World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Prof
Brandeis University
Showing your local timezone
Schedule
Monday, July 20, 2020
5:00 PM Europe/Vienna
Seminar location
No geocoded details are available for this content yet.
Format
Past Seminar
Recording
Not available
Host
NeuroDev Disorders
Seminar location
No geocoded details are available for this content yet.
Neocortical networks must generate and maintain stable activity patterns despite perturbations induced by learning and experience- dependent plasticity. There is abundant theoretical and experimental evidence that network stability is achieved through homeostatic plasticity mechanisms that adjust synaptic and neuronal properties to stabilize some measure of average activity, and this process has been extensively studied in primary visual cortex (V1), where chronic visual deprivation induces an initial drop in activity and ensemble average firing rates (FRs), but over time activity is restored to baseline despite continued deprivation. Here I discuss recent work from the lab in which we followed this FR homeostasis in individual V1 neurons in freely behaving animals during a prolonged visual deprivation/eye-reopening paradigm. We find that - when FRs are perturbed by manipulating sensory experience - over time they return precisely to a cell-autonomous set-point. Finally, we find that homeostatic plasticity is perturbed in a mouse model of Autism spectrum disorder, and this results in a breakdown of FRH within V1. These data suggest that loss of homeostatic plasticity is one primary cause of excitation/inhibition imbalances in ASD models. Together these studies illuminate the role of stabilizing plasticity mechanisms in the ability of neocortical circuits to recover robust function following challenges to their excitability.
Gina Turrigiano
Prof
Brandeis University
Contact & Resources
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe