← Back

Brain Plasticity

Topic spotlight
TopicWorld Wide

brain plasticity

Discover seminars, jobs, and research tagged with brain plasticity across World Wide.
10 curated items8 Seminars1 Position1 ePoster
Updated 1 day ago
10 items · brain plasticity
10 results
SeminarNeuroscience

Epigenomic (re)programming of the brain and behavior by ovarian hormones

Marija Kundakovic
Fordham University
May 1, 2023

Rhythmic changes in sex hormone levels across the ovarian cycle exert powerful effects on the brain and behavior, and confer female-specific risks for neuropsychiatric conditions. In this talk, Dr. Kundakovic will discuss the role of fluctuating ovarian hormones as a critical biological factor contributing to the increased depression and anxiety risk in women. Cycling ovarian hormones drive brain and behavioral plasticity in both humans and rodents, and the talk will focus on animal studies in Dr. Kundakovic’s lab that are revealing the molecular and receptor mechanisms that underlie this female-specific brain dynamic. She will highlight the lab’s discovery of sex hormone-driven epigenetic mechanisms, namely chromatin accessibility and 3D genome changes, that dynamically regulate neuronal gene expression and brain plasticity but may also prime the (epi)genome for psychopathology. She will then describe functional studies, including hormone replacement experiments and the overexpression of an estrous cycle stage-dependent transcription factor, which provide the causal link(s) between hormone-driven chromatin dynamics and sex-specific anxiety behavior. Dr. Kundakovic will also highlight an unconventional role that chromatin dynamics may have in regulating neuronal function across the ovarian cycle, including in sex hormone-driven X chromosome plasticity and hormonally-induced epigenetic priming. In summary, these studies provide a molecular framework to understand ovarian hormone-driven brain plasticity and increased female risk for anxiety and depression, opening new avenues for sex- and gender-informed treatments for brain disorders.

SeminarNeuroscienceRecording

Visualization and manipulation of our perception and imagery by BCI

Takufumi Yanagisawa
Osaka University
Mar 31, 2022

We have been developing Brain-Computer Interface (BCI) using electrocorticography (ECoG) [1] , which is recorded by electrodes implanted on brain surface, and magnetoencephalography (MEG) [2] , which records the cortical activities non-invasively, for the clinical applications. The invasive BCI using ECoG has been applied for severely paralyzed patient to restore the communication and motor function. The non-invasive BCI using MEG has been applied as a neurofeedback tool to modulate some pathological neural activities to treat some neuropsychiatric disorders. Although these techniques have been developed for clinical application, BCI is also an important tool to investigate neural function. For example, motor BCI records some neural activities in a part of the motor cortex to generate some movements of external devices. Although our motor system consists of complex system including motor cortex, basal ganglia, cerebellum, spinal cord and muscles, the BCI affords us to simplify the motor system with exactly known inputs, outputs and the relation of them. We can investigate the motor system by manipulating the parameters in BCI system. Recently, we are developing some BCIs to visualize and manipulate our perception and mental imagery. Although these BCI has been developed for clinical application, the BCI will be useful to understand our neural system to generate the perception and imagery. In this talk, I will introduce our study of phantom limb pain [3] , that is controlled by MEG-BCI, and the development of a communication BCI using ECoG [4] , that enable the subject to visualize the contents of their mental imagery. And I would like to discuss how much we can control our cortical activities that represent our perception and mental imagery. These examples demonstrate that BCI is a promising tool to visualize and manipulate the perception and imagery and to understand our consciousness. References 1. Yanagisawa, T., Hirata, M., Saitoh, Y., Kishima, H., Matsushita, K., Goto, T., Fukuma, R., Yokoi, H., Kamitani, Y., and Yoshimine, T. (2012). Electrocorticographic control of a prosthetic arm in paralyzed patients. AnnNeurol 71, 353-361. 2. Yanagisawa, T., Fukuma, R., Seymour, B., Hosomi, K., Kishima, H., Shimizu, T., Yokoi, H., Hirata, M., Yoshimine, T., Kamitani, Y., et al. (2016). Induced sensorimotor brain plasticity controls pain in phantom limb patients. Nature communications 7, 13209. 3. Yanagisawa, T., Fukuma, R., Seymour, B., Tanaka, M., Hosomi, K., Yamashita, O., Kishima, H., Kamitani, Y., and Saitoh, Y. (2020). BCI training to move a virtual hand reduces phantom limb pain: A randomized crossover trial. Neurology 95, e417-e426. 4. Ryohei Fukuma, Takufumi Yanagisawa, Shinji Nishimoto, Hidenori Sugano, Kentaro Tamura, Shota Yamamoto, Yasushi Iimura, Yuya Fujita, Satoru Oshino, Naoki Tani, Naoko Koide-Majima, Yukiyasu Kamitani, Haruhiko Kishima (2022). Voluntary control of semantic neural representations by imagery with conflicting visual stimulation. arXiv arXiv:2112.01223.

SeminarNeuroscience

Spatio-temporal control of adult neurogenesis for on-demand brain plasticity

Zayna Chaker
University of Basel
Feb 6, 2022
SeminarNeuroscienceRecording

Regenerative Neuroimmunology - a stem cell perspective

Stefano Pluchino
Department of Clinical Neurosciences, University of Cambridge
May 31, 2021

There are currently no approved therapies to slow down the accumulation of neurological disability that occurs independently of relapses in multiple sclerosis (MS). International agencies are engaging to expedite the development of novel strategies capable of modifying disease progression, abrogating persistent CNS inflammation, and support degenerating axons in people with progressive MS. Understanding why regeneration fails in the progressive MS brain and developing new regenerative approaches is a key priority for the Pluchino Lab. In particular, we aim to elucidate how the immune system, in particular its cells called myeloid cells, affects brain structure and function under normal healthy conditions and in disease. Our objective is to find how myeloid cells communicate with the central nervous system and affect tissue healing and functional recovery by stimulating mechanisms of brain plasticity mechanisms such as the generation of new nerve cells and the reduction of scar formation. Applying combination of state-of-the-art omic technologies, and molecular approaches to study murine and human disease models of inflammation and neurodegeneration, we aim to develop experimental molecular medicines, including those with stem cells and gene therapy vectors, which slow down the accumulation of irreversible disabilities and improve functional recovery after progressive multiple sclerosis, stroke and traumatic injuries. By understanding the mechanisms of intercellular (neuro-immune) signalling, diseases of the brain and spinal cord may be treated more effectively, and significant neuroprotection may be achieved with new tailored molecular therapeutics.

SeminarNeuroscience

Myelination: another form of brain plasticity

Giulia Bonetto
University of Cambridge, MRC Cambridge Stem Cell Institute
Mar 9, 2021

Studies of neural circuit plasticity focus almost exclusively on functional and structural changes of neuronal synapses. In recent years, however, myelin plasticity has emerged as a potential modulator of neuronal networks. Myelination of previously unmyelinated axons and changes in the structure on already-myelinated axons can have large effects on the function of neuronal networks. Yet myelination has been mostly studied in relation to its functional and metabolic activity. Myelin modifications are increasingly being implicated as a mechanism for sensory-motor learning and unpublished data from our lab indicate that myelination also occurs during cognitive non-motor learning. It is, however, unclear how specific these myelin changes are and even less is known of the underlying mechanisms of learning-evoked myelin plasticity. In this journal club, Dr Giulia Bonetto will provide a general overview on myelin plasticity. Additionally, she will present new data addressing the role of myelin plasticity in cognitive non-motor learning.

SeminarPsychology

Markers of brain connectivity and sleep-dependent restoration: basic research and translation into clinical populations

Valeria Jaramillo
University Hospital Zurich
Feb 24, 2021

The human brain is a heavily interconnected structure giving rise to complex functions. While brain functionality is mostly revealed during wakefulness, the sleeping brain might offer another view into physiological and pathological brain connectivity. Furthermore, there is a large body of evidence supporting that sleep mediates plastic changes in brain connectivity. Although brain plasticity depends on environmental input which is provided in the waking state, disconnection during sleep might be necessary for integrating new into existing information and at the same time restoring brain efficiency. In this talk, I will present structural, molecular, and electrophysiological markers of brain connectivity and sleep-dependent restoration that we have evaluated using Magnetic Resonance Imaging and electroencephalography in a healthy population. In a second step, I will show how we translated the gained findings into two clinical populations in which alterations in brain connectivity have been described, the neuropsychiatric disorder attention-deficit/hyperactivity disorder (ADHD) and the neurologic disorder thalamic ischemic stroke.

SeminarNeuroscience

Microglia, memories, and the extracellular space

Anna Molofsky
UCSF
Feb 21, 2021

Microglia are the immune cells of the brain, and play increasingly appreciated roles in synapse formation, brain plasticity, and cognition. A growing appreciation that the immune system involved in diseases like schizophrenia, epilepsy, and neurodegenerative diseases has led to renewed interest in how microglia regulate synaptic connectivity. Our group previously identified the IL-1 family cytokine Interleukin-33 (IL-33) as a novel regulator of microglial activation and function. I will discuss a mechanism by which microglia regulate synaptic plasticity and long-term memories by engulfing brain extracellular matrix (ECM) proteins. These studies raise the question of how these pathways may be altered or could be modified in the context of disease.

ePoster

Study of brain plasticity following loss of monocular vision in mice

Antonio Caballero Tapia, Guy Cheron, Lut Arckens, Laurence Ris, Dominique Ristori

FENS Forum 2024