Latest

SeminarNeuroscience

OpenNeuro FitLins GLM: An Accessible, Semi-Automated Pipeline for OpenNeuro Task fMRI Analysis

Michael Demidenko
Stanford University
Aug 1, 2025

In this talk, I will discuss the OpenNeuro Fitlins GLM package and provide an illustration of the analytic workflow. OpenNeuro FitLins GLM is a semi-automated pipeline that reduces barriers to analyzing task-based fMRI data from OpenNeuro's 600+ task datasets. Created for psychology, psychiatry and cognitive neuroscience researchers without extensive computational expertise, this tool automates what is largely a manual process and compilation of in-house scripts for data retrieval, validation, quality control, statistical modeling and reporting that, in some cases, may require weeks of effort. The workflow abides by open-science practices, enhancing reproducibility and incorporates community feedback for model improvement. The pipeline integrates BIDS-compliant datasets and fMRIPrep preprocessed derivatives, and dynamically creates BIDS Statistical Model specifications (with Fitlins) to perform common mass univariate [GLM] analyses. To enhance and standardize reporting, it generates comprehensive reports which includes design matrices, statistical maps and COBIDAS-aligned reporting that is fully reproducible from the model specifications and derivatives. OpenNeuro Fitlins GLM has been tested on over 30 datasets spanning 50+ unique fMRI tasks (e.g., working memory, social processing, emotion regulation, decision-making, motor paradigms), reducing analysis times from weeks to hours when using high-performance computers, thereby enabling researchers to conduct robust single-study, meta- and mega-analyses of task fMRI data with significantly improved accessibility, standardized reporting and reproducibility.

SeminarNeuroscience

Circuit Mechanisms of Remote Memory

Lauren DeNardo, PhD
Department of Physiology, David Geffen School of Medicine, UCLA
Feb 11, 2025

Memories of emotionally-salient events are long-lasting, guiding behavior from minutes to years after learning. The prelimbic cortex (PL) is required for fear memory retrieval across time and is densely interconnected with many subcortical and cortical areas involved in recent and remote memory recall, including the temporal association area (TeA). While the behavioral expression of a memory may remain constant over time, the neural activity mediating memory-guided behavior is dynamic. In PL, different neurons underlie recent and remote memory retrieval and remote memory-encoding neurons have preferential functional connectivity with cortical association areas, including TeA. TeA plays a preferential role in remote compared to recent memory retrieval, yet how TeA circuits drive remote memory retrieval remains poorly understood. Here we used a combination of activity-dependent neuronal tagging, viral circuit mapping and miniscope imaging to investigate the role of the PL-TeA circuit in fear memory retrieval across time in mice. We show that PL memory ensembles recruit PL-TeA neurons across time, and that PL-TeA neurons have enhanced encoding of salient cues and behaviors at remote timepoints. This recruitment depends upon ongoing synaptic activity in the learning-activated PL ensemble. Our results reveal a novel circuit encoding remote memory and provide insight into the principles of memory circuit reorganization across time.

SeminarNeuroscience

Memory formation in hippocampal microcircuit

Andreakos Nikolaos
Visiting Scientist, School of Computer Science, University of Lincoln, Scientific Associate, National and Kapodistrian University of Athens
Feb 7, 2025

The centre of memory is the medial temporal lobe (MTL) and especially the hippocampus. In our research, a more flexible brain-inspired computational microcircuit of the CA1 region of the mammalian hippocampus was upgraded and used to examine how information retrieval could be affected under different conditions. Six models (1-6) were created by modulating different excitatory and inhibitory pathways. The results showed that the increase in the strength of the feedforward excitation was the most effective way to recall memories. In other words, that allows the system to access stored memories more accurately.

SeminarNeuroscience

Unifying the mechanisms of hippocampal episodic memory and prefrontal working memory

James Whittington
Stanford University / University of Oxford
Feb 14, 2024

Remembering events in the past is crucial to intelligent behaviour. Flexible memory retrieval, beyond simple recall, requires a model of how events relate to one another. Two key brain systems are implicated in this process: the hippocampal episodic memory (EM) system and the prefrontal working memory (WM) system. While an understanding of the hippocampal system, from computation to algorithm and representation, is emerging, less is understood about how the prefrontal WM system can give rise to flexible computations beyond simple memory retrieval, and even less is understood about how the two systems relate to each other. Here we develop a mathematical theory relating the algorithms and representations of EM and WM by showing a duality between storing memories in synapses versus neural activity. In doing so, we develop a formal theory of the algorithm and representation of prefrontal WM as structured, and controllable, neural subspaces (termed activity slots). By building models using this formalism, we elucidate the differences, similarities, and trade-offs between the hippocampal and prefrontal algorithms. Lastly, we show that several prefrontal representations in tasks ranging from list learning to cue dependent recall are unified as controllable activity slots. Our results unify frontal and temporal representations of memory, and offer a new basis for understanding the prefrontal representation of WM

SeminarNeuroscience

Trends in NeuroAI - Meta's MEG-to-image reconstruction

Paul Scotti
Dec 7, 2023

Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). This will be an informal journal club presentation, we do not have an author of the paper joining us. Title: Brain decoding: toward real-time reconstruction of visual perception Abstract: In the past five years, the use of generative and foundational AI systems has greatly improved the decoding of brain activity. Visual perception, in particular, can now be decoded from functional Magnetic Resonance Imaging (fMRI) with remarkable fidelity. This neuroimaging technique, however, suffers from a limited temporal resolution (≈0.5 Hz) and thus fundamentally constrains its real-time usage. Here, we propose an alternative approach based on magnetoencephalography (MEG), a neuroimaging device capable of measuring brain activity with high temporal resolution (≈5,000 Hz). For this, we develop an MEG decoding model trained with both contrastive and regression objectives and consisting of three modules: i) pretrained embeddings obtained from the image, ii) an MEG module trained end-to-end and iii) a pretrained image generator. Our results are threefold: Firstly, our MEG decoder shows a 7X improvement of image-retrieval over classic linear decoders. Second, late brain responses to images are best decoded with DINOv2, a recent foundational image model. Third, image retrievals and generations both suggest that MEG signals primarily contain high-level visual features, whereas the same approach applied to 7T fMRI also recovers low-level features. Overall, these results provide an important step towards the decoding - in real time - of the visual processes continuously unfolding within the human brain. Speaker: Dr. Paul Scotti (Stability AI, MedARC) Paper link: https://arxiv.org/abs/2310.19812

SeminarNeuroscienceRecording

Associative memory of structured knowledge

Julia Steinberg
Princeton University
Oct 26, 2022

A long standing challenge in biological and artificial intelligence is to understand how new knowledge can be constructed from known building blocks in a way that is amenable for computation by neuronal circuits. Here we focus on the task of storage and recall of structured knowledge in long-term memory. Specifically, we ask how recurrent neuronal networks can store and retrieve multiple knowledge structures. We model each structure as a set of binary relations between events and attributes (attributes may represent e.g., temporal order, spatial location, role in semantic structure), and map each structure to a distributed neuronal activity pattern using a vector symbolic architecture (VSA) scheme. We then use associative memory plasticity rules to store the binarized patterns as fixed points in a recurrent network. By a combination of signal-to-noise analysis and numerical simulations, we demonstrate that our model allows for efficient storage of these knowledge structures, such that the memorized structures as well as their individual building blocks (e.g., events and attributes) can be subsequently retrieved from partial retrieving cues. We show that long-term memory of structured knowledge relies on a new principle of computation beyond the memory basins. Finally, we show that our model can be extended to store sequences of memories as single attractors.

SeminarNeuroscienceRecording

Analogical retrieval across disparate task domains

Shir Dekel
The University of Sydney
Jul 13, 2022

Previous experiments have shown that a comparison of two written narratives highlights their shared relational structure, which in turn facilitates the retrieval of analogous narratives from the past (e.g., Gentner, Loewenstein, Thompson, & Forbus, 2009). However, analogical retrieval occurs across domains that appear more conceptually distant than merely different narratives, and the deepest analogies use matches in higher-order relational structure. The present study investigated whether comparison can facilitate analogical retrieval of higher-order relations across written narratives and abstract symbolic problems. Participants read stories which became retrieval targets after a delay, cued by either analogous stories or letter-strings. In Experiment 1 we replicated Gentner et al. who used narrative retrieval cues, and also found preliminary evidence for retrieval between narrative and symbolic domains. In Experiment 2 we found clear evidence that a comparison of analogous letter-string problems facilitated the retrieval of source stories with analogous higher-order relations. Experiment 3 replicated the retrieval results of Experiment 2 but with a longer delay between encoding and recall, and a greater number of distractor source stories. These experiments offer support for the schema induction account of analogical retrieval (Gentner et al., 2009) and show that the schemas abstracted from comparison of narratives can be transferred to non-semantic symbolic domains.

SeminarNeuroscienceRecording

The neural basis of flexible semantic cognition (BACN Mid-career Prize Lecture 2022)

Elizabeth Jefferies
Department of Psychology, University of York, UK
May 25, 2022

Semantic cognition brings meaning to our world – it allows us to make sense of what we see and hear, and to produce adaptive thoughts and behaviour. Since we have a wealth of information about any given concept, our store of knowledge is not sufficient for successful semantic cognition; we also need mechanisms that can steer the information that we retrieve so it suits the context or our current goals. This talk traces the neural networks that underpin this flexibility in semantic cognition. It draws on evidence from multiple methods (neuropsychology, neuroimaging, neural stimulation) to show that two interacting heteromodal networks underpin different aspects of flexibility. Regions including anterior temporal cortex and left angular gyrus respond more strongly when semantic retrieval follows highly-related concepts or multiple convergent cues; the multivariate responses in these regions correspond to context-dependent aspects of meaning. A second network centred on left inferior frontal gyrus and left posterior middle temporal gyrus is associated with controlled semantic retrieval, responding more strongly when weak associations are required or there is more competition between concepts. This semantic control network is linked to creativity and also captures context-dependent aspects of meaning; however, this network specifically shows more similar multivariate responses across trials when association strength is weak, reflecting a common controlled retrieval state when more unusual associations are the focus. Evidence from neuropsychology, fMRI and TMS suggests that this semantic control network is distinct from multiple-demand cortex which supports executive control across domains, although challenging semantic tasks recruit both networks. The semantic control network is juxtaposed between regions of default mode network that might be sufficient for the retrieval of strong semantic relationships and multiple-demand regions in the left hemisphere, suggesting that the large-scale organisation of flexible semantic cognition can be understood in terms of cortical gradients that capture systematic functional transitions that are repeated in temporal, parietal and frontal cortex.

SeminarNeuroscienceRecording

Meta-learning synaptic plasticity and memory addressing for continual familiarity detection

Danil Tyulmankov
Columbia University
May 18, 2022

Over the course of a lifetime, we process a continual stream of information. Extracted from this stream, memories must be efficiently encoded and stored in an addressable manner for retrieval. To explore potential mechanisms, we consider a familiarity detection task where a subject reports whether an image has been previously encountered. We design a feedforward network endowed with synaptic plasticity and an addressing matrix, meta-learned to optimize familiarity detection over long intervals. We find that anti-Hebbian plasticity leads to better performance than Hebbian and replicates experimental results such as repetition suppression. A combinatorial addressing function emerges, selecting a unique neuron as an index into the synaptic memory matrix for storage or retrieval. Unlike previous models, this network operates continuously, and generalizes to intervals it has not been trained on. Our work suggests a biologically plausible mechanism for continual learning, and demonstrates an effective application of machine learning for neuroscience discovery.

SeminarNeuroscience

Functional segregation of rostral and caudal hippocampus in associative memory

Alicia Vorobiova
HSE University
Apr 7, 2022

It has long been established that the hippocampus plays a crucial role for episodic memory. As opposed to the modular approach, now it is generally assumed that being a complex structure, the HC performs multiplex interconnected functions, whose hierarchical organization provides basis for the higher cognitive functions such as semantics-based encoding and retrieval. However, the «where, when and how» properties of distinct memory aspects within and outside the HC are still under debate. Here we used a visual associative memory task as a probe to test the hypothesis about the differential involvement of the rostral and caudal portions of the human hippocampus in memory encoding, recognition and associative recall. In epilepsy patients implanted with stereo-EEG, we show that at retrieval the rostral HC is selectively active for recognition memory, whereas the caudal HC is selectively active for the associative memory. Low frequency desynchronization and high frequency synchronization characterize the temporal dynamic in encoding and retrieval. Therefore, we describe here anatomical segregation in the hippocampal contributions to associative and recognition memory.

SeminarNeuroscience

Computational Principles of Event Memory

Ken Norman
Princeton University
Dec 2, 2021

Our ability to understand ongoing events depends critically on general knowledge about how different kinds of situations work (schemas), and also on recollection of specific instances of these situations that we have previously experienced (episodic memory). The consensus around this general view masks deep questions about how these two memory systems interact to support event understanding: How do we build our library of schemas? and how exactly do we use episodic memory in the service of event understanding? Given rich, continuous inputs, when do we store and retrieve episodic memory “snapshots”, and how are they organized so as to ensure that we can retrieve the right snapshots at the right time? I will develop predictions about how these processes work using memory augmented neural networks (i.e., neural networks that learn how to use episodic memory in the service of task performance), and I will present results from relevant fMRI and behavioral studies.

SeminarNeuroscienceRecording

NMC4 Short Talk: Multiscale and extended retrieval of associative memory structures in a cortical model of local-global inhibition balance

Tom Burns (he/him)
Okinawa Institute of Science and Technology
Dec 2, 2021

Inhibitory neurons take on many forms and functions. How this diversity contributes to memory function is not completely known. Previous formal studies indicate inhibition differentiated by local and global connectivity in associative memory networks functions to rescale the level of retrieval of excitatory assemblies. However, such studies lack biological details such as a distinction between types of neurons (excitatory and inhibitory), unrealistic connection schemas, and non-sparse assemblies. In this study, we present a rate-based cortical model where neurons are distinguished (as excitatory, local inhibitory, or global inhibitory), connected more realistically, and where memory items correspond to sparse excitatory assemblies. We use this model to study how local-global inhibition balance can alter memory retrieval in associative memory structures, including naturalistic and artificial structures. Experimental studies have reported inhibitory neurons and their sub-types uniquely respond to specific stimuli and can form sophisticated, joint excitatory-inhibitory assemblies. Our model suggests such joint assemblies, as well as a distribution and rebalancing of overall inhibition between two inhibitory sub-populations – one connected to excitatory assemblies locally and the other connected globally – can quadruple the range of retrieval across related memories. We identify a possible functional role for local-global inhibitory balance to, in the context of choice or preference of relationships, permit and maintain a broader range of memory items when local inhibition is dominant and conversely consolidate and strengthen a smaller range of memory items when global inhibition is dominant. This model therefore highlights a biologically-plausible and behaviourally-useful function of inhibitory diversity in memory.

SeminarNeuroscience

Dysfunctional synaptic vesicle recycling – links to epilepsy

Mike Cousin
University of Edinburgh
Dec 1, 2021

Accurate and synchronous neurotransmitter release is essential for brain communication and occurs when neurotransmitter-containing synaptic vesicles (SVs) fuse to release their content in response to neuronal activity. Neurotransmission is sustained by the process of SV recycling, which generates SVs locally at the presynapse. Until relatively recently it was believed that most mutations in genes that were essential for SV recycling would be incompatible with life, due to this fundamental role. However, this is not the case, with mutations in essential genes for SV fusion, retrieval and recycling identified in individuals with epilepsy. This seminar will cover our laboratory’s progress in determining how genetic mutations in people with epilepsy translate into presynaptic dysfunction and ultimately into seizure activity. The principal focus of these studies will be in vitro investigations of, 1) the biological role of these gene products and 2) how their dysfunction impacts SV recycling, using live fluorescence imaging of genetically-encoded reporters. The gene products to be discussed in more detail will be the SV protein SV2A, the protein kinase CDKL5 and the translation repressor FMRP.

SeminarNeuroscience

Dynamic maps of a dynamic world

Alexandra Keinath
McGill University
Oct 18, 2021

Extensive research has revealed that the hippocampus and entorhinal cortex maintain a rich representation of space through the coordinated activity of place cells, grid cells, and other spatial cell types. Frequently described as a ‘cognitive map’ or a ‘hippocampal map’, these maps are thought to support episodic memory through their instantiation and retrieval. Though often a useful and intuitive metaphor, a map typically evokes a static representation of the external world. However, the world itself, and our experience of it, are intrinsically dynamic. In order to make the most of their maps, a navigator must be able to adapt to, incorporate, and overcome these dynamics. Here I describe three projects where we address how hippocampal and entorhinal representations do just that. In the first project, I describe how boundaries dynamically anchor entorhinal grid cells and human spatial memory alike when the shape of a familiar environment is changed. In the second project, I describe how the hippocampus maintains a representation of the recent past even in the absence of disambiguating sensory and explicit task demands, a representation which causally depends on intrinsic hippocampal circuitry. In the third project, I describe how the hippocampus preserves a stable representation of context despite ongoing representational changes across a timescale of weeks. Together, these projects highlight the dynamic and adaptive nature of our hippocampal and entorhinal representations, and set the stage for future work building on these techniques and paradigms.

SeminarNeuroscienceRecording

Analogical encodings and recodings

Emmanuel Sander
University of Geneva
Jul 8, 2021

This talk will focus on the idea that the kind of similarity driving analogical retrieval is determined by the kind of features encoded regarding the source and the target cue situations. Emphasis will be put on educational perspectives in order to show the influence of world semantics on learners’ problem representations and solving strategies, as well as the difficulties arising from semantic incongruence between representations and strategies. Special attention will be given to the recoding of semantically incongruent representations, a crucial step that learners struggle with, in order to illustrate a promising path for going beyond informal strategies.

SeminarNeuroscience

Co-tuned, balanced excitation and inhibition in olfactory memory networks

Claire Meissner-Bernard
Friedrich lab, Friedrich Miescher Institute, Basel, Switzerland
May 20, 2021

Odor memories are exceptionally robust and essential for the survival of many species. In rodents, the olfactory cortex shows features of an autoassociative memory network and plays a key role in the retrieval of olfactory memories (Meissner-Bernard et al., 2019). Interestingly, the telencephalic area Dp, the zebrafish homolog of olfactory cortex, transiently enters a state of precise balance during the presentation of an odor (Rupprecht and Friedrich, 2018). This state is characterized by large synaptic conductances (relative to the resting conductance) and by co-tuning of excitation and inhibition in odor space and in time at the level of individual neurons. Our aim is to understand how this precise synaptic balance affects memory function. For this purpose, we build a simplified, yet biologically plausible spiking neural network model of Dp using experimental observations as constraints: besides precise balance, key features of Dp dynamics include low firing rates, odor-specific population activity and a dominance of recurrent inputs from Dp neurons relative to afferent inputs from neurons in the olfactory bulb. To achieve co-tuning of excitation and inhibition, we introduce structured connectivity by increasing connection probabilities and/or strength among ensembles of excitatory and inhibitory neurons. These ensembles are therefore structural memories of activity patterns representing specific odors. They form functional inhibitory-stabilized subnetworks, as identified by the “paradoxical effect” signature (Tsodyks et al., 1997): inhibition of inhibitory “memory” neurons leads to an increase of their activity. We investigate the benefits of co-tuning for olfactory and memory processing, by comparing inhibitory-stabilized networks with and without co-tuning. We find that co-tuned excitation and inhibition improves robustness to noise, pattern completion and pattern separation. In other words, retrieval of stored information from partial or degraded sensory inputs is enhanced, which is relevant in light of the instability of the olfactory environment. Furthermore, in co-tuned networks, odor-evoked activation of stored patterns does not persist after removal of the stimulus and may therefore subserve fast pattern classification. These findings provide valuable insights into the computations performed by the olfactory cortex, and into general effects of balanced state dynamics in associative memory networks.

SeminarNeuroscienceRecording

Retrieval spikes: a dendritic mechanism for retrieval-dependent memory consolidation

Erez Geron
NYU
Dec 16, 2020
SeminarNeuroscienceRecording

Social transmission of maternal behavior

Ioana Carcea
Rutgers University
Dec 11, 2020

Maternal care is profoundly important for mammalian survival, and in many species requires the contribution of non-biological parents, or alloparents. In the absence of partum and post-partum related hormonal changes, alloparents acquire maternal skills from experience, by yet unknown mechanisms. One critical molecular signal for maternal behavior is oxytocin, a hormone centrally released by hypothalamic paraventricular nucleus (PVN). Do experiences that induce maternal behavior act by engaging PVN oxytocin neurons? To answer this, we used virgin female mice, animals that in the wild live in colonies with experienced mothers and their pups, helping with pup care. We replicated this setup in the lab, and we continuously monitored homecage behavior of virgin mice co-housed for days with a mother and litter, synchronized with recordings from virgin PVN cells, including from oxytocin neurons. Mothers engaged virgins in maternal care in part by shepherding virgins towards the nest, ensuring their proximity to pups, and in part by self-generating pup retrieval episodes, demonstrating maternal behavior to virgins. The frequency of shepherding and of dam retrievals correlates with virgin's subsequent ability to retrieve pups, a quintessential mouse maternal skill. These social interactions activated virgin PVN and gated behaviorally-relevant cortical plasticity for pup vocalizations. Thus, rodents can acquire maternal behavior by social transmission, and our results describe a mechanism for adapting brains of adult caregivers to infant needs via endogenous oxytocin.

SeminarNeuroscience

From oscillations to laminar responses - characterising the neural circuitry of autobiographical memories

Eleanor Maguire
Wellcome Centre for Human Neuroimaging at UCL
Dec 1, 2020

Autobiographical memories are the ghosts of our past. Through them we visit places long departed, see faces once familiar, and hear voices now silent. These, often decades-old, personal experiences can be recalled on a whim or come unbidden into our everyday consciousness. Autobiographical memories are crucial to cognition because they facilitate almost everything we do, endow us with a sense of self and underwrite our capacity for autonomy. They are often compromised by common neurological and psychiatric pathologies with devastating effects. Despite autobiographical memories being central to everyday mental life, there is no agreed model of autobiographical memory retrieval, and we lack an understanding of the neural mechanisms involved. This precludes principled interventions to manage or alleviate memory deficits, and to test the efficacy of treatment regimens. This knowledge gap exists because autobiographical memories are challenging to study – they are immersive, multi-faceted, multi-modal, can stretch over long timescales and are grounded in the real world. One missing piece of the puzzle concerns the millisecond neural dynamics of autobiographical memory retrieval. Surprisingly, there are very few magnetoencephalography (MEG) studies examining such recall, despite the important insights this could offer into the activity and interactions of key brain regions such as the hippocampus and ventromedial prefrontal cortex. In this talk I will describe a series of MEG studies aimed at uncovering the neural circuitry underpinning the recollection of autobiographical memories, and how this changes as memories age. I will end by describing our progress on leveraging an exciting new technology – optically pumped MEG (OP-MEG) which, when combined with virtual reality, offers the opportunity to examine millisecond neural responses from the whole brain, including deep structures, while participants move within a virtual environment, with the attendant head motion and vestibular inputs.

SeminarNeuroscienceRecording

Evaluating different facets of category status for promoting spontaneous transfer

Sean Snoddy
Binghamton University
Nov 17, 2020

Existing accounts of analogical transfer highlight the importance of comparison-based schema abstraction in aiding retrieval of relevant prior knowledge from memory. In this talk, we discuss an alternative view, the category status hypothesis—which states that if knowledge of a target principle is represented as a relational category, it is easier to activate as a result of categorizing (as opposed to cue-based reminding)—and briefly review supporting evidence. We then further investigate this hypothesis by designing study tasks that promote different facets of category-level representations and assess their impact on spontaneous analogical transfer. A Baseline group compared two analogous cases; the remaining groups experienced comparison plus another task intended to impact the category status of the knowledge representation. The Intension group read an abstract statement of the principle with a supporting task of generating a new case. The Extension group read two more positive cases with the task of judging whether each exemplified the target principle. The Mapping group read a contrast case with the task of revising it into a positive example of the target principle (thereby providing practice moving in both directions between type and token, i.e., evaluating a given case relative to knowledge and using knowledge to generate a revised case). The results demonstrated that both Intension and Extension groups led to transfer improvements over Baseline (with the former demonstrating both improved accessibility of prior knowledge and ability to apply relational concepts). Implications for theories of analogical transfer are discussed.

SeminarNeuroscience

Plasticity in hypothalamic circuits for oxytocin release

Silvana Valtcheva
NYU
Oct 21, 2020

Mammalian babies are “sensory traps” for parents. Various sensory cues from the newborn are tremendously efficient in triggering parental responses in caregivers. We recently showed that core aspects of maternal behavior such as pup retrieval in response to infant vocalizations rely on active learning of auditory cues from pups facilitated by the neurohormone oxytocin (OT). Release of OT from the hypothalamus might thus help induce recognition of different infant cues but it is unknown what sensory stimuli can activate OT neurons. I performed unprecedented in vivo whole-cell and cell-attached recordings from optically-identified OT neurons in awake dams. I found that OT neurons, but not other hypothalamic cells, increased their firing rate after playback of pup distress vocalizations. Using anatomical tracing approaches and channelrhodopsin-assisted circuit mapping, I identified the projections and brain areas (including inferior colliculus, auditory cortex, and posterior intralaminar thalamus) relaying auditory information about social sounds to OT neurons. In hypothalamic brain slices, when optogenetically stimulating thalamic afferences to mimic high-frequency thalamic discharge, observed in vivo during pup calls playback, I found that thalamic activity led to long-term depression of synaptic inhibition in OT neurons. This was mediated by postsynaptic NMDARs-induced internalization of GABAARs. Therefore, persistent activation of OT neurons following pup calls in vivo is likely mediated by disinhibition. This gain modulation of OT neurons by infant cries, may be important for sustaining motivation. Using a genetically-encoded OT sensor, I demonstrated that pup calls were efficient in triggering OT release in downstream motivational areas. When thalamus projections to hypothalamus were inhibited with chemogenetics, dams exhibited longer latencies to retrieve crying pups, suggesting that the thalamus-hypothalamus noncanonical auditory pathway may be a specific circuit for the detection of social sounds, important for disinhibiting OT neurons, gating OT release in downstream brain areas, and speeding up maternal behavior.

ePosterNeuroscience

Theta-modulated memory encoding and retrieval in recurrent hippocampal circuits

Samuel Eckmann, Yashar Ahmadian, Máté Lengyel

Bernstein Conference 2024

ePosterNeuroscience

Neural signatures of memory retrieval in the hippocampus of freely caching chickadees

Selmaan Chettih,Dmitriy Aronov

COSYNE 2022

ePosterNeuroscience

Neural signatures of memory retrieval in the hippocampus of freely caching chickadees

Selmaan Chettih,Dmitriy Aronov

COSYNE 2022

ePosterNeuroscience

Parvalbumin-positive interneuron regulation of maternal pup retrieval behavior

Alexa Pagliaro,Julia Wang,Deborah Rupert,Stephen D Shea

COSYNE 2022

ePosterNeuroscience

Parvalbumin-positive interneuron regulation of maternal pup retrieval behavior

Alexa Pagliaro,Julia Wang,Deborah Rupert,Stephen D Shea

COSYNE 2022

ePosterNeuroscience

A neural network model of sequential memory retrieval during free recall

Moufan Li, Kristopher Jensen, Marcelo Mattar

COSYNE 2023

ePosterNeuroscience

Arousal effects on episodic memory retrieval following exposure to arousing stimuli in young and old adults

Marianna Constantinou, Ala Yankouskaya

FENS Forum 2024

ePosterNeuroscience

Effects of safety instructions on fear extinction and extinction retrieval in patients with anxiety disorders

Annalisa Lipp, Christian J. Merz, Oliver T. Wolf, Armin Zlomuzica

FENS Forum 2024

ePosterNeuroscience

Encoding and retrieval of a contextual fear memory evoke divergent expression of immediate-early genes Arc and c-Fos

Nicholas Bulthuis, Liliette Quintana, Michelle Stackmann, Christine Ann Denny

FENS Forum 2024

ePosterNeuroscience

The frontal areas involved in nonspatial visual selective attention and retrieval in the human brain

Kristina Drudik, Michael Petrides

FENS Forum 2024

ePosterNeuroscience

Human single neurons lock to theta phases during memory encoding and retrieval

Tim Guth, Armin Brandt, Peter Reinacher, Andreas Schulze-Bonhage, Joshua Jacobs, Lukas Kunz

FENS Forum 2024

ePosterNeuroscience

Intrinsic excitability of anterior to posterior insula (aIC-pIC) projection neurons are differently modified following retrieval of aversive conditioning

Sailendrakumar Kolatt Chandran, Haneen Kayyal, Federica Cruciani, Adonis Yiannakas, Efrat Edry, Kobi Rosenblum

FENS Forum 2024

ePosterNeuroscience

Mouse observers’ corticosterone secretion is involved in the establishment and retrieval of vicarious fear conditioning

Yi-Han Liao

FENS Forum 2024

ePosterNeuroscience

Probing memory formation and retrieval in hippocampal networks

Ivan Montiel, Cantin Ortiz, Desdemona Fricker, Christoph Schmidt-Hieber

FENS Forum 2024

ePosterNeuroscience

Retrieval inhibition during sensorimotor consolidation modulates memory retention

Masuto Ryosuke, Atsuo Nuruki, Tomohiro Nobe, Takumi Tsukada, Koyuki Ikarashi, Hikaru Nuruki, Koya Yamashiro, Genta Ochi, Tomomi Fujimoto, Daisuke Sato

FENS Forum 2024

retrieval coverage

42 items

Seminar27
ePoster15
Domain spotlight

Explore how retrieval research is advancing inside Neuro.

Visit domain