World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Prof
University of Burgundy
Showing your local timezone
Schedule
Wednesday, July 8, 2020
5:00 PM Europe/London
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
Analogical Minds
Seminar location
No geocoded details are available for this content yet.
From a developmental standpoint, it has been argued that two major complementary factors contribute to the development of analogy comprehension: world knowledge and executive functions. Here I will provide evidence in support of the second view. Beyond paradigms that manipulate task difficulty (e.g., number and types of distractors and semantic distance between domains) we will provide eye-tracking data that describes differences in the way children and adults compare the base and target domains in analogy problems. We will follow the same approach with ageing people. This latter population provides a unique opportunity to disentangle the contribution of knowledge and executive processes in analogy making since knowledge is (more than) preserved and executive control is decreasing. Using this paradigm, I will show the extent to which world knowledge (assessed through vocabulary) compensates for decreasing executive control in older populations. Our eye-tracking data suggests that, to a certain extent, differences between younger and older adults are analogous to the differences between younger adults and children in the way they compare the base and the target domains in analogy problems.
Jean-Pierre Thibaut
Prof
University of Burgundy
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe