World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr
MRC Laboratory of Molecular Biology, Cambridge
Showing your local timezone
Schedule
Monday, March 8, 2021
4:00 PM Europe/London
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
Cambridge Neuro
Seminar location
No geocoded details are available for this content yet.
The serotonin system is the most frequently targeted neural system pharmacologically for treating psychiatric disorders, including depression and anxiety. Serotonin neurons of the dorsal and median raphe nuclei (DR, MR) collectively innervate the entire forebrain and midbrain, modulating diverse physiology and behaviour. By using viral-genetic methods, we found that DR serotonin system contains parallel sub-systems that differ in input and output connectivity, physiological response properties, and behavioural functions. To gain a fundamental understanding of the molecular heterogeneity of DR and MR, we used single-cell RNA - sequencing (scRNA-seq) to generate a comprehensive dataset comprising eleven transcriptomically distinct serotonin neuron clusters. We generated novel intersectional viral-genetic tools to access specific subpopulations. Whole-brain axonal projection mapping revealed that the molecular features of these distinct serotonin groups reflect their anatomical organization and provide tools for future exploration of the full projection map of molecularly defined serotonin groups. The molecular architecture of serotonin system lays the foundation for integrating anatomical, neurochemical, physiological, and behavioural functions.
Jing Ren
Dr
MRC Laboratory of Molecular Biology, Cambridge
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe