World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Prof
Stanford University
Showing your local timezone
Schedule
Tuesday, May 31, 2022
5:00 PM Europe/Berlin
Seminar location
No geocoded details are available for this content yet.
Format
Past Seminar
Recording
Not available
Host
CompCogSci Darmstadt
Seminar location
No geocoded details are available for this content yet.
Learning does not occur in isolation. From parent-child interactions to formal classroom environments, humans explore, learn, and communicate in rich, diverse social contexts. Rather than simply observing and copying their conspecifics, humans engage in a range of epistemic practices that actively recruit those around them. What makes human social learning so distinctive, powerful, and smart? In this talk, I will present a series of studies that reveal the remarkably sophisticated inferential abilities that young children show not only in how they learn from others but also in how they help others learn. Children interact with others as learners and as teachers to learn and communicate about the world, about others, and even about the self. The results collectively paint a picture of human social learning that is far more than copying and imitation: It is active, bidirectional, and cooperative. I will end by discussing ongoing work that extends this picture beyond what we typically call “social learning”, with implications for building better machines that learn from and interact with humans.
Hyowon (Hyo) Gweon
Prof
Stanford University
Contact & Resources
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe