World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr.
Scripps research institute
Showing your local timezone
Schedule
Sunday, November 29, 2020
4:00 PM Europe/Lisbon
Seminar location
No geocoded details are available for this content yet.
Format
Past Seminar
Recording
Not available
Host
Brain-Body Interactions
Seminar location
No geocoded details are available for this content yet.
Courtship behavior is an innate model for many types of brain computations including sensory detection, learning and memory, and internal state modulation. Despite the robustness of the behavior, we have little understanding of the underlying neural circuits and mechanisms. The Stowers’ lab is leveraging the ability of specialized olfactory cues, pheromones, to specifically activate and therefore identify and study courtship circuits in the mouse. We are interested in identifying general circuit principles (specific brain nodes and information flow) that are common to all individuals, in order to additionally study how experience, gender, age, and internal state modulate and personalize behavior. We are solving two parallel sensory to motor courtship circuits, that promote social vocal calling and scent marking, to study information processing of behavior as a complete unit instead of restricting focus to a single brain region. We expect comparing and contrasting the coding logic of two courtship motor behaviors will begin to shed light on general principles of how the brain senses context, weighs experience and responds to internal state to ultimately decide appropriate action.
Lisa Stowers
Dr.
Scripps research institute
Contact & Resources
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe