Cancer
Latest
OpenSFDI: an open hardware project for label-free measurements of tissue optical properties with spatial frequency domain imaging
Spatial frequency domain imaging (SFDI) is a diffuse optical measurement technique that can quantify tissue optical absorption and reduced scattering on a pixel by-pixel basis. Measurements of absorption at different wavelengths enable the extraction of molar concentrations of tissue chromophores over a wide field, providing a noncontact and label-free means to assess tissue viability, oxygenation, microarchitecture, and molecular content. In this talk, I will describe openSFDI, an open-source guide for building a low-cost, small-footprint, multi-wavelength SFDI system capable of quantifying absorption and reduced scattering as well as oxyhemoglobin and deoxyhemoglobin concentrations in biological tissue. The openSFDI project has a companion website which provides a complete parts list along with detailed instructions for assembling the openSFDI system. I will also review several technological advances our lab has recently made, including the extension of SFDI to the shortwave infrared wavelength band (900-1300 nm), where water and lipids provide strong contrast. Finally, I will discuss several preclinical and clinical applications for SFDI, including applications related to cancer, dermatology, rheumatology, cardiovascular disease, and others.
Development of an open-source femtosecond fiber laser system for multiphoton microscopy
This talk will present a low-cost protocol for fabricating an easily constructed femtosecond (fs) fiber laser system suitable for routine multiphoton microscopy (1060–1080 nm, 1 W average power, 70 fs pulse duration, 30–70 MHz repetition rate). Concepts well-known in the laser physics community essential to proper laser operation, but generally obscure to biophysicists and biomedical engineers, will be clarified. The parts list (~$13K US dollars), the equipment list (~$40K+), and the intellectual investment needed to build the laser will be described. A goal of the presentation will be to engage with the audience to discuss trade-offs associated with a custom-built fs fiber laser versus purchasing a commercial system. I will also touch on my research group’s plans to further develop this custom laser system for multiplexed cancer imaging as well as recent developments in the field that promise even higher performance fs fiber lasers for approximately the same cost and ease of construction.
Cancer coverage
2 items