology to cognition”
Sleep strongly affects synaptic strength, making it critical for cognition, especially learning and memory formation. Whether and how sleep deprivation modulates human brain physiology and cognition is poorly understood. Here we examined how overnight sleep deprivation vs overnight sufficient sleep affects (a) cortical excitability, measured by transcranial magnetic stimulation, (b) inducibility of long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity via transcranial direct current stimulation (tDCS), and (c) learning, memory, and attention. We found that sleep deprivation increases cortical excitability due to enhanced glutamate-related cortical facilitation and decreases and/or reverses GABAergic cortical inhibition. Furthermore, tDCS-induced LTP-like plasticity (anodal) abolishes while the inhibitory LTD-like plasticity (cathodal) converts to excitatory LTP-like plasticity under sleep deprivation. This is associated with increased EEG theta oscillations due to sleep pressure. Motor learning, behavioral counterparts of plasticity, and working memory and attention, which rely on cortical excitability, are also impaired during sleep deprivation. Our study indicates that upscaled brain excitability and altered plasticity, due to sleep deprivation, are associated with impaired cognitive performance. Besides showing how brain physiology and cognition undergo changes (from neurophysiology to higher-order cognition) under sleep pressure, the findings have implications for variability and optimal application of noninvasive brain stimulation.
Attending to the ups and downs of Lewy body dementia: An exploration of cognitive fluctuations
Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) share similarities in pathology and clinical presentation and come under the umbrella term of Lewy body dementias (LBD). Fluctuating cognition is a key symptom in LBD and manifests as altered levels of alertness and attention, with a marked difference between best and worst performance. Cognition and alertness can change over seconds or minutes to hours and days of obtundation. Cognitive fluctuations can have significant impacts on the quality of life of people with LBD as well as potentially contribute to the exacerbation of other transient symptoms including, for example, hallucinations and psychosis as well as making it difficult to measure cognitive effect size benefits in clinical trials of LBD. However, this significant symptom in LBD is poorly understood. In my presentation I will discuss the phenomenology of cognitive fluctuations, how we can measure it clinically and limitations of these approaches. I will then outline the work of our group and others which has been focussed on unpicking the aetiological basis of cognitive fluctuations in LBD using a variety of imaging approaches (e.g. SPECT, sMRI, fMRI and EEG). I will then briefly explore future research directions.
Euclidean coordinates are the wrong prior for primate vision
The mapping from the visual field to V1 can be approximated by a log-polar transform. In this domain, scale is a left-right shift, and rotation is an up-down shift. When fed into a standard shift-invariant convolutional network, this provides scale and rotation invariance. However, translation invariance is lost. In our model, this is compensated for by multiple fixations on an object. Due to the high concentration of cones in the fovea with the dropoff of resolution in the periphery, fully 10 degrees of visual angle take up about half of V1, with the remaining 170 degrees (or so) taking up the other half. This layout provides the basis for the central and peripheral pathways. Simulations with this model closely match human performance in scene classification, and competition between the pathways leads to the peripheral pathway being used for this task. Remarkably, in spite of the property of rotation invariance, this model can explain the inverted face effect. We suggest that the standard method of using image coordinates is the wrong prior for models of primate vision.
Distinct contributions of different anterior frontal regions to rule-guided decision-making in primates: complementary evidence from lesions, electrophysiology, and neurostimulation
Different prefrontal areas contribute in distinctly different ways to rule-guided behaviour in the context of a Wisconsin Card Sorting Test (WCST) analog for macaques. For example, causal evidence from circumscribed lesions in NHPs reveals that dorsolateral prefrontal cortex (dlPFC) is necessary to maintain a reinforced abstract rule in working memory, orbitofrontal cortex (OFC) is needed to rapidly update representations of rule value, and the anterior cingulate cortex (ACC) plays a key role in cognitive control and integrating information for correct and incorrect trials over recent outcomes. Moreover, recent lesion studies of frontopolar cortex (FPC) suggest it contributes to representing the relative value of unchosen alternatives, including rules. Yet we do not understand how these functional specializations relate to intrinsic neuronal activities nor the extent to which these neuronal activities differ between different prefrontal regions. After reviewing the aforementioned causal evidence I will present our new data from studies using multi-area multi-electrode recording techniques in NHPs to simultaneously record from four different prefrontal regions implicated in rule-guided behaviour. Multi-electrode micro-arrays (‘Utah arrays’) were chronically implanted in dlPFC, vlPFC, OFC, and FPC of two macaques, allowing us to simultaneously record single and multiunit activity, and local field potential (LFP), from all regions while the monkey performs the WCST analog. Rule-related neuronal activity was widespread in all areas recorded but it differed in degree and in timing between different areas. I will also present preliminary results from decoding analyses applied to rule-related neuronal activities both from individual clusters and also from population measures. These results confirm and help quantify dynamic task-related activities that differ between prefrontal regions. We also found task-related modulation of LFPs within beta and gamma bands in FPC. By combining this correlational recording methods with trial-specific causal interventions (electrical microstimulation) to FPC we could significantly enhance and impair animals performance in distinct task epochs in functionally relevant ways, further consistent with an emerging picture of regional functional specialization within a distributed framework of interacting and interconnected cortical regions.
Signatures of criticality in efficient coding networks
The critical brain hypothesis states that the brain can benefit from operating close to a second-order phase transition. While it has been shown that several computational aspects of sensory information processing (e.g., sensitivity to input) are optimal in this regime, it is still unclear whether these computational benefits of criticality can be leveraged by neural systems performing behaviorally relevant computations. To address this question, we investigate signatures of criticality in networks optimized to perform efficient encoding. We consider a network of leaky integrate-and-fire neurons with synaptic transmission delays and input noise. Previously, it was shown that the performance of such networks varies non-monotonically with the noise amplitude. Interestingly, we find that in the vicinity of the optimal noise level for efficient coding, the network dynamics exhibits signatures of criticality, namely, the distribution of avalanche sizes follows a power law. When the noise amplitude is too low or too high for efficient coding, the network appears either super-critical or sub-critical, respectively. This result suggests that two influential, and previously disparate theories of neural processing optimization—efficient coding, and criticality—may be intimately related
The Neural Race Reduction: Dynamics of nonlinear representation learning in deep architectures
What is the relationship between task, network architecture, and population activity in nonlinear deep networks? I will describe the Gated Deep Linear Network framework, which schematizes how pathways of information flow impact learning dynamics within an architecture. Because of the gating, these networks can compute nonlinear functions of their input. We derive an exact reduction and, for certain cases, exact solutions to the dynamics of learning. The reduction takes the form of a neural race with an implicit bias towards shared representations, which then govern the model’s ability to systematically generalize, multi-task, and transfer. We show how appropriate network architectures can help factorize and abstract knowledge. Together, these results begin to shed light on the links between architecture, learning dynamics and network performance.
Relations and Predictions in Brains and Machines
Humans and animals learn and plan with flexibility and efficiency well beyond that of modern Machine Learning methods. This is hypothesized to owe in part to the ability of animals to build structured representations of their environments, and modulate these representations to rapidly adapt to new settings. In the first part of this talk, I will discuss theoretical work describing how learned representations in hippocampus enable rapid adaptation to new goals by learning predictive representations, while entorhinal cortex compresses these predictive representations with spectral methods that support smooth generalization among related states. I will also cover recent work extending this account, in which we show how the predictive model can be adapted to the probabilistic setting to describe a broader array of generalization results in humans and animals, and how entorhinal representations can be modulated to support sample generation optimized for different behavioral states. In the second part of the talk, I will overview some of the ways in which we have combined many of the same mathematical concepts with state-of-the-art deep learning methods to improve efficiency and performance in machine learning applications like physical simulation, relational reasoning, and design.
Nature over Nurture: Functional neuronal circuits emerge in the absence of developmental activity
During development, the complex neuronal circuitry of the brain arises from limited information contained in the genome. After the genetic code instructs the birth of neurons, the emergence of brain regions, and the formation of axon tracts, it is believed that neuronal activity plays a critical role in shaping circuits for behavior. Current AI technologies are modeled after the same principle: connections in an initial weight matrix are pruned and strengthened by activity-dependent signals until the network can sufficiently generalize a set of inputs into outputs. Here, we challenge these learning-dominated assumptions by quantifying the contribution of neuronal activity to the development of visually guided swimming behavior in larval zebrafish. Intriguingly, dark-rearing zebrafish revealed that visual experience has no effect on the emergence of the optomotor response (OMR). We then raised animals under conditions where neuronal activity was pharmacologically silenced from organogenesis onward using the sodium-channel blocker tricaine. Strikingly, after washout of the anesthetic, animals performed swim bouts and responded to visual stimuli with 75% accuracy in the OMR paradigm. After shorter periods of silenced activity OMR performance stayed above 90% accuracy, calling into question the importance and impact of classical critical periods for visual development. Detailed quantification of the emergence of functional circuit properties by brain-wide imaging experiments confirmed that neuronal circuits came ‘online’ fully tuned and without the requirement for activity-dependent plasticity. Thus, contrary to what you learned on your mother's knee, complex sensory guided behaviors can be wired up innately by activity-independent developmental mechanisms.
Effect of Different Influences on Temporal Error Monitoring
Metacognition has long been defined as “cognition about cognition”. One of its aspects is the error monitoring ability, which includes being aware of one’s own errors without external feedback. This ability is mostly investigated in two-alternative forced choice tasks, where the performance has all or none nature in terms of accuracy. The previous literature documents the effect of different influences on the error monitoring ability, such as working memory, feedback and sensorimotor involvement. However, these demonstrations fall short of generalizing to the real life scenarios where the errors often have a magnitude and a direction. To bridge this gap, recent studies showed that humans could keep track of the magnitude and the direction of their errors in temporal, spatial and numerical domains in two metrics: confidence and short-long/few-more judgements. This talk will cover how the documented effects that are obtained in the two alternative forced choices tasks apply to the temporal error monitoring ability. Finally, how magnitude and direction monitoring (i.e., confidence and short-long judgements) can be differentiated as the two indices of temporal error monitoring ability will be discussed.
Hippocampal network dynamics during impaired working memory in epileptic mice
Memory impairment is a common cognitive deficit in temporal lobe epilepsy (TLE). The hippocampus is severely altered in TLE exhibiting multiple anatomical changes that lead to a hyperexcitable network capable of generating frequent epileptic discharges and seizures. In this study we investigated whether hippocampal involvement in epileptic activity drives working memory deficits using bilateral LFP recordings from CA1 during task performance. We discovered that epileptic mice experienced focal rhythmic discharges (FRDs) while they performed the spatial working memory task. Spatial correlation analysis revealed that FRDs were often spatially stable on the maze and were most common around reward zones (25 ‰) and delay zones (50 ‰). Memory performance was correlated with stability of FRDs, suggesting that spatially unstable FRDs interfere with working memory codes in real time.
Roots of Analogy
Can nonhuman animals perceive the relation-between-relations? This intriguing question has been studied over the last 40 years; nonetheless, the extent to which nonhuman species can do so remains controversial. Here, I review empirical evidence suggesting that pigeons, parrots, crows, and baboons join humans in reliably acquiring and transferring relational matching-to-sample (RMTS). Many theorists consider that RMTS captures the essence of analogy, because basic to analogy is appreciating the ‘relation between relations.’ Factors affecting RMTS performance include: prior training experience, the entropy of the sample stimulus, and whether the items that serve as sample stimuli can also serve as choice stimuli.
The medial prefrontal cortex replays generalized sequences
Whilst spatial navigation is a function ascribed to the hippocampus, flexibly adapting to a change in rule depends on the medial prefrontal cortex (mPFC). Single-units were recorded from the hippocampus and mPFC of rats shifting between a spatially- and cue-guided rule on a plus-maze. The mPFC population coded for the relative position between start and goal arm. During awake immobility periods, the mPFC replayed organized sequences of generalized positions which positively correlated with rule-switching performance. Conversely, hippocampal replay negatively correlated with performance and occurred independently of mPFC replay. Sequential replay in the hippocampus and mPFC may thus serve different functions.
Can a single neuron solve MNIST? Neural computation of machine learning tasks emerges from the interaction of dendritic properties
Physiological experiments have highlighted how the dendrites of biological neurons can nonlinearly process distributed synaptic inputs. However, it is unclear how qualitative aspects of a dendritic tree, such as its branched morphology, its repetition of presynaptic inputs, voltage-gated ion channels, electrical properties and complex synapses, determine neural computation beyond this apparent nonlinearity. While it has been speculated that the dendritic tree of a neuron can be seen as a multi-layer neural network and it has been shown that such an architecture could be computationally strong, we do not know if that computational strength is preserved under these qualitative biological constraints. Here we simulate multi-layer neural network models of dendritic computation with and without these constraints. We find that dendritic model performance on interesting machine learning tasks is not hurt by most of these constraints and may synergistically benefit from all of them combined. Our results suggest that single real dendritic trees may be able to learn a surprisingly broad range of tasks through the emergent capabilities afforded by their properties.
Connecting performance benefits on visual tasks to neural mechanisms using convolutional neural networks
Behavioral studies have demonstrated that certain task features reliably enhance classification performance for challenging visual stimuli. These include extended image presentation time and the valid cueing of attention. Here, I will show how convolutional neural networks can be used as a model of the visual system that connects neural activity changes with such performance changes. Specifically, I will discuss how different anatomical forms of recurrence can account for better classification of noisy and degraded images with extended processing time. I will then show how experimentally-observed neural activity changes associated with feature attention lead to observed performance changes on detection tasks. I will also discuss the implications these results have for how we identify the neural mechanisms and architectures important for behavior.
Network inference via process motifs for lagged correlation in linear stochastic processes
A major challenge for causal inference from time-series data is the trade-off between computational feasibility and accuracy. Motivated by process motifs for lagged covariance in an autoregressive model with slow mean-reversion, we propose to infer networks of causal relations via pairwise edge measure (PEMs) that one can easily compute from lagged correlation matrices. Motivated by contributions of process motifs to covariance and lagged variance, we formulate two PEMs that correct for confounding factors and for reverse causation. To demonstrate the performance of our PEMs, we consider network interference from simulations of linear stochastic processes, and we show that our proposed PEMs can infer networks accurately and efficiently. Specifically, for slightly autocorrelated time-series data, our approach achieves accuracies higher than or similar to Granger causality, transfer entropy, and convergent crossmapping -- but with much shorter computation time than possible with any of these methods. Our fast and accurate PEMs are easy-to-implement methods for network inference with a clear theoretical underpinning. They provide promising alternatives to current paradigms for the inference of linear models from time-series data, including Granger causality, vector-autoregression, and sparse inverse covariance estimation.
Training Dynamic Spiking Neural Network via Forward Propagation Through Time
With recent advances in learning algorithms, recurrent networks of spiking neurons are achieving performance competitive with standard recurrent neural networks. Still, these learning algorithms are limited to small networks of simple spiking neurons and modest-length temporal sequences, as they impose high memory requirements, have difficulty training complex neuron models, and are incompatible with online learning.Taking inspiration from the concept of Liquid Time-Constant (LTCs), we introduce a novel class of spiking neurons, the Liquid Time-Constant Spiking Neuron (LTC-SN), resulting in functionality similar to the gating operation in LSTMs. We integrate these neurons in SNNs that are trained with FPTT and demonstrate that thus trained LTC-SNNs outperform various SNNs trained with BPTT on long sequences while enabling online learning and drastically reducing memory complexity. We show this for several classical benchmarks that can easily be varied in sequence length, like the Add Task and the DVS-gesture benchmark. We also show how FPTT-trained LTC-SNNs can be applied to large convolutional SNNs, where we demonstrate novel state-of-the-art for online learning in SNNs on a number of standard benchmarks (S-MNIST, R-MNIST, DVS-GESTURE) and also show that large feedforward SNNs can be trained successfully in an online manner to near (Fashion-MNIST, DVS-CIFAR10) or exceeding (PS-MNIST, R-MNIST) state-of-the-art performance as obtained with offline BPTT. Finally, the training and memory efficiency of FPTT enables us to directly train SNNs in an end-to-end manner at network sizes and complexity that was previously infeasible: we demonstrate this by training in an end-to-end fashion the first deep and performant spiking neural network for object localization and recognition. Taken together, we out contribution enable for the first time training large-scale complex spiking neural network architectures online and on long temporal sequences.
Beyond Biologically Plausible Spiking Networks for Neuromorphic Computing
Biologically plausible spiking neural networks (SNNs) are an emerging architecture for deep learning tasks due to their energy efficiency when implemented on neuromorphic hardware. However, many of the biological features are at best irrelevant and at worst counterproductive when evaluated in the context of task performance and suitability for neuromorphic hardware. In this talk, I will present an alternative paradigm to design deep learning architectures with good task performance in real-world benchmarks while maintaining all the advantages of SNNs. We do this by focusing on two main features – event-based computation and activity sparsity. Starting from the performant gated recurrent unit (GRU) deep learning architecture, we modify it to make it event-based and activity-sparse. The resulting event-based GRU (EGRU) is extremely efficient for both training and inference. At the same time, it achieves performance close to conventional deep learning architectures in challenging tasks such as language modelling, gesture recognition and sequential MNIST.
Memory-enriched computation and learning in spiking neural networks through Hebbian plasticity
Memory is a key component of biological neural systems that enables the retention of information over a huge range of temporal scales, ranging from hundreds of milliseconds up to years. While Hebbian plasticity is believed to play a pivotal role in biological memory, it has so far been analyzed mostly in the context of pattern completion and unsupervised learning. Here, we propose that Hebbian plasticity is fundamental for computations in biological neural systems. We introduce a novel spiking neural network (SNN) architecture that is enriched by Hebbian synaptic plasticity. We experimentally show that our memory-equipped SNN model outperforms state-of-the-art deep learning mechanisms in a sequential pattern-memorization task, as well as demonstrate superior out-of-distribution generalization capabilities compared to these models. We further show that our model can be successfully applied to one-shot learning and classification of handwritten characters, improving over the state-of-the-art SNN model. We also demonstrate the capability of our model to learn associations for audio to image synthesis from spoken and handwritten digits. Our SNN model further presents a novel solution to a variety of cognitive question answering tasks from a standard benchmark, achieving comparable performance to both memory-augmented ANN and SNN-based state-of-the-art solutions to this problem. Finally we demonstrate that our model is able to learn from rewards on an episodic reinforcement learning task and attain near-optimal strategy on a memory-based card game. Hence, our results show that Hebbian enrichment renders spiking neural networks surprisingly versatile in terms of their computational as well as learning capabilities. Since local Hebbian plasticity can easily be implemented in neuromorphic hardware, this also suggests that powerful cognitive neuromorphic systems can be build based on this principle.
Brian2CUDA: Generating Efficient CUDA Code for Spiking Neural Networks
Graphics processing units (GPUs) are widely available and have been used with great success to accelerate scientific computing in the last decade. These advances, however, are often not available to researchers interested in simulating spiking neural networks, but lacking the technical knowledge to write the necessary low-level code. Writing low-level code is not necessary when using the popular Brian simulator, which provides a framework to generate efficient CPU code from high-level model definitions in Python. Here, we present Brian2CUDA, an open-source software that extends the Brian simulator with a GPU backend. Our implementation generates efficient code for the numerical integration of neuronal states and for the propagation of synaptic events on GPUs, making use of their massively parallel arithmetic capabilities. We benchmark the performance improvements of our software for several model types and find that it can accelerate simulations by up to three orders of magnitude compared to Brian’s CPU backend. Currently, Brian2CUDA is the only package that supports Brian’s full feature set on GPUs, including arbitrary neuron and synapse models, plasticity rules, and heterogeneous delays. When comparing its performance with Brian2GeNN, another GPU-based backend for the Brian simulator with fewer features, we find that Brian2CUDA gives comparable speedups, while being typically slower for small and faster for large networks. By combining the flexibility of the Brian simulator with the simulation speed of GPUs, Brian2CUDA enables researchers to efficiently simulate spiking neural networks with minimal effort and thereby makes the advancements of GPU computing available to a larger audience of neuroscientists.
A multi-level account of hippocampal function in concept learning from behavior to neurons
A complete neuroscience requires multi-level theories that address phenomena ranging from higher-level cognitive behaviors to activities within a cell. Unfortunately, we don't have cognitive models of behavior whose components can be decomposed into the neural dynamics that give rise to behavior, leaving an explanatory gap. Here, we decompose SUSTAIN, a clustering model of concept learning, into neuron-like units (SUSTAIN-d; decomposed). Instead of abstract constructs (clusters), SUSTAIN-d has a pool of neuron-like units. With millions of units, a key challenge is how to bridge from abstract constructs such as clusters to neurons, whilst retaining high-level behavior. How does the brain coordinate neural activity during learning? Inspired by algorithms that capture flocking behavior in birds, we introduce a neural flocking learning rule to coordinate units that collectively form higher-level mental constructs ("virtual clusters"), neural representations (concept, place and grid cell-like assemblies), and parallels recurrent hippocampal activity. The decomposed model shows how brain-scale neural populations coordinate to form assemblies encoding concept and spatial representations, and why many neurons are required for robust performance. Our account provides a multi-level explanation for how cognition and symbol-like representations are supported by coordinated neural assemblies formed through learning.
Navigating Increasing Levels of Relational Complexity: Perceptual, Analogical, and System Mappings
Relational thinking involves comparing abstract relationships between mental representations that vary in complexity; however, this complexity is rarely made explicit during everyday comparisons. This study explored how people naturally navigate relational complexity and interference using a novel relational match-to-sample (RMTS) task with both minimal and relationally directed instruction to observe changes in performance across three levels of relational complexity: perceptual, analogy, and system mappings. Individual working memory and relational abilities were examined to understand RMTS performance and susceptibility to interfering relational structures. Trials were presented without practice across four blocks and participants received feedback after each attempt to guide learning. Experiment 1 instructed participants to select the target that best matched the sample, while Experiment 2 additionally directed participants’ attention to same and different relations. Participants in Experiment 2 demonstrated improved performance when solving analogical mappings, suggesting that directing attention to relational characteristics affected behavior. Higher performing participants—those above chance performance on the final block of system mappings—solved more analogical RMTS problems and had greater visuospatial working memory, abstraction, verbal analogy, and scene analogy scores compared to lower performers. Lower performers were less dynamic in their performance across blocks and demonstrated negative relationships between analogy and system mapping accuracy, suggesting increased interference between these relational structures. Participant performance on RMTS problems did not change monotonically with relational complexity, suggesting that increases in relational complexity places nonlinear demands on working memory. We argue that competing relational information causes additional interference, especially in individuals with lower executive function abilities.
Building System Models of Brain-Like Visual Intelligence with Brain-Score
Research in the brain and cognitive sciences attempts to uncover the neural mechanisms underlying intelligent behavior in domains such as vision. Due to the complexities of brain processing, studies necessarily had to start with a narrow scope of experimental investigation and computational modeling. I argue that it is time for our field to take the next step: build system models that capture a range of visual intelligence behaviors along with the underlying neural mechanisms. To make progress on system models, we propose integrative benchmarking – integrating experimental results from many laboratories into suites of benchmarks that guide and constrain those models at multiple stages and scales. We show-case this approach by developing Brain-Score benchmark suites for neural (spike rates) and behavioral experiments in the primate visual ventral stream. By systematically evaluating a wide variety of model candidates, we not only identify models beginning to match a range of brain data (~50% explained variance), but also discover that models’ brain scores are predicted by their object categorization performance (up to 70% ImageNet accuracy). Using the integrative benchmarks, we develop improved state-of-the-art system models that more closely match shallow recurrent neuroanatomy and early visual processing to predict primate temporal processing and become more robust, and require fewer supervised synaptic updates. Taken together, these integrative benchmarks and system models are first steps to modeling the complexities of brain processing in an entire domain of intelligence.
General purpose event-based architectures for deep learning
Biologically plausible spiking neural networks (SNNs) are an emerging architecture for deep learning tasks due to their energy efficiency when implemented on neuromorphic hardware. However, many of the biological features are at best irrelevant and at worst counterproductive when evaluated in the context of task performance and suitability for neuromorphic hardware. In this talk, I will present an alternative paradigm to design deep learning architectures with good task performance in real-world benchmarks while maintaining all the advantages of SNNs. We do this by focusing on two main features -- event-based computation and activity sparsity. Starting from the performant gated recurrent unit (GRU) deep learning architecture, we modify it to make it event-based and activity-sparse. The resulting event-based GRU (EGRU) is extremely efficient for both training and inference. At the same time, it achieves performance close to conventional deep learning architectures in challenging tasks such as language modelling, gesture recognition and sequential MNIST
Learning static and dynamic mappings with local self-supervised plasticity
Animals exhibit remarkable learning capabilities with little direct supervision. Likewise, self-supervised learning is an emergent paradigm in artificial intelligence, closing the performance gap to supervised learning. In the context of biology, self-supervised learning corresponds to a setting where one sense or specific stimulus may serve as a supervisory signal for another. After learning, the latter can be used to predict the former. On the implementation level, it has been demonstrated that such predictive learning can occur at the single neuron level, in compartmentalized neurons that separate and associate information from different streams. We demonstrate the power such self-supervised learning over unsupervised (Hebb-like) learning rules, which depend heavily on stimulus statistics, in two examples: First, in the context of animal navigation where predictive learning can associate internal self-motion information always available to the animal with external visual landmark information, leading to accurate path-integration in the dark. We focus on the well-characterized fly head direction system and show that our setting learns a connectivity strikingly similar to the one reported in experiments. The mature network is a quasi-continuous attractor and reproduces key experiments in which optogenetic stimulation controls the internal representation of heading, and where the network remaps to integrate with different gains. Second, we show that incorporating global gating by reward prediction errors allows the same setting to learn conditioning at the neuronal level with mixed selectivity. At its core, conditioning entails associating a neural activity pattern induced by an unconditioned stimulus (US) with the pattern arising in response to a conditioned stimulus (CS). Solving the generic problem of pattern-to-pattern associations naturally leads to emergent cognitive phenomena like blocking, overshadowing, saliency effects, extinction, interstimulus interval effects etc. Surprisingly, we find that the same network offers a reductionist mechanism for causal inference by resolving the post hoc, ergo propter hoc fallacy.
Introducing dendritic computations to SNNs with Dendrify
Current SNNs studies frequently ignore dendrites, the thin membranous extensions of biological neurons that receive and preprocess nearly all synaptic inputs in the brain. However, decades of experimental and theoretical research suggest that dendrites possess compelling computational capabilities that greatly influence neuronal and circuit functions. Notably, standard point-neuron networks cannot adequately capture most hallmark dendritic properties. Meanwhile, biophysically detailed neuron models are impractical for large-network simulations due to their complexity, and high computational cost. For this reason, we introduce Dendrify, a new theoretical framework combined with an open-source Python package (compatible with Brian2) that facilitates the development of bioinspired SNNs. Dendrify, through simple commands, can generate reduced compartmental neuron models with simplified yet biologically relevant dendritic and synaptic integrative properties. Such models strike a good balance between flexibility, performance, and biological accuracy, allowing us to explore dendritic contributions to network-level functions while paving the way for developing more realistic neuromorphic systems.
Flexible multitask computation in recurrent networks utilizes shared dynamical motifs
Flexible computation is a hallmark of intelligent behavior. Yet, little is known about how neural networks contextually reconfigure for different computations. Humans are able to perform a new task without extensive training, presumably through the composition of elementary processes that were previously learned. Cognitive scientists have long hypothesized the possibility of a compositional neural code, where complex neural computations are made up of constituent components; however, the neural substrate underlying this structure remains elusive in biological and artificial neural networks. Here we identified an algorithmic neural substrate for compositional computation through the study of multitasking artificial recurrent neural networks. Dynamical systems analyses of networks revealed learned computational strategies that mirrored the modular subtask structure of the task-set used for training. Dynamical motifs such as attractors, decision boundaries and rotations were reused across different task computations. For example, tasks that required memory of a continuous circular variable repurposed the same ring attractor. We show that dynamical motifs are implemented by clusters of units and are reused across different contexts, allowing for flexibility and generalization of previously learned computation. Lesioning these clusters resulted in modular effects on network performance: a lesion that destroyed one dynamical motif only minimally perturbed the structure of other dynamical motifs. Finally, modular dynamical motifs could be reconfigured for fast transfer learning. After slow initial learning of dynamical motifs, a subsequent faster stage of learning reconfigured motifs to perform novel tasks. This work contributes to a more fundamental understanding of compositional computation underlying flexible general intelligence in neural systems. We present a conceptual framework that establishes dynamical motifs as a fundamental unit of computation, intermediate between the neuron and the network. As more whole brain imaging studies record neural activity from multiple specialized systems simultaneously, the framework of dynamical motifs will guide questions about specialization and generalization across brain regions.
A model of colour appearance based on efficient coding of natural images
An object’s colour, brightness and pattern are all influenced by its surroundings, and a number of visual phenomena and “illusions” have been discovered that highlight these often dramatic effects. Explanations for these phenomena range from low-level neural mechanisms to high-level processes that incorporate contextual information or prior knowledge. Importantly, few of these phenomena can currently be accounted for when measuring an object’s perceived colour. Here we ask to what extent colour appearance is predicted by a model based on the principle of coding efficiency. The model assumes that the image is encoded by noisy spatio-chromatic filters at one octave separations, which are either circularly symmetrical or oriented. Each spatial band’s lower threshold is set by the contrast sensitivity function, and the dynamic range of the band is a fixed multiple of this threshold, above which the response saturates. Filter outputs are then reweighted to give equal power in each channel for natural images. We demonstrate that the model fits human behavioural performance in psychophysics experiments, and also primate retinal ganglion responses. Next we systematically test the model’s ability to qualitatively predict over 35 brightness and colour phenomena, with almost complete success. This implies that contrary to high-level processing explanations, much of colour appearance is potentially attributable to simple mechanisms evolved for efficient coding of natural images, and is a basis for modelling the vision of humans and other animals.
Semantic Distance and Beyond: Interacting Predictors of Verbal Analogy Performance
Prior studies of A:B::C:D verbal analogies have identified several factors that affect performance, including the semantic similarity between source and target domains (semantic distance), the semantic association between the C-term and incorrect answers (distracter salience), and the type of relations between word pairs (e.g., categorical, compositional, and causal). However, it is unclear how these stimulus properties affect performance when utilized together. Moreover, how do these item factors interact with individual differences such as crystallized intelligence and creative thinking? Several studies reveal interactions among these item and individual difference factors impacting verbal analogy performance. For example, a three-way interaction demonstrated that the effects of semantic distance and distracter salience had a greater impact on performance for compositional and causal relations than for categorical ones (Jones, Kmiecik, Irwin, & Morrison, 2022). Implications for analogy theories and future directions are discussed.
Sex Differences in Learning from Exploration
Sex-based modulation of cognitive processes could set the stage for individual differences in vulnerability to neuropsychiatric disorders. While value-based decision making processes in particular have been proposed to be influenced by sex differences, the overall correct performance in decision making tasks often show variable or minimal differences across sexes. Computational tools allow us to uncover latent variables that define different decision making approaches, even in animals with similar correct performance. Here, we quantify sex differences in mice in the latent variables underlying behavior in a classic value-based decision making task: a restless two-armed bandit. While male and female mice had similar accuracy, they achieved this performance via different patterns of exploration. Male mice tended to make more exploratory choices overall, largely because they appeared to get ‘stuck’ in exploration once they had started. Female mice tended to explore less but learned more quickly during exploration. Together, these results suggest that sex exerts stronger influences on decision making during periods of learning and exploration than during stable choices. Exploration during decision making is altered in people diagnosed with addictions, depression, and neurodevelopmental disabilities, pinpointing the neural mechanisms of exploration as a highly translational avenue for conferring sex-modulated vulnerability to neuropsychiatric diagnoses.
Adaptive neural network classifier for decoding finger movements
While non-invasive Brain-to-Computer interface can accurately classify the lateralization of hand moments, the distinction of fingers activation in the same hand is limited by their local and overlapping representation in the motor cortex. In particular, the low signal-to-noise ratio restrains the opportunity to identify meaningful patterns in a supervised fashion. Here we combined Magnetoencephalography (MEG) recordings with advanced decoding strategy to classify finger movements at single trial level. We recorded eight subjects performing a serial reaction time task, where they pressed four buttons with left and right index and middle fingers. We evaluated the classification performance of hand and finger movements with increasingly complex approaches: supervised common spatial patterns and logistic regression (CSP + LR) and unsupervised linear finite convolutional neural network (LF-CNN). The right vs left fingers classification performance was accurate above 90% for all methods. However, the classification of the single finger provided the following accuracy: CSP+SVM : – 68 ± 7%, LF-CNN : 71 ± 10%. CNN methods allowed the inspection of spatial and spectral patterns, which reflected activity in the motor cortex in the theta and alpha ranges. Thus, we have shown that the use of CNN in decoding MEG single trials with low signal to noise ratio is a promising approach that, in turn, could be extended to a manifold of problems in clinical and cognitive neuroscience.
Trading Off Performance and Energy in Spiking Networks
Many engineered and biological systems must trade off performance and energy use, and the brain is no exception. While there are theories on how activity levels are controlled in biological networks through feedback control (homeostasis), it is not clear what the effects on population coding are, and therefore how performance and energy can be traded off. In this talk we will consider this tradeoff in auto-encoding networks, in which there is a clear definition of performance (the coding loss). We first show how SNNs follow a characteristic trade-off curve between activity levels and coding loss, but that standard networks need to be retrained to achieve different tradeoff points. We next formalize this tradeoff with a joint loss function incorporating coding loss (performance) and activity loss (energy use). From this loss we derive a class of spiking networks which coordinates its spiking to minimize both the activity and coding losses -- and as a result can dynamically adjust its coding precision and energy use. The network utilizes several known activity control mechanisms for this --- threshold adaptation and feedback inhibition --- and elucidates their potential function within neural circuits. Using geometric intuition, we demonstrate how these mechanisms regulate coding precision, and thereby performance. Lastly, we consider how these insights could be transferred to trained SNNs. Overall, this work addresses a key energy-coding trade-off which is often overlooked in network studies, expands on our understanding of homeostasis in biological SNNs, as well as provides a clear framework for considering performance and energy use in artificial SNNs.
A closed-loop emulator that accurately predicts brain-machine interface decoder performance
COSYNE 2022
How spiking neural networks can flexibly trade off performance and energy use
COSYNE 2022
How spiking neural networks can flexibly trade off performance and energy use
COSYNE 2022
Using Markov Decision Processes to benchmark the performance of artificial and biological agents
COSYNE 2022
Using Markov Decision Processes to benchmark the performance of artificial and biological agents
COSYNE 2022
Perturbed population states: neuron loss and the recovery of behavioral performance
COSYNE 2023
Biologically Realistic Computational Primitives of Neocortex Implemented on Neuromorphic Hardware Improve Vision Transformer Performance
COSYNE 2025
Contributions and synaptic basis of diverse cortical neuron responses to flexible task performance
COSYNE 2025
Metrics of Task Relations Predict Continual Learning Performance
COSYNE 2025
Psychedelics Enhance Performance on a Free Response Perceptual Integration Task
COSYNE 2025
Sensory stimulation boosts brain dynamics fluidity and memory performance in Alzheimer’s disease mice
COSYNE 2025
The structure of individuality in micro-behavioral features of task performance
COSYNE 2025
Acute aerobic exercise at different intensities modulates motor learning performance and cortical excitability in healthy individuals
FENS Forum 2024
Alfaxalone does not affect memory performance in a mouse model of Alzheimer’s disease
FENS Forum 2024
Behavioral performance of mice in open field test (OFT) exposed to the combination of levetiracetam (LEV) and valproic acid (VPA) (1:1) during whole gestation
FENS Forum 2024
Blurring the line between imagination and reality: Motor imagery influences performance of linked movements
FENS Forum 2024
Cholinergic modulation of attentional performance on a signal detection task: Pharmacological modulation of nicotinic and muscarinic receptors
FENS Forum 2024
Cognitive performance is enhanced by aerobic-strength training, and related to physical fitness and reduced platinum levels in testicular germ cell cancer survivors
FENS Forum 2024
Comparison of SynthSeg performance between 3T and 7T MRI in MR-negative epilepsy
FENS Forum 2024
Dietary restriction during adolescence improves the memory performance of old female Wistar rats in an onset- and duration-dependent manner
FENS Forum 2024
Distinct claustrum-cortex connections are involved in cognitive control performance and habitual sleep in humans
FENS Forum 2024
Effect of high-intensity interval and moderate-intensity continuous training on neuroplasticity, cognition, and sensorimotor performance in aged rats
FENS Forum 2024
Effects of performance and additional punishment on auditory-evoked brain activation patterns in discrimination learning – An auditory fMRI study in the Mongolian gerbil
FENS Forum 2024
Exploring the impact of photobiomodulation frequencies on cognitive performance and brain changes in normal conditions
FENS Forum 2024
Exploring the interplay of glucocorticoids, daily timing, sleep, and psychology-based task performance
FENS Forum 2024
Eyeblink patterns in simulated sports driving: The impact of driving performance, eyeblink rate, and individual factors
FENS Forum 2024
GT-02287, a clinical-stage GCase enhancer, improves activities of daily living and cognitive performance in a preclinical model of GBA1 Parkinson’s disease
FENS Forum 2024
Human local field potential brain recordings during a multilingual battery of cognitive and eye-tracking task performance
FENS Forum 2024
Impact of background noise on visual search performance
FENS Forum 2024
Interaction of sex and sleep on performance at the novel object recognition task in mice
FENS Forum 2024
microRNAs regulating CaMKIIα/SIRT1 signaling pathway are associated with cognitive ability and academic performance in adolescents
FENS Forum 2024
A neurocomputational dissociation of how intrinsic and extrinsic motivation improve memorization performance
FENS Forum 2024
Performance in simple eye-tracking tasks indicates verbal memory impairments in epilepsy
FENS Forum 2024
Is phonetic learning with peers more efficient than learning individually? An investigation of behavioral performance and electrical brain activity
FENS Forum 2024
Predicting memory performances in humans using cortically distributed sEEG signals
FENS Forum 2024
Predicting time across ages: Comparing performance of younger and older adults in a temporal prediction task
FENS Forum 2024
Prefrontal electroencephalogram theta activities indicate memory and executive function performance
FENS Forum 2024
Relationship of autonomic cardiac control and occipital theta power with competitive performance in elite freestyle snowboarders
FENS Forum 2024
Relationship between cortical excitability and inhibitory control performance in adolescents with attention-deficit/hyperactivity disorder (ADHD): A pilot study
FENS Forum 2024
The role of COMT Val158Met polymorphism impacts the performance in solving transitive inference problems
FENS Forum 2024
performance coverage
90 items