World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Prof
Sapienza University of Rome
Showing your local timezone
Schedule
Tuesday, February 2, 2021
10:00 AM America/New_York
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
NYU Soft Matter Seminar
Seminar location
No geocoded details are available for this content yet.
In 1676, using candle light and a small glass sphere as the lens, van Leeuwenhoek discovered the microscopic world of living microorganisms. Today, using lasers, spatial light modulators, digital cameras and computers, we study the statistical and fluid mechanics of microswimmers in ways that were unimaginable only 50 years ago. With light we can image swimming bacteria in 3D, apply controllable force fields or sculpt their 3D environment. In addition to shaping the physical world outside cells we can use light to control the internal state of genetically modified bacteria. I will review our recent work with light-bacteria interactions, going from some fundamental problems in the fluid and statistical mechanics of microswimmers to the use of bacteria as propellers for micro-machines or as a "living" paint controlled by light.
Roberto Di Leonardo
Prof
Sapienza University of Rome
Contact & Resources
open source
When meta-research (research on research) makes an observation or points out a problem (such as a flaw in methodology), the project should be repeated later to determine whether the problem remains. F
neuro
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe