Aggression
aggression
Mapping the neural dynamics of dominance and defeat
Social experiences can have lasting changes on behavior and affective state. In particular, repeated wins and losses during fighting can facilitate and suppress future aggressive behavior, leading to persistent high aggression or low aggression states. We use a combination of techniques for multi-region neural recording, perturbation, behavioral analysis, and modeling to understand how nodes in the brain’s subcortical “social decision-making network” encode and transform aggressive motivation into action, and how these circuits change following social experience.
The multi-phase plasticity supporting winner effect
Aggression is an innate behavior across animal species. It is essential for competing for food, defending territory, securing mates, and protecting families and oneself. Since initiating an attack requires no explicit learning, the neural circuit underlying aggression is believed to be genetically and developmentally hardwired. Despite being innate, aggression is highly plastic. It is influenced by a wide variety of experiences, particularly winning and losing previous encounters. Numerous studies have shown that winning leads to an increased tendency to fight while losing leads to flight in future encounters. In the talk, I will present our recent findings regarding the neural mechanisms underlying the behavioral changes caused by winning.
Sex hormone regulation of neural gene expression
Gonadal steroid hormones are the principal drivers of sex-variable biology in vertebrates. In the brain, estrogen (17β-estradiol) establishes neural sex differences in many species and modulates mood, behavior, and energy balance in adulthood. To understand the diverse effects of estradiol on the brain, we profiled the genomic binding of estrogen receptor alpha (ERα), providing the first picture of the neural actions of any gonadal hormone receptor. To relate ERα target genes to brain sex differences we assessed gene expression and chromatin accessibility in the posterior bed nucleus of the stria terminalis (BNSTp), a sexually dimorphic node in limbic circuitry that underlies sex-differential social behaviors such as aggression and parenting. In adult animals we observe that levels of ERα are predictive of the extent of sex-variable gene expression, and that these sex differences are a dynamic readout of acute hormonal state. In neonates we find that transient ERα recruitment at birth leads to persistent chromatin opening and male-biased gene expression, demonstrating a true epigenetic mechanism for brain sexual differentiation. Collectively, our findings demonstrate that sex differences in gene expression in the brain are a readout of state-dependent hormone receptor actions, rather than other factors such as sex chromosomes. We anticipate that the ERα targets we have found will contribute to established sex differences in the incidence and etiology of neurological and psychiatric disorders.
Tree of life: The cerebellum in anger and aggression
Body Representation in Virtual Reality
How the brain represents the body is a fundamental question in cognitive neuroscience. Experimental studies are difficult because ‘the body is always there’ (William James). In recent years immersive virtual reality techniques have been introduced that deliver apparent changes to the body extending earlier techniques such as the rubber hand illusion, or substituting the whole body by a virtual one visually collocated with the real body, and seen from a normal first person perspective. This talk will introduce these techniques, and concentrate on how changing the body can change the mind and behaviour, especially in the context of combatting aggression based on gender or race.
Learning to aggress – Behavioral and circuit mechanisms of aggression reward
Aggression is an ethologically complex behavior with equally complex underlying mechanisms. Here, I present data on one form of aggression, appetitive or rewarding aggression, and the behavioral, cellular and system-level mechanisms guiding this behavior. First, I will present one way in which appetitive aggression is modeled in mice, and extend aggression motivation to the concept of compulsive aggression seeking and relapse. I will then briefly highlight recent advances in computer vision and machine learning for automated scoring of aggressive behavior, the role of specific cell-types in controlling aggression reward, and close with preliminary data on the whole brain aggression reward functional connectome using light sheet fluorescent microscopy (LSFM).
A brain circuit for curiosity
Motivational drives are internal states that can be different even in similar interactions with external stimuli. Curiosity as the motivational drive for novelty-seeking and investigating the surrounding environment is for survival as essential and intrinsic as hunger. Curiosity, hunger, and appetitive aggression drive three different goal-directed behaviors—novelty seeking, food eating, and hunting— but these behaviors are composed of similar actions in animals. This similarity of actions has made it challenging to study novelty seeking and distinguish it from eating and hunting in nonarticulating animals. The brain mechanisms underlying this basic survival drive, curiosity, and novelty-seeking behavior have remained unclear. In spite of having well-developed techniques to study mouse brain circuits, there are many controversial and different results in the field of motivational behavior. This has left the functions of motivational brain regions such as the zona incerta (ZI) still uncertain. Not having a transparent, nonreinforced, and easily replicable paradigm is one of the main causes of this uncertainty. Therefore, we chose a simple solution to conduct our research: giving the mouse freedom to choose what it wants—double freeaccess choice. By examining mice in an experimental battery of object free-access double-choice (FADC) and social interaction tests—using optogenetics, chemogenetics, calcium fiber photometry, multichannel recording electrophysiology, and multicolor mRNA in situ hybridization—we uncovered a cell type–specific cortico-subcortical brain circuit of the curiosity and novelty-seeking behavior. We found in mice that inhibitory neurons in the medial ZI (ZIm) are essential for the decision to investigate an object or a conspecific. These neurons receive excitatory input from the prelimbic cortex to signal the initiation of exploration. This signal is modulated in the ZIm by the level of investigatory motivation. Increased activity in the ZIm instigates deep investigative action by inhibiting the periaqueductal gray region. A subpopulation of inhibitory ZIm neurons expressing tachykinin 1 (TAC1) modulates the investigatory behavior.
Molecular, receptor, and neural bases for chemosensory-mediated sexual and social behavior in mice
For many animals, the sense of olfaction plays a major role in controlling sexual behaviors. Olfaction helps animals to detect mates, discriminate their status, and ultimately, decide on their behavioral output such as courtship behavior or aggression. Specific pheromone cues and receptors have provided a useful model to study how sensory inputs are converted into certain behavioral outputs. With the aid of recent advances in tools to record and manipulate genetically defined neurons, our understanding of the neural basis of sexual and social behavior has expanded substantially. I will discuss the current understanding of the neural processing of sex pheromones and the neural circuitry which controls sexual and social behaviors and ultimately reproduction, by focusing on rodent studies, mainly in mice, and the vomeronasal sensory system.
Distinct limbic-hypothalamic circuits for the generation of social behaviors
The main pillars of social behaviors involve (1) mating, where males copulate with female partners to reproduce, and (2) aggression, where males fight conspecific male competitors in territory guarding. Decades of study have identified two key regions in the hypothalamus, the medial preoptic nucleus (MPN) and the ventrolateral part of ventromedial hypothalamus (VMHvl) , that are essential for male sexual and aggressive behaviors, respectively. However, it remains ambiguous what area directs excitatory control of the hypothalamic activity and generates the initiation signal for social behaviors. Through neural tracing, in vivo optical recording and functional manipulations, we identified the estrogen receptor alpha (Esr1)-expressing cells in the posterior amygdala (PA) as a main source of excitatory inputs to the MPN and VMHvl, and key hubs in mating and fighting circuits in males. Importantly, two spatially-distinct populations in the PA regulate male sexual and aggressive behaviors, respectively. Moreover, these two subpopulations in the PA display differential molecular phenotypes, projection patterns and in vivo neural responses. Our work also observed the parallels between these social behavior circuits and basal ganglia circuits to control motivated behaviors, which Larry Swanson (2000) originally proposed based on extensive developmental and anatomical evidence.
On cognitive maps and reinforcement learning in large-scale animal behaviour
Bats are extreme aviators and amazing navigators. Many bat species nightly commute dozens of kilometres in search of food, and some bat species annually migrate over thousands of kilometres. Studying bats in their natural environment has always been extremely challenging because of their small size (mostly <50 gr) and agile nature. We have recently developed novel miniature technology allowing us to GPS-tag small bats, thus opening a new window to document their behaviour in the wild. We have used this technology to track fruit-bats pups over 5 months from birth to adulthood. Following the bats’ full movement history allowed us to show that they use novel short-cuts which are typical for cognitive-map based navigation. In a second study, we examined how nectar-feeding bats make foraging decisions under competition. We show that by relying on a simple reinforcement learning strategy, the bats can divide the resource between them without aggression or communication. Together, these results demonstrate the power of the large scale natural approach for studying animal behavior.
Unpacking Nature from Nurture: Understanding how Family Processes Affect Child and Adolescent Mental Health
Mental Health problems among youth constitutes an area of significant social, educational, clinical, policy and public health concern. Understanding processes and mechanisms that underlie the development of mental health problems during childhood and adolescence requires theoretical and methodological integration across multiple scientific domains, including developmental science, neuroscience, genetics, education and prevention science. The primary focus of this presentation is to examine the relative role of genetic and family environmental influences on children’s emotional and behavioural development. Specifically, a complementary array of genetically sensitive and longitudinal research designs will be employed to examine the role of early environmental adversity (e.g. inter-parental conflict, negative parenting practices) relative to inherited factors in accounting for individual differences in children’s symptoms of psychopathology (e.g. depression, aggression, ADHD ). Examples of recent applications of this research to the development of evidence-based intervention programmes aimed at reducing psychopathology in the context of high-risk family settings will also be presented.
Hypothalamic control of internal states underlying social behaviors in mice
Social interactions such as mating and fighting are driven by internal emotional states. How can we study internal states of an animal when it cannot tell us its subjective feelings? Especially when the meaning of the animal’s behavior is not clear to us, can we understand the underlying internal states of the animal? In this talk, I will introduce our recent work in which we used male mounting behavior in mice as an example to understand the underlying internal state of the animals. In many animal species, males exhibit mounting behavior toward females as part of the mating behavior repertoire. Interestingly, males also frequently show mounting behavior toward other males of the same species. It is not clear what the underlying motivation is - whether it is reproductive in nature or something distinct. Through detailed analysis of video and audio recordings during social interactions, we found that while male-directed and female-directed mounting behaviors are motorically similar, they can be distinguished by both the presence of ultrasonic vocalization during female-directed mounting (reproductive mounting) and the display of aggression following male-directed mounting (aggressive mounting). Using optogenetics, we further identified genetically defined neural populations in the medial preoptic area (MPOA) that mediate reproductive mounting and the ventrolateral ventromedial hypothalamus (VMHvl) that mediate aggressive mounting. In vivo microendocsopic imaging in MPOA and VMHvl revealed distinct neural ensembles that mainly encode either a reproductive or an aggressive state during which male or female directed mounting occurs. Together, these findings demonstrate that internal states are represented in the hypothalamus and that motorically similar behaviors exhibited under different contexts may reflect distinct internal states.
“DAS GEHIRN ALS ZENTRALE DER SOZIALEN BEZIEHUNGEN UND WENN ES NICHT MEHR NORMAL FUNKTIONIERT“
Das Gehirn als Zentrale der sozialen Beziehungen und wenn es nicht mehr normal funktioniert: Darüber erfahren wir mehr am Donnerstag, 18. März. Dabei steht die Gesundheitsförderung im Fokus, ebenso, wie unser Gehirn bei Aggression tickt und was daraus für die Prävention und Behandlung folgt.
Neural mechanisms of aggression
Aggression is an innate social behavior essential for competing for resources, securing mates, defending territory and protecting the safety of oneself and family. In the last decade, significant progress has been made towards an understanding of the neural circuit underlying aggression using a set of modern neuroscience tools. Here, I will talk about the history and recent progress in the study of aggression.
On cognitive maps and reinforcement learning in large-scale animal behaviour
Bats are extreme aviators and amazing navigators. Many bat species nightly com-mute dozens of kilometres in search of food, and some bat species annually migrate over thousands of kilometres. Studying bats in their natural environment has al-ways been extremely challenging because of their small size (mostly <50 gr) and agile nature. We have recently developed novel miniature technology allowing us to GPS-tag small bats, thus opening a new window to document their behaviour in the wild. We have used this technology to track fruit-bats pups over 5 months from birth to adulthood. Following the bats’ full movement history allowed us to show that they use novel short-cuts which are typical for cognitive-map based naviga-tion. In a second study, we examined how nectar-feeding bats make foraging deci-sions under competition. We show that by relying on a simple reinforcement learn-ing strategy, the bats can divide the resource between them without aggression or communication. Together, these results demonstrate the power of the large scale natural approach for studying animal behavior.
A normative theory of aggression
COSYNE 2023
Aggression experience and observation predict shared behavior strategies during defense and promote overlapping changes to a brainwide neural network
COSYNE 2025
Aggression control by type 2 diabetes risk gene Dusp8
FENS Forum 2024
Elevated reactive aggression in forebrain-specific CCN2 knockout mice
FENS Forum 2024
Integration of hunger and hormonal state gates infant-directed aggression
FENS Forum 2024
Intermale aggression is inhibited by posterior intralaminar thalamic neurons in rats
FENS Forum 2024
Oxytocin ameliorates aggression in a mouse model of autism spectrum disorder (ASD)
FENS Forum 2024
A potential role of larval Drosophila melanogaster cuticular pheromones in feeding and aggression behaviour
FENS Forum 2024
Shared genetics between addiction, aggression, and related behavioural traits
FENS Forum 2024