← Back

Aggression

Topic spotlight
TopicWorld Wide

aggression

Discover seminars, jobs, and research tagged with aggression across World Wide.
24 curated items15 Seminars9 ePosters
Updated 12 months ago
24 items · aggression
24 results
SeminarNeuroscience

Mapping the neural dynamics of dominance and defeat

Annegret Falkner
Princeton Neuroscience Institute, USA
Dec 11, 2024

Social experiences can have lasting changes on behavior and affective state. In particular, repeated wins and losses during fighting can facilitate and suppress future aggressive behavior, leading to persistent high aggression or low aggression states. We use a combination of techniques for multi-region neural recording, perturbation, behavioral analysis, and modeling to understand how nodes in the brain’s subcortical “social decision-making network” encode and transform aggressive motivation into action, and how these circuits change following social experience.

SeminarNeuroscience

The multi-phase plasticity supporting winner effect

Dayu Lin
NYU Neuroscience Institute, New York, USA
May 14, 2024

Aggression is an innate behavior across animal species. It is essential for competing for food, defending territory, securing mates, and protecting families and oneself. Since initiating an attack requires no explicit learning, the neural circuit underlying aggression is believed to be genetically and developmentally hardwired. Despite being innate, aggression is highly plastic. It is influenced by a wide variety of experiences, particularly winning and losing previous encounters. Numerous studies have shown that winning leads to an increased tendency to fight while losing leads to flight in future encounters. In the talk, I will present our recent findings regarding the neural mechanisms underlying the behavioral changes caused by winning.

SeminarNeuroscience

Sex hormone regulation of neural gene expression

Jessika Tollkuhn
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
Sep 11, 2023

Gonadal steroid hormones are the principal drivers of sex-variable biology in vertebrates. In the brain, estrogen (17β-estradiol) establishes neural sex differences in many species and modulates mood, behavior, and energy balance in adulthood. To understand the diverse effects of estradiol on the brain, we profiled the genomic binding of estrogen receptor alpha (ERα), providing the first picture of the neural actions of any gonadal hormone receptor. To relate ERα target genes to brain sex differences we assessed gene expression and chromatin accessibility in the posterior bed nucleus of the stria terminalis (BNSTp), a sexually dimorphic node in limbic circuitry that underlies sex-differential social behaviors such as aggression and parenting. In adult animals we observe that levels of ERα are predictive of the extent of sex-variable gene expression, and that these sex differences are a dynamic readout of acute hormonal state. In neonates we find that transient ERα recruitment at birth leads to persistent chromatin opening and male-biased gene expression, demonstrating a true epigenetic mechanism for brain sexual differentiation. Collectively, our findings demonstrate that sex differences in gene expression in the brain are a readout of state-dependent hormone receptor actions, rather than other factors such as sex chromosomes. We anticipate that the ERα targets we have found will contribute to established sex differences in the incidence and etiology of neurological and psychiatric disorders.

SeminarNeuroscience

Tree of life: The cerebellum in anger and aggression

Dennis Schutter
Utrecht University, The Netherlands
Sep 18, 2022
SeminarNeuroscience

Learning to aggress – Behavioral and circuit mechanisms of aggression reward

Sam Golden
University of Washington, Seattle, USA
Sep 13, 2021

Aggression is an ethologically complex behavior with equally complex underlying mechanisms. Here, I present data on one form of aggression, appetitive or rewarding aggression,  and the behavioral, cellular and system-level mechanisms guiding this behavior. First, I will present one way in which appetitive aggression is modeled in mice, and extend aggression motivation to the concept of compulsive aggression seeking and relapse.  I will then briefly highlight recent advances in computer vision and machine learning for automated scoring of aggressive behavior, the role of specific cell-types in controlling aggression reward, and close with preliminary data on the whole brain aggression reward functional connectome using light sheet fluorescent microscopy (LSFM).

SeminarNeuroscience

A brain circuit for curiosity

Mehran Ahmadlou
Netherlands Institute for Neuroscience
Jul 11, 2021

Motivational drives are internal states that can be different even in similar interactions with external stimuli. Curiosity as the motivational drive for novelty-seeking and investigating the surrounding environment is for survival as essential and intrinsic as hunger. Curiosity, hunger, and appetitive aggression drive three different goal-directed behaviors—novelty seeking, food eating, and hunting— but these behaviors are composed of similar actions in animals. This similarity of actions has made it challenging to study novelty seeking and distinguish it from eating and hunting in nonarticulating animals. The brain mechanisms underlying this basic survival drive, curiosity, and novelty-seeking behavior have remained unclear. In spite of having well-developed techniques to study mouse brain circuits, there are many controversial and different results in the field of motivational behavior. This has left the functions of motivational brain regions such as the zona incerta (ZI) still uncertain. Not having a transparent, nonreinforced, and easily replicable paradigm is one of the main causes of this uncertainty. Therefore, we chose a simple solution to conduct our research: giving the mouse freedom to choose what it wants—double freeaccess choice. By examining mice in an experimental battery of object free-access double-choice (FADC) and social interaction tests—using optogenetics, chemogenetics, calcium fiber photometry, multichannel recording electrophysiology, and multicolor mRNA in situ hybridization—we uncovered a cell type–specific cortico-subcortical brain circuit of the curiosity and novelty-seeking behavior. We found in mice that inhibitory neurons in the medial ZI (ZIm) are essential for the decision to investigate an object or a conspecific. These neurons receive excitatory input from the prelimbic cortex to signal the initiation of exploration. This signal is modulated in the ZIm by the level of investigatory motivation. Increased activity in the ZIm instigates deep investigative action by inhibiting the periaqueductal gray region. A subpopulation of inhibitory ZIm neurons expressing tachykinin 1 (TAC1) modulates the investigatory behavior.

SeminarNeuroscience

Molecular, receptor, and neural bases for chemosensory-mediated sexual and social behavior in mice

Kazushige Touhara
University of Tokyo
Jun 28, 2021

For many animals, the sense of olfaction plays a major role in controlling sexual behaviors. Olfaction helps animals to detect mates, discriminate their status, and ultimately, decide on their behavioral output such as courtship behavior or aggression. Specific pheromone cues and receptors have provided a useful model to study how sensory inputs are converted into certain behavioral outputs. With the aid of recent advances in tools to record and manipulate genetically defined neurons, our understanding of the neural basis of sexual and social behavior has expanded substantially. I will discuss the current understanding of the neural processing of sex pheromones and the neural circuitry which controls sexual and social behaviors and ultimately reproduction, by focusing on rodent studies, mainly in mice, and the vomeronasal sensory system.

SeminarNeuroscienceRecording

Distinct limbic-hypothalamic circuits for the generation of social behaviors

Takashi Yamaguchi
Lin lab, New York University
May 18, 2021

The main pillars of social behaviors involve (1) mating, where males copulate with female partners to reproduce, and (2) aggression, where males fight conspecific male competitors in territory guarding. Decades of study have identified two key regions in the hypothalamus, the medial preoptic nucleus (MPN) and the ventrolateral part of ventromedial hypothalamus (VMHvl) , that are essential for male sexual and aggressive behaviors, respectively. However, it remains ambiguous what area directs excitatory control of the hypothalamic activity and generates the initiation signal for social behaviors. Through neural tracing, in vivo optical recording and functional manipulations, we identified the estrogen receptor alpha (Esr1)-expressing cells in the posterior amygdala (PA) as a main source of excitatory inputs to the MPN and VMHvl, and key hubs in mating and fighting circuits in males. Importantly, two spatially-distinct populations in the PA regulate male sexual and aggressive behaviors, respectively. Moreover, these two subpopulations in the PA display differential molecular phenotypes, projection patterns and in vivo neural responses. Our work also observed the parallels between these social behavior circuits and basal ganglia circuits to control motivated behaviors, which Larry Swanson (2000) originally proposed based on extensive developmental and anatomical evidence.

SeminarNeuroscience

Hypothalamic control of internal states underlying social behaviors in mice

Tomomi Karigo
California Institute of Technology
Apr 25, 2021

Social interactions such as mating and fighting are driven by internal emotional states. How can we study internal states of an animal when it cannot tell us its subjective feelings? Especially when the meaning of the animal’s behavior is not clear to us, can we understand the underlying internal states of the animal? In this talk, I will introduce our recent work in which we used male mounting behavior in mice as an example to understand the underlying internal state of the animals. In many animal species, males exhibit mounting behavior toward females as part of the mating behavior repertoire. Interestingly, males also frequently show mounting behavior toward other males of the same species. It is not clear what the underlying motivation is - whether it is reproductive in nature or something distinct. Through detailed analysis of video and audio recordings during social interactions, we found that while male-directed and female-directed mounting behaviors are motorically similar, they can be distinguished by both the presence of ultrasonic vocalization during female-directed mounting (reproductive mounting) and the display of aggression following male-directed mounting (aggressive mounting). Using optogenetics, we further identified genetically defined neural populations in the medial preoptic area (MPOA) that mediate reproductive mounting and the ventrolateral ventromedial hypothalamus (VMHvl) that mediate aggressive mounting. In vivo microendocsopic imaging in MPOA and VMHvl revealed distinct neural ensembles that mainly encode either a reproductive or an aggressive state during which male or female directed mounting occurs. Together, these findings demonstrate that internal states are represented in the hypothalamus and that motorically similar behaviors exhibited under different contexts may reflect distinct internal states.

SeminarNeuroscience

Neural mechanisms of aggression

Dayu Lin
NYU
Dec 1, 2020

Aggression is an innate social behavior essential for competing for resources, securing mates, defending territory and protecting the safety of oneself and family. In the last decade, significant progress has been made towards an understanding of the neural circuit underlying aggression using a set of modern neuroscience tools. Here, I will talk about the history and recent progress in the study of aggression.

ePoster

A normative theory of aggression

Sergey Shuvaev, Evgeny Amelchenko, Grigori Enikolopov, Alexei Koulakov

COSYNE 2023

ePoster

Aggression experience and observation predict shared behavior strategies during defense and promote overlapping changes to a brainwide neural network

Jorge Iravedra, Eartha Mae Guthman, Annegret Falkner

COSYNE 2025

ePoster

Aggression control by type 2 diabetes risk gene Dusp8

Cristina Mencías, Dominik Lutter, H Grallert, C Gieger, Mathias Schmidt, Sonja C. Schriever, Paul T. Pfluger

FENS Forum 2024

ePoster

Elevated reactive aggression in forebrain-specific CCN2 knockout mice

Li-Jen Lee, Ho-Ching Chang, Chi-Hou Ng, Kuang-Yung Lee

FENS Forum 2024

ePoster

Integration of hunger and hormonal state gates infant-directed aggression

Mingran Cao, Rachida Ammari, Chen Maxwell, Aashna Sahni, Johannes Kohl

FENS Forum 2024

ePoster

Intermale aggression is inhibited by posterior intralaminar thalamic neurons in rats

Tamás Láng, Botond Drahos, Dávid Keller, Árpád Dobolyi

FENS Forum 2024

ePoster

Oxytocin ameliorates aggression in a mouse model of autism spectrum disorder (ASD)

Zhuoni Li, Alexandra Hertz, Eilidh MacNicol, Davide Di Censo, Eugene Kim, Declan Murphy, Michael Craig, Diana Cash, Marija M. Petrinovic

FENS Forum 2024

ePoster

A potential role of larval Drosophila melanogaster cuticular pheromones in feeding and aggression behaviour

Sari Anschütz, Jens P. Weber, Caroline Murawski

FENS Forum 2024

ePoster

Shared genetics between addiction, aggression, and related behavioural traits

Ester Anton-Galindo, Edurne Gago Garcia, Maja Rebecca Adel, Conxita Arenas, Bru Cormand, Judit Cabana-Domínguez, Noelia Fernàndez-Castillo

FENS Forum 2024