World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Drexel University
Showing your local timezone
Schedule
Wednesday, July 21, 2021
5:00 PM Europe/London
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
Analogical Minds
Seminar location
No geocoded details are available for this content yet.
Although analogical reasoning has been assumed to involve insight and its associated “aha!” experience, the relationship between these phenomena has never been directly probed empirically. In this study we investigated the relationship between representational change and the “aha!” experience during analogical reasoning. A novel set of verbal analogy stimuli were developed for use as an insight task. Across two experiments, participants reported significantly stronger aha moments and showed greater evidence of representational change on trials with more semantically distant analogies. Further, the strength of reported aha moments was correlated with the degree to which participants’ descriptions of the analogies changed over the course of each trial. Lastly, we probed the individual differences associated with a tendency to report stronger "aha" experiences, particularly related to mood, curiosity, and reward responsiveness. The findings shed light on the affective components of analogical reasoning and suggest that measuring affective responses during such tasks may elucidate novel insights into the mechanisms of creative analogical reasoning.
Christine Chesebrough
Drexel University
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe