Cancer
cancer
MedUni PhD Recruitment
Medical University of Vienna invites applications for all currently open Ph.D. positions within their 18 Ph.D. programs. We encourage ambitious and creative young scientists to develop their original research project in the field of Behavioural Biology, Biochemistry, Biophysics, Bioinformatics & Machine Learning, Cancer, Cardiovascular Systems, Drug Targets & Drug Development, Endocrinology & Metabolism, Biomedical Engineering, Mathematics & Statistics, Immunology, Medical Physics, Mental Health, Molecular and Cellular Biology, Neuroscience and Public Health with the assistance of our renowned and international scientists . Benefit from a well-established and connected network within the science community and built important relations with your peers at our university. On top of it, become an expert in your field! All project information can be found online under https://www.meduniwien.ac.at/web/en/studies-further-education/phd-doctoral-programmes/phd-programme-un094/phd-opportunities/ Apply online till 20.11.2022
Gene regulation networks in nervous system cancers: identification of novel drug targets
Astrocytes release glutamate by regulated exocytosis in health and disease
Astrocytes release glutamate by regulated exocytosis in health and disease Vladimir Parpura, International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, P.R. China Parpura will present you with the evidence that astrocytes, a subtype of glial cells in the brain, can exocytotically release the neurotransmitter glutamate and how this release is regulated. Spatiotemporal characteristic of vesicular fusion that underlie glutamate release in astrocytes will be discussed. He will also present data on a translational project in which this release pathway can be targeted for the treatment of glioblastoma, the deadliest brain cancer.
Genetic and epigenetic underpinnings of neurodegenerative disorders
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzheimer’s, autism, and cancer. Mechanisms of somatic cell reprogramming to an embryonic pluripotent state are explored, utilizing patient-specific pluripotent cells to model and analyze neurodegenerative diseases.
Spatial Organization of Cellular Reactive States in Human Brain Cancer
CXCL9:SPP1 macrophage polarity identifies a network of cellular programs that control human cancers
IL1beta+ macrophages fuel pathogenic inflammation in pancreatic cancer
Neuromodulation of subjective experience
Many psychoactive substances are used with the aim of altering experience, e.g. as analgesics, antidepressants or antipsychotics. These drugs act on specific receptor systems in the brain, including the opioid, serotonergic and dopaminergic systems. In this talk, I will summarise human drug studies targeting opioid receptors and their role for human experience, with focus on the experience of pain, stress, mood, and social connection. Opioids are only indicated for analgesia, due to their potential to cause addiction. When these regulations occurred, other known effects were relegated to side effects. This may be the cause of the prevalent myth that opioids are the most potent painkillers, despite evidence from head-to-head trials, Cochrane reviews and network meta-analyses that opioids are not superior to non-opioid analgesics in the treatment of acute or chronic non-cancer pain. However, due to the variability and diversity of opioid effects across contexts and experiences, some people under some circumstances may indeed benefit from prolonged treatment. I will present data on individual differences in opioid effects due to participant sex and stress induction. Understanding the effects of these commonly used medications on other aspects of the human experience is important to ensure correct use and to prevent unnecessary pain and addiction risk.
OpenSFDI: an open hardware project for label-free measurements of tissue optical properties with spatial frequency domain imaging
Spatial frequency domain imaging (SFDI) is a diffuse optical measurement technique that can quantify tissue optical absorption and reduced scattering on a pixel by-pixel basis. Measurements of absorption at different wavelengths enable the extraction of molar concentrations of tissue chromophores over a wide field, providing a noncontact and label-free means to assess tissue viability, oxygenation, microarchitecture, and molecular content. In this talk, I will describe openSFDI, an open-source guide for building a low-cost, small-footprint, multi-wavelength SFDI system capable of quantifying absorption and reduced scattering as well as oxyhemoglobin and deoxyhemoglobin concentrations in biological tissue. The openSFDI project has a companion website which provides a complete parts list along with detailed instructions for assembling the openSFDI system. I will also review several technological advances our lab has recently made, including the extension of SFDI to the shortwave infrared wavelength band (900-1300 nm), where water and lipids provide strong contrast. Finally, I will discuss several preclinical and clinical applications for SFDI, including applications related to cancer, dermatology, rheumatology, cardiovascular disease, and others.
Mechanisms Underlying the Persistence of Cancer-Related Fatigue
Cancer-related fatigue is a prominent and debilitating side effect of cancer and its treatment. It can develop prior to diagnosis, generally peaks during cancer treatment, and can persist long after treatment completion. Its mechanisms are multifactorial, and its expression is highly variable. Unfortunately, treatment options are limited. Our research uses syngeneic murine models of cancer and cisplatin-based chemotherapy to better understand these mechanisms. Our data indicate that both peripherally and centrally processes may contribute to the developmental of fatigue. These processes include metabolic alterations, mitochondrial dysfunction, pre-cachexia, and inflammation. However, our data has revealed that behavioral fatigue can persist even after the toxicity associated with cancer and its treatment recover. For example, running during cancer treatment attenuates kidney toxicity while also delaying recovery from fatigue-like behavior. Additionally, administration of anesthetics known to disrupt memory consolidation at the time treatment can promote recovery, and treatment-related cues can re-instate fatigue after recovery. Cancer-related fatigue can also promote habitual behavioral patterns, as observed using a devaluation task. We interpret this data to suggest that limit metabolic resources during cancer promote the utilization of habit-based behavioral strategies that serve to maintain fatigue behavior into survivorship. This line of work is exciting as it points us toward novel interventional targets for the treatment of persistent cancer-related fatigue.
Development of an open-source femtosecond fiber laser system for multiphoton microscopy
This talk will present a low-cost protocol for fabricating an easily constructed femtosecond (fs) fiber laser system suitable for routine multiphoton microscopy (1060–1080 nm, 1 W average power, 70 fs pulse duration, 30–70 MHz repetition rate). Concepts well-known in the laser physics community essential to proper laser operation, but generally obscure to biophysicists and biomedical engineers, will be clarified. The parts list (~$13K US dollars), the equipment list (~$40K+), and the intellectual investment needed to build the laser will be described. A goal of the presentation will be to engage with the audience to discuss trade-offs associated with a custom-built fs fiber laser versus purchasing a commercial system. I will also touch on my research group’s plans to further develop this custom laser system for multiplexed cancer imaging as well as recent developments in the field that promise even higher performance fs fiber lasers for approximately the same cost and ease of construction.
Aging promotes reactivation from metastatic melanoma dormancy
How does the primary tumor imprint a dormancy signature in disseminated tumor cells?
T cells specific for alpha-myosin drive immunotherapy-related myocarditis
CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor
Neuron-glial interactions in health and disease: from cognition to cancer
In the central nervous system, neuronal activity is a critical regulator of development and plasticity. Activity-dependent proliferation of healthy glial progenitors, oligodendrocyte precursor cells (OPCs), and the consequent generation of new oligodendrocytes contributes to adaptive myelination. This plasticity of myelin tunes neural circuit function and contributes to healthy cognition. The robust mitogenic effect of neuronal activity on normal oligodendroglial precursor cells, a putative cellular origin for many forms of glioma, suggests that dysregulated or “hijacked” mechanisms of myelin plasticity might similarly promote malignant cell proliferation in this devastating group of brain cancers. Indeed, neuronal activity promotes progression of both high-grade and low-grade glioma subtypes in preclinical models. Crucial mechanisms mediating activity-regulated glioma growth include paracrine secretion of BDNF and the synaptic protein neuroligin-3 (NLGN3). NLGN3 induces multiple oncogenic signaling pathways in the cancer cell, and also promotes glutamatergic synapse formation between neurons and glioma cells. Glioma cells integrate into neural circuits synaptically through neuron-to-glioma synapses, and electrically through potassium-evoked currents that are amplified through gap-junctional coupling between tumor cells This synaptic and electrical integration of glioma into neural circuits is central to tumor progression in preclinical models. Thus, neuron-glial interactions not only modulate neural circuit structure and function in the healthy brain, but paracrine and synaptic neuron-glioma interactions also play important roles in the pathogenesis of glial cancers. The mechanistic parallels between normal and malignant neuron-glial interactions underscores the extent to which mechanisms of neurodevelopment and plasticity are subverted by malignant gliomas, and the importance of understanding the neuroscience of cancer.
Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer
PHGDH heterogeneity potentiates cancer cell dissemination and metastasis
Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells
Identifying central mechanisms of glucocorticoid circadian rhythm dysfunction in breast cancer
The circadian release of endogenous glucocorticoids is essential in preparing and synchronizing the body’s daily physiological needs. Disruption in the rhythmic activity of glucocorticoids has been observed in individuals with a variety of cancer types, and blunting of this rhythm has been shown to predict cancer mortality and declines in quality of life. This suggests that a disrupted glucocorticoid rhythm is potentially a shared phenotype across cancers. However, where this phenomenon is driven by the cancer itself, and the causal mechanisms that link glucocorticoid rhythm dysfunction and cancer outcomes remain preliminary at best. The regulation of daily glucocorticoid activity has been well-characterized and is maintained, in part, by the coordinated response of the hypothalamic-pituitary-adrenal (HPA) axis, consisting of the suprachiasmatic nucleus (SCN) and corticotropin-releasing hormone-expressing neurons of the paraventricular nucleus of the hypothalamus (PVNCRH). Consequently, we set out to examine if cancer-induced glucocorticoid dysfunction is regulated by disruptions within these hypothalamic nuclei. In comparison to their tumor-free baseline, mammary tumor-bearing mice exhibited a blunting of glucocorticoid rhythms across multiple timepoints throughout the day, as measured by the overall levels and the slope of fecal corticosterone rhythms, during tumor progression. We further examined how peripheral tumors shape hypothalamic activity within the brain. Serial two-photon tomography for whole-brain cFos imaging suggests a disrupted activation of the PVN in mice with tumors. Additionally, we found GFP labeled CRH+ neurons within the PVN after injection of pseudorabies virus expressing GFP into the tumor, pointing to the PVN as a primary target disrupted by mammary tumors. Preliminary in vivo fiber photometry data show that PVNCRH neurons exhibit enhanced calcium activity during tumor progression, as compared to baseline (no tumor) activity. Taken together, this suggests that there may be an overactive HPA response during tumor progression, which in turn, may result in a subsequent negative feedback on glucocorticoid rhythms. Current studies are examining whether tumor progression modulates SCN calcium activity, how the transcriptional profile of PVNCRH neurons is changed, and test if manipulation of the neurocircuitry surrounding glucocorticoid rhythmicity alters tumor characteristics.
Radiopharmaceutical evaluation of novel bifunctional chelators and bioconjugates for tumour imaging and therapy
Bispidines (3,7-diazabicyclo[3.3.1]nonane) and their derivatives act as bifunctional chelators (BFC), combining the advantages of multidentate macrocyclic and acyclic ligands e.g. high kinetic inertness, rapid radiolabelling under mild conditions. This bicyclic chelator system shows a great diversity in terms of its denticity and type of functional groups, yielding a wide range of multidentate ligands that can bind a variety of different metal ions. In addition, they allow a facile functionalisation of targeting molecules such as peptides, peptidomimetics, and bispecic antibodies. Herein, examples of various bispidine complexes labelled with [64Cu]Cu2+, [111In]In3+, [ 177Lu]Lu3+ or [ 225Ac]Ac3+ will be presented which provide a picture of how different substituents inuence the coordination mode. Target-specic radiolabelled bispidine-based conjugates (e.g. peptides, antibody fragments, antibodies) investigated in vivo by positron emission or single-photon emission computed tomography will be presented and discussed in terms of their suitability for nuclear medicine applications.
Malignant synaptic plasticity in pediatric high-grade gliomas
Pediatric high-grade gliomas (pHGG) are a devastating group of diseases that urgently require novel therapeutic options. We have previously demonstrated that pHGGs directly synapse onto neurons and the subsequent tumor cell depolarization, mediated by calcium-permeable AMPA channels, promotes their proliferation. The regulatory mechanisms governing these postsynaptic connections are unknown. Here, we investigated the role of BDNF-TrkB signaling in modulating the plasticity of the malignant synapse. BDNF ligand activation of its canonical receptor, TrkB (which is encoded for by the gene NTRK2), has been shown to be one important modulator of synaptic regulation in the normal setting. Electrophysiological recordings of glioma cell membrane properties, in response to acute neurotransmitter stimulation, demonstrate in an inward current resembling AMPA receptor (AMPAR) mediated excitatory neurotransmission. Extracellular BDNF increases the amplitude of this glutamate-induced tumor cell depolarization and this effect is abrogated in NTRK2 knockout glioma cells. Upon examining tumor cell excitability using in situ calcium imaging, we found that BDNF increases the intensity of glutamate-evoked calcium transients in GCaMP6s expressing glioma cells. Western blot analysis indicates the tumors AMPAR properties are altered downstream of BDNF induced TrkB activation in glioma. Cell membrane protein capture (via biotinylation) and live imaging of pH sensitive GFP-tagged AMPAR subunits demonstrate an increase of calcium permeable channels at the tumors postsynaptic membrane in response to BDNF. We find that BDNF-TrkB signaling promotes neuron-to-glioma synaptogenesis as measured by high-resolution confocal and electron microscopy in culture and tumor xenografts. Our analysis of published pHGG transcriptomic datasets, together with brain slice conditioned medium experiments in culture, indicates the tumor microenvironment as the chief source of BDNF ligand. Disruption of the BDNF-TrkB pathway in patient-derived orthotopic glioma xenograft models, both genetically and pharmacologically, results in an increased overall survival and reduced tumor proliferation rate. These findings suggest that gliomas leverage normal mechanisms of plasticity to modulate the excitatory channels involved in synaptic neurotransmission and they reveal the potential to target the regulatory components of glioma circuit dynamics as a therapeutic strategy for these lethal cancers.
MBI Webinar on preclinical research into brain tumours and neurodegenerative disorders
WEBINAR 1 Breaking the barrier: Using focused ultrasound for the development of targeted therapies for brain tumours presented by Dr Ekaterina (Caty) Salimova, Monash Biomedical Imaging Glioblastoma multiforme (GBM) - brain cancer - is aggressive and difficult to treat as systemic therapies are hindered by the blood-brain barrier (BBB). Focused ultrasound (FUS) - a non-invasive technique that can induce targeted temporary disruption of the BBB – is a promising tool to improve GBM treatments. In this webinar, Dr Ekaterina Salimova will discuss the MRI-guided FUS modality at MBI and her research to develop novel targeted therapies for brain tumours. Dr Ekaterina (Caty) Salimova is a Research Fellow in the Preclinical Team at Monash Biomedical Imaging. Her research interests include imaging cardiovascular disease and MRI-guided focused ultrasound for investigating new therapeutic targets in neuro-oncology. - WEBINAR 2 Disposition of the Kv1.3 inhibitory peptide HsTX1[R14A], a novel attenuator of neuroinflammation presented by Sanjeevini Babu Reddiar, Monash Institute of Pharmaceutical Sciences The voltage-gated potassium channel (Kv1.3) in microglia regulates membrane potential and pro-inflammatory functions, and non-selective blockade of Kv1.3 has shown anti-inflammatory and disease improvement in animal models of Alzheimer’s and Parkinson’s diseases. Therefore, specific inhibitors of pro-inflammatory microglial processes with CNS bioavailability are urgently needed, as disease-modifying treatments for neurodegenerative disorders are lacking. In this webinar, PhD candidate Ms Sanju Reddiar will discuss the synthesis and biodistribution of a Kv1.3-inhibitory peptide using a [64Cu]Cu-DOTA labelled conjugate. Sanjeevini Babu Reddiar is a PhD student at the Monash Institute of Pharmaceutical Sciences. She is working on a project identifying the factors governing the brain disposition and blood-brain barrier permeability of a Kv1.3-blocking peptide.
Plasticity in gut microbe-host interactions
Plasticity in gut microbe-host interactions
Emerging Treatment Options in Psychiatry
The World Health Organization (WHO) estimates that untreated mental disorders accountfor 13% of the total global burden of disease, and by 2030, depression alone will be the leadingcause of disability around the world – outpacing heart disease, cancer, and HIV. This grim pictureis further compounded by the mental health burden delivered by the coronavirus pandemic.The lack of novel treatment options in psychiatry is restricted by a limited understanding in theneuroscience basis of mental disorders, availability of relevant biomarkers, poor predictability inanimal models, and high failure rates in psychiatric drug development. However, theannouncement in 2019 from the Federal Drug Administration (FDA) for approvals of newinterventions for treatment-resistant depression (intranasal esketamine) and postpartumdepression (i.v. brexanolone), demand critical attention. Novel public-private partnerships indrug discovery, new translational data on co-morbid biology, in particular the ascendance ofpsycho-immunology, have highlighted the arrival of a new frontier in biological psychiatryresearch for depressive disorders.
Directing the timing of maturation in human pluripotent stem cell-derived neurons
Retinoblastoma: Canadian global leadership
Swarms for people
As tiny robots become individually more sophisticated, and larger robots easier to mass produce, a breakdown of conventional disciplinary silos is enabling swarm engineering to be adopted across scales and applications, from nanomedicine to treat cancer, to cm-sized robots for large-scale environmental monitoring or intralogistics. This convergence of capabilities is facilitating the transfer of lessons learned from one scale to the other. Cm-sized robots that work in the 1000s may operate in a way similar to reaction-diffusion systems at the nanoscale, while sophisticated microrobots may have individual capabilities that allow them to achieve swarm behaviour reminiscent of larger robots with memory, computation, and communication. Although the physics of these systems are fundamentally different, much of their emergent swarm behaviours can be abstracted to their ability to move and react to their local environment. This presents an opportunity to build a unified framework for the engineering of swarms across scales that makes use of machine learning to automatically discover suitable agent designs and behaviours, digital twins to seamlessly move between the digital and physical world, and user studies to explore how to make swarms safe and trustworthy. Such a framework would push the envelope of swarm capabilities, towards making swarms for people.
Physics of flow sensing by cancer cells
Developing metal-based radiopharmaceuticals for imaging and therapy
Personalised medicine will be greatly enhanced with the introduction of new radiopharmaceuticals for the diagnosis and treatment of various cancers, as well as cardiovascular disease and brain disorders. The unprecedented interest in developing theranostic radiopharmaceuticals is mainly due to the recent clinical successes of radiometal-based products including: • 177LuDOTA-TATE (trade name Lutathera, FDA approved in 2018), a peptide-based tracer that is used for treating metastatic neuroendocrine tumours • Ga 68 PSMA-11 (FDA approved in 2020), a positron emission tomography agent for imaging prostate-specific membrane antigen positive lesions in men with prostate cancer. In this webinar, Dr Brett Paterson and PhD candidate Mr Cormac Kelderman will present their research on developing the chemistry and radiochemistry to produce new radiometal-based imaging and therapy agents. They will discuss the synthesis of new molecules, the optimisation of the radiochemistry, and results from preclinical evaluations. Dr Brett Paterson is a National Imaging Facility Fellow at Monash Biomedical Imaging and academic group leader in the School of Chemistry, Monash University. His research focuses on the development of radiochemistry and new radiopharmaceuticals. Cormac Kelderman is a PhD candidate under the supervision of Dr Brett Paterson in the School of Chemistry, Monash University. His research focuses on developing new bis(thiosemicarbazone) chelators for technetium-99m SPECT imaging.
3D Printing Cellular Communities: Mammalian Cells, Bacteria, And Beyond
While the motion and collective behavior of cells are well-studied on flat surfaces or in unconfined liquid media, in most natural settings, cells thrive in complex 3D environments. Bioprinting processes are capable of structuring cells in 3D and conventional bioprinting approaches address this challenge by embedding cells in bio-degradable polymer networks. However, heterogeneity in network structure and biodegradation often preclude quantitative studies of cell behavior in specified 3D architectures. Here, I will present a new approach to 3D bioprinting of cellular communities that utilizes jammed, granular polyelectrolyte microgels as a support medium. The self-healing nature of this medium allows the creation of highly precise cellular communities and tissue-like structures by direct injection of cells inside the 3D medium. Further, the transparent nature of this medium enables precise characterization of cellular behavior. I will describe two examples of my work using this platform to study the behavior of two different classes of cells in 3D. First, I will describe how we interrogate the growth, viability, and migration of mammalian cells—ranging from epithelial cells, cancer cells, and T cells—in the 3D pore space. Second, I will describe how we interrogate the migration of E. coli bacteria through the 3D pore space. Direct visualization enables us to reveal a new mode of motility exhibited by individual cells, in stark contrast to the paradigm of run-and-tumble motility, in which cells are intermittently and transiently trapped as they navigate the pore space; further, analysis of these dynamics enables prediction of single-cell transport over large length and time scales. Moreover, we show that concentrated populations of E. coli can collectively migrate through a porous medium—despite being strongly confined—by chemotactically “surfing” a self-generated nutrient gradient. Together, these studies highlight how the jammed microgel medium provides a powerful platform to design and interrogate complex cellular communities in 3D—with implications for tissue engineering, microtissue mechanics, studies of cellular interactions, and biophysical studies of active matter.
Toxic effect of pathogenic tau on the nucleus
The nuclear envelope is a lipid bilayer that encases the genome and provides a physical boundary between the cytoplasm and the nucleoplasm. While the nucleus is typically depicted as a sphere encircled by a smooth surface of nuclear envelope, the smooth exterior can be interrupted by tubular invaginations of the nuclear envelope into the deep nuclear interior. Such structures are termed the "nucleoplasmic reticulum." Increased frequency of nuclear envelope invagination occurs in disease states including various cancers, viral infections, and laminopathies, a group of heterogeneous disorders that arise due to mutations in the gene encoding lamin A. A significant increase in the frequency of nuclear envelope invaginations in the human Alzheimer's disease brain has recently been reported. Nuclear envelope invaginations are caused by pathogenic tau, one of the two major pathological hallmarks of Alzheimer's disease. Pathogenic tau-induced dysfunction of the lamin nucleoskeleton drives nuclear envelope invagination and consequent accumulation of polyadenylated RNA within invaginations, both of which drive neuronal death. Our ongoing studies suggest that maintaining proper cytoskeletal, nucleoskeletal, and genomic architecture are critical for survival and function of adult neurons.
Opposite response of cancer cells to substrate viscoelasticity
Anatomical decision-making by cellular collectives: bioelectrical pattern memories, regeneration, and synthetic living organisms
A key question for basic biology and regenerative medicine concerns the way in which evolution exploits physics toward adaptive form and function. While genomes specify the molecular hardware of cells, what algorithms enable cellular collectives to reliably build specific, complex, target morphologies? Our lab studies the way in which all cells, not just neurons, communicate as electrical networks that enable scaling of single-cell properties into collective intelligences that solve problems in anatomical feature space. By learning to read, interpret, and write bioelectrical information in vivo, we have identified some novel controls of growth and form that enable incredible plasticity and robustness in anatomical homeostasis. In this talk, I will describe the fundamental knowledge gaps with respect to anatomical plasticity and pattern control beyond emergence, and discuss our efforts to understand large-scale morphological control circuits. I will show examples in embryogenesis, regeneration, cancer, and synthetic living machines. I will also discuss the implications of this work for not only regenerative medicine, but also for fundamental understanding of the origin of bodyplans and the relationship between genomes and functional anatomy.
Brain cancer and the single-cell architecture of human brain development
The assembly of a functional neocortex
“Rigidity and Fluidity in Biological Tissue”
The coordinated migration of groups of cells underlies many biological processes, including embryo development, wound healing and cancer metastasis. In many of these situations, tissues are able to tune themselves between liquid-like states, where cells flow collectively as in a liquid, and solid-like states that can support shear stresses. In this talk I will describe mesoscopic models of cell assemblies inspired by active matter physics to examine the roles of cell motility, cell crowding and the interplay of contractility and adhesion in controlling the rheological state of biological tissue.
Physics of Living Matter 15
Over the past five years, our understanding of how mechanical processes act across multiple scales to direct morphogenesis has advanced significantly. Yet, there remain numerous open questions, including the role of mechanics in tissue shaping, cancer dissemination, and cellular aging. The From Molecules to Organs:The Mechanobiology of Morphogenesis conference will bring together world leaders in the fields of mechanobiology and morphogenesis. The three-day conference will span scales, from single molecules up to whole organisms.
Physics of Living Matter 15
Over the past five years, our understanding of how mechanical processes act across multiple scales to direct morphogenesis has advanced significantly. Yet, there remain numerous open questions, including the role of mechanics in tissue shaping, cancer dissemination, and cellular aging. The From Molecules to Organs:The Mechanobiology of Morphogenesis conference will bring together world leaders in the fields of mechanobiology and morphogenesis. The three-day conference will span scales, from single molecules up to whole organisms.
Sparks, flames, and inferno: epileptogenesis in the glioblastoma microenvironment
Glioblastoma cells trigger pharmacoresistant seizures that may promote tumor growth and diminish the quality of remaining life. To define the relationship between growth of glial tumors and their neuronal microenvironment, and to identify genomic biomarkers and mechanisms that may point to better prognosis and treatment of drug resistant epilepsy in brain cancer, we are analyzing a new generation of genetically defined CRISPR/in utero electroporation inborn glioblastoma (GBM) tumor models engineered in mice. The molecular pathophysiology of glioblastoma cells and surrounding neurons and untransformed astrocytes are compared at serial stages of tumor development. Initial studies reveal that epileptiform EEG spiking is a very early and reliable preclinical signature of GBM expansion in these mice, followed by rapidly progressive seizures and death within weeks. FACS-sorted transcriptomic analysis of cortical astrocytes reveals the expansion of a subgroup enriched in pro-synaptogenic genes that may drive hyperexcitability, a novel mechanism of epileptogenesis. Using a prototypical GBM IUE model, we systematically define and correlate the earliest appearance of cortical hyperexcitability with progressive cortical tumor cell invasion, including spontaneous episodes of spreading cortical depolarization, innate inflammation, and xCT upregulation in the peritumoral microenvironment. Blocking this glutamate exporter reduces seizure load. We show that the host genome contributes to seizure risk by generating tumors in a monogenic deletion strain (MapT/tau -/-) that raises cortical seizure threshold. We also show that the tumor variant profile determines epilepsy risk. Our genetic dissection approach sets the stage to broadly explore the developmental biology of personalized tumor/host interactions in mice engineered with novel human tumor mutations in specified glial cell lineages.
Targeting the Endocannabinoid System for Management of Chemotherapy, HIV and Antiretroviral-Induced Neuropathic Pain
Chemotherapeutic drugs (used for treating cancer), HIV infection and antiretroviral therapy (ART) can independently cause difficult-to-manage painful neuropathy. Paclitaxel, a chemotherapeutic drug, for example is associated with high incidence of peripheral neuropathy, around 71% of the patients of which 27% of these develop neuropathic pain. Use of cannabis or phytocannabinoids has been reported to improve pain measures in patients with neuropathic pain, including painful HIV-associated sensory neuropathy and cancer pain. Phytocannabinoids and endocannabinoids, such as anandamide and 2-arachidonoylglycerol (2-AG), produce their effects via cannabinoid (CB) receptors, which are present both in the periphery and central nervous system. Endocannabinoids are synthesized in an “on demand” fashion and are degraded by various enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL). Various studies, including those from our group, suggest that there are changes in gene and protein expression of endocannabinoid molecules during chemotherapy-induced neuropathic pain (CINP), HIV and antiretroviral-induced neuropathic pain. Analysis of endocannabinoid molecule expression in the brain, spinal cord and paw skin using LC-MS/MS show that there is a specific deficiency of the endocannabinoids 2-AG and/or anandamide in the periphery during CINP. Various drugs including endocannabinoids, cannabidiol, inhibitors of FAAH and MGL, CB receptor agonists, desipramine and coadministered indomethacin plus minocycline have been found to either prevent the development and/or attenuate established CINP, HIV and antiretroviral-induced neuropathic pain in a CB receptor-dependent manner. The results available suggest that targeting the endocannabinoid system for prevention and treatment of CINP, HIV-associated neuropathic pain and antiretroviral-induced neuropathic pain is a plausible therapeutic option.
“Discovery of Novel Gain-of-Function Mutations Guided by Structure-Based Deep Learning”
Life of biological molecules spans time and length scales relevant at atomic to cellular time and length scales. Hence, novel molecular modeling approaches are required to be inherently multi-scale. Here we describe multiple methodologies developed in our laboratory: rapid discrete molecular dynamics simulation algorithm, protein design and structural refinement tools. Using these methodologies, we describe therapeutic strategies to combat this HIV and cancer, as well as design novel approaches for controlling proteins in living cells and organisms.
Dynamics of microbiota communities during physical perturbation
The consortium of microbes living in and on our bodies is intimately connected with human biology and deeply influenced by physical forces. Despite incredible gains in describing this community, and emerging knowledge of the mechanisms linking it to human health, understanding the basic physical properties and responses of this ecosystem has been comparatively neglected. Most diseases have significant physical effects on the gut; diarrhea alters osmolality, fever and cancer increase temperature, and bowel diseases affect pH. Furthermore, the gut itself is comprised of localized niches that differ significantly in their physical environment, and are inhabited by different commensal microbes. Understanding the impact of common physical factors is necessary for engineering robust microbiota members and communities; however, our knowledge of how they affect the gut ecosystem is poor. We are investigating how changes in osmolality affect the host and the microbial community and lead to mechanical shifts in the cellular environment. Osmotic perturbation is extremely prevalent in humans, caused by the use of laxatives, lactose intolerance, or celiac disease. In our studies we monitored osmotic shock to the microbiota using a comprehensive and novel approach, which combined in vivo experiments to imaging, physical measurements, computational analysis and highly controlled microfluidic experiments. By bridging several disciplines, we developed a mechanistic understanding of the processes involved in osmotic diarrhea, linking single-cell biophysical changes to large-scale community dynamics. Our results indicate that physical perturbations can profoundly and permanently change the competitive and ecological landscape of the gut, and affect the cell wall of bacteria differentially, depending on their mechanical characteristics.
Cognitive performance is enhanced by aerobic-strength training, and related to physical fitness and reduced platinum levels in testicular germ cell cancer survivors
FENS Forum 2024
Polymeric nanoparticles for targeted cancer therapy
FENS Forum 2024
Smart Glia: Investigating the nervous system plasticity upon cancer
FENS Forum 2024
In vitro modelling of immune effector cell-associated neurotoxicity syndrome (ICANS) resulting from CAR T-cell therapy treating haematological cancer
FENS Forum 2024