Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
← Back

Network Inference via Process

Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

Network inference via process motifs for lagged correlation in linear stochastic processes

Alice Schwarze

Dr

Dartmouth College

Schedule
Wednesday, November 16, 2022

Showing your local timezone

Schedule

Thursday, November 17, 2022

9:00 AM Australia/Sydney

Watch recording
Host: Sydney Systems Neuroscience and Complexity SNAC

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

Watch the seminar

Recording provided by the organiser.

Event Information

Format

Recorded Seminar

Recording

Available

Host

Sydney Systems Neuroscience and Complexity SNAC

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

World Wide map

Abstract

A major challenge for causal inference from time-series data is the trade-off between computational feasibility and accuracy. Motivated by process motifs for lagged covariance in an autoregressive model with slow mean-reversion, we propose to infer networks of causal relations via pairwise edge measure (PEMs) that one can easily compute from lagged correlation matrices. Motivated by contributions of process motifs to covariance and lagged variance, we formulate two PEMs that correct for confounding factors and for reverse causation. To demonstrate the performance of our PEMs, we consider network interference from simulations of linear stochastic processes, and we show that our proposed PEMs can infer networks accurately and efficiently. Specifically, for slightly autocorrelated time-series data, our approach achieves accuracies higher than or similar to Granger causality, transfer entropy, and convergent crossmapping -- but with much shorter computation time than possible with any of these methods. Our fast and accurate PEMs are easy-to-implement methods for network inference with a clear theoretical underpinning. They provide promising alternatives to current paradigms for the inference of linear models from time-series data, including Granger causality, vector-autoregression, and sparse inverse covariance estimation.

Topics

autoregressive modelcausal inferenceconfounding factorsinferencelagged correlationlinear modelingnetwork inferencenetworkspairwise edge measureprocess motifsreverse causationtime-series data

About the Speaker

Alice Schwarze

Dr

Dartmouth College

Contact & Resources

@aliceschwarze

Follow on Twitter/X

twitter.com/aliceschwarze

Related Seminars

Seminar64% match - Relevant

Continuous guidance of human goal-directed movements

neuro

Dec 9, 2024
VU University Amsterdam
Seminar64% match - Relevant

Rett syndrome, MECP2 and therapeutic strategies

neuro

The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t

Dec 10, 2024
Whitehead Institute for Biomedical Research and Department of Biology, MIT, Cambridge, USA
Seminar64% match - Relevant

Genetic and epigenetic underpinnings of neurodegenerative disorders

neuro

Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe

Dec 10, 2024
MIT Department of Biology
World Wide calendar

World Wide highlights

December 2025 • Syncing the latest schedule.

View full calendar
Awaiting featured picks
Month at a glance

Upcoming highlights