Cell Types
cell types
Dr. Torben Ott
• Research in systems neuroscience with a focus on dissecting the cortical circuits for decision-making • Study dopamine and serotonin neuromodulation of neural networks that enable adaptive decisions • Use of state-of-the-art experimental tools such as quantitative psychophysics, electrophysiology and optogenetics in rats • Collaborative development of analyses and computational models of behavior, neuronal populations, and cortical functions
Spike train structure of cortical transcriptomic populations in vivo
The cortex comprises many neuronal types, which can be distinguished by their transcriptomes: the sets of genes they express. Little is known about the in vivo activity of these cell types, particularly as regards the structure of their spike trains, which might provide clues to cortical circuit function. To address this question, we used Neuropixels electrodes to record layer 5 excitatory populations in mouse V1, then transcriptomically identified the recorded cell types. To do so, we performed a subsequent recording of the same cells using 2-photon (2p) calcium imaging, identifying neurons between the two recording modalities by fingerprinting their responses to a “zebra noise” stimulus and estimating the path of the electrode through the 2p stack with a probabilistic method. We then cut brain slices and performed in situ transcriptomics to localize ~300 genes using coppaFISH3d, a new open source method, and aligned the transcriptomic data to the 2p stack. Analysis of the data is ongoing, and suggests substantial differences in spike time coordination between ET and IT neurons, as well as between transcriptomic subtypes of both these excitatory types.
Astrocytes: From Metabolism to Cognition
Different brain cell types exhibit distinct metabolic signatures that link energy economy to cellular function. Astrocytes and neurons, for instance, diverge dramatically in their reliance on glycolysis versus oxidative phosphorylation, underscoring that metabolic fuel efficiency is not uniform across cell types. A key factor shaping this divergence is the structural organization of the mitochondrial respiratory chain into supercomplexes. Specifically, complexes I (CI) and III (CIII) form a CI–CIII supercomplex, but the degree of this assembly varies by cell type. In neurons, CI is predominantly integrated into supercomplexes, resulting in highly efficient mitochondrial respiration and minimal reactive oxygen species (ROS) generation. Conversely, in astrocytes, a larger fraction of CI remains unassembled, freely existing apart from CIII, leading to reduced respiratory efficiency and elevated mitochondrial ROS production. Despite this apparent inefficiency, astrocytes boast a highly adaptable metabolism capable of responding to diverse stressors. Their looser CI–CIII organization allows for flexible ROS signaling, which activates antioxidant programs via transcription factors like Nrf2. This modular architecture enables astrocytes not only to balance energy production but also to support neuronal health and influence complex organismal behaviors.
Neural architectures: what are they good for anyway?
The brain has a highly complex structure in terms of cell types and wiring between different regions. What is it for, if anything? I'll start this talk by asking what might an answer to this question even look like given that we can't run an alternative universe where our brains are structured differently. (Preview: we can do this with models!) I'll then talk about some of our work in two areas: (1) does the modular structure of the brain contribute to specialisation of function? (2) how do different cell types and architectures contribute to multimodal sensory processing?
Sensory cognition
This webinar features presentations from SueYeon Chung (New York University) and Srinivas Turaga (HHMI Janelia Research Campus) on theoretical and computational approaches to sensory cognition. Chung introduced a “neural manifold” framework to capture how high-dimensional neural activity is structured into meaningful manifolds reflecting object representations. She demonstrated that manifold geometry—shaped by radius, dimensionality, and correlations—directly governs a population’s capacity for classifying or separating stimuli under nuisance variations. Applying these ideas as a data analysis tool, she showed how measuring object-manifold geometry can explain transformations along the ventral visual stream and suggested that manifold principles also yield better self-supervised neural network models resembling mammalian visual cortex. Turaga described simulating the entire fruit fly visual pathway using its connectome, modeling 64 key cell types in the optic lobe. His team’s systematic approach—combining sparse connectivity from electron microscopy with simple dynamical parameters—recapitulated known motion-selective responses and produced novel testable predictions. Together, these studies underscore the power of combining connectomic detail, task objectives, and geometric theories to unravel neural computations bridging from stimuli to cognitive functions.
Brain-Wide Compositionality and Learning Dynamics in Biological Agents
Biological agents continually reconcile the internal states of their brain circuits with incoming sensory and environmental evidence to evaluate when and how to act. The brains of biological agents, including animals and humans, exploit many evolutionary innovations, chiefly modularity—observable at the level of anatomically-defined brain regions, cortical layers, and cell types among others—that can be repurposed in a compositional manner to endow the animal with a highly flexible behavioral repertoire. Accordingly, their behaviors show their own modularity, yet such behavioral modules seldom correspond directly to traditional notions of modularity in brains. It remains unclear how to link neural and behavioral modularity in a compositional manner. We propose a comprehensive framework—compositional modes—to identify overarching compositionality spanning specialized submodules, such as brain regions. Our framework directly links the behavioral repertoire with distributed patterns of population activity, brain-wide, at multiple concurrent spatial and temporal scales. Using whole-brain recordings of zebrafish brains, we introduce an unsupervised pipeline based on neural network models, constrained by biological data, to reveal highly conserved compositional modes across individuals despite the naturalistic (spontaneous or task-independent) nature of their behaviors. These modes provided a scaffolding for other modes that account for the idiosyncratic behavior of each fish. We then demonstrate experimentally that compositional modes can be manipulated in a consistent manner by behavioral and pharmacological perturbations. Our results demonstrate that even natural behavior in different individuals can be decomposed and understood using a relatively small number of neurobehavioral modules—the compositional modes—and elucidate a compositional neural basis of behavior. This approach aligns with recent progress in understanding how reasoning capabilities and internal representational structures develop over the course of learning or training, offering insights into the modularity and flexibility in artificial and biological agents.
Clonal analysis at single cell level helps to understand neural crest development
Recent research on the neural crest has revealed the multipotency and plasticity of nerve-associated Schwann cell precursors, which can differentiate into diverse cell types, including parasympathetic neurons, neuroendocrine cells, and mesenchymal stem cells. These findings challenge the traditional view of peripheral nerves, highlighting their role as niches for migratory progenitor cells that contribute to tissue formation and regeneration.
Roles of inhibition in stabilizing and shaping the response of cortical networks
Inhibition has long been thought to stabilize the activity of cortical networks at low rates, and to shape significantly their response to sensory inputs. In this talk, I will describe three recent collaborative projects that shed light on these issues. (1) I will show how optogenetic excitation of inhibition neurons is consistent with cortex being inhibition stabilized even in the absence of sensory inputs, and how this data can constrain the coupling strengths of E-I cortical network models. (2) Recent analysis of the effects of optogenetic excitation of pyramidal cells in V1 of mice and monkeys shows that in some cases this optogenetic input reshuffles the firing rates of neurons of the network, leaving the distribution of rates unaffected. I will show how this surprising effect can be reproduced in sufficiently strongly coupled E-I networks. (3) Another puzzle has been to understand the respective roles of different inhibitory subtypes in network stabilization. Recent data reveal a novel, state dependent, paradoxical effect of weakening AMPAR mediated synaptic currents onto SST cells. Mathematical analysis of a network model with multiple inhibitory cell types shows that this effect tells us in which conditions SST cells are required for network stabilization.
Molecular Characterization of Retinal Cell Types: Insights into Evolutionary Origins and Regional Specializations
Of glia and macrophages, signaling hubs in development and homeostasis
We are interested in the biology of macrophages, which represent the first line of defense against pathogens. In Drosophila, the embryonic hemocytes arise from the mesoderm whereas glial cells arise from multipotent precursors in the neurogenic region. These cell types represent, respectively, the macrophages located outside and within the nervous system (similar to vertebrate microglia). Thus, despite their different origin, hemocytes and glia display common functions. In addition, both cell types express the Glide/Gcm transcription factor, which plays an evolutionarily conserved role as an anti-inflammatory factor. Moreover, embryonic hemocytes play an evolutionarily conserved and fundamental role in development. The ability to migrate and to contact different tissues/organs most likely allow macrophages to function as signaling hubs. The function of macrophages beyond the recognition of the non-self calls for revisiting the biology of these heterogeneous and plastic cells in physiological and pathological conditions across evolution.
Cellular and genetic mechanisms of cerebral cortex folding
One of the most prominent features of the human brain is the fabulous size of the cerebral cortex and its intricate folding, both of which emerge during development. Over the last few years, work from my lab has shown that specific cellular and genetic mechanisms play central roles in cortex folding, particularly linked to neural stem and progenitor cells. Key mechanisms include high rates of neurogenesis, high abundance of basal Radial Glia Cells (bRGCs), and neuron migration, all of which are intertwined during development. We have also shown that primary cortical folds follow highly stereotyped patterns, defined by a spatial-temporal protomap of gene expression within germinal layers of the developing cortex. I will present recent findings from my laboratory revealing novel cellular and genetic mechanisms that regulate cortex expansion and folding. We have uncovered the contribution of epigenetic regulation to the establishment of the cortex folding protomap, modulating the expression levels of key transcription factors that control progenitor cell proliferation and cortex folding. At the single cell level, we have identified an unprecedented diversity of cortical progenitor cell classes in the ferret and human embryonic cortex. These are differentially enriched in gyrus versus sulcus regions and establish parallel cell lineages, not observed in mouse. Our findings show that genetic and epigenetic mechanisms in gyrencephalic species diversify cortical progenitor cell types and implement parallel cell linages, driving the expansion of neurogenesis and patterning cerebral cortex folds.
Movements and engagement during decision-making
When experts are immersed in a task, a natural assumption is that their brains prioritize task-related activity. Accordingly, most efforts to understand neural activity during well-learned tasks focus on cognitive computations and task-related movements. Surprisingly, we observed that during decision-making, the cortex-wide activity of multiple cell types is dominated by movements, especially “uninstructed movements”, that are spontaneously expressed. These observations argue that animals execute expert decisions while performing richly varied, uninstructed movements that profoundly shape neural activity. To understand the relationship between these movements and decision-making, we examined the movements more closely. We tested whether the magnitude or the timing of the movements was correlated with decision-making performance. To do this, we partitioned movements into two groups: task-aligned movements that were well predicted by task events (such as the onset of the sensory stimulus or choice) and task independent movement (TIM) that occurred independently of task events. TIM had a reliable, inverse correlation with performance in head-restrained mice and freely moving rats. This hinted that the timing of spontaneous movements could indicate periods of disengagement. To confirm this, we compared TIM to the latent behavioral states recovered by a hidden Markov model with Bernoulli generalized linear model observations (GLM-HMM) and found these, again, to be inversely correlated. Finally, we examined the impact of these behavioral states on neural activity. Surprisingly, we found that the same movement impacts neural activity more strongly when animals are disengaged. An intriguing possibility is that these larger movement signals disrupt cognitive computations, leading to poor decision-making performance. Taken together, these observations argue that movements and cognitionare closely intertwined, even during expert decision-making.
Spatial and Single Cell Genomics for Next Generation Neuroscience
The advent of next generation sequencing ushered in a ten-year period of exuberant technology development, enabling the quantification of gene expression and epigenetic features within individual cells, and within intact tissue sections. In this seminar, I will outline our technological contributions, beginning with the development of Drop-seq, a method for high-throughput single cell analysis, followed by the development of Slide-seq, a technique for measuring genome-wide expression at 10 micron spatial resolution. Using a combination of these techniques, we recently constructed a comprehensive cell type atlas of the adult mouse brain, positioning cell types within individual brain structures. I will discuss the major findings from this dataset, including emerging principles of neurotransmission, and the localization of disease gene signatures to specific cell types. Finally, I will introduce a new spatial technology, Slide-tags, that unifies single cell and spatial genomics into a single, highly scalable assay.
Comparative transcriptomics of retinal cell types
A specialized role for entorhinal attractor dynamics in combining path integration and landmarks during navigation
During navigation, animals estimate their position using path integration and landmarks. In a series of two studies, we used virtual reality and electrophysiology to dissect how these inputs combine to generate the brain’s spatial representations. In the first study (Campbell et al., 2018), we focused on the medial entorhinal cortex (MEC) and its set of navigationally-relevant cell types, including grid cells, border cells, and speed cells. We discovered that attractor dynamics could explain an array of initially puzzling MEC responses to virtual reality manipulations. This theoretical framework successfully predicted both MEC grid cell responses to additional virtual reality manipulations, as well as mouse behavior in a virtual path integration task. In the second study (Campbell*, Attinger* et al., 2021), we asked whether these principles generalize to other navigationally-relevant brain regions. We used Neuropixels probes to record thousands of neurons from MEC, primary visual cortex (V1), and retrosplenial cortex (RSC). In contrast to the prevailing view that “everything is everywhere all at once,” we identified a unique population of MEC neurons, overlapping with grid cells, that became active with striking spatial periodicity while head-fixed mice ran on a treadmill in darkness. These neurons exhibited unique cue-integration properties compared to other MEC, V1, or RSC neurons: they remapped more readily in response to conflicts between path integration and landmarks; they coded position prospectively as opposed to retrospectively; they upweighted path integration relative to landmarks in conditions of low visual contrast; and as a population, they exhibited a lower-dimensional activity structure. Based on these results, our current view is that MEC attractor dynamics play a privileged role in resolving conflicts between path integration and landmarks during navigation. Future work should include carefully designed causal manipulations to rigorously test this idea, and expand the theoretical framework to incorporate notions of uncertainty and optimality.
Minute-scale periodic sequences in medial entorhinal cortex
The medial entorhinal cortex (MEC) hosts many of the brain’s circuit elements for spatial navigation and episodic memory, operations that require neural activity to be organized across long durations of experience. While location is known to be encoded by a plethora of spatially tuned cell types in this brain region, little is known about how the activity of entorhinal cells is tied together over time. Among the brain’s most powerful mechanisms for neural coordination are network oscillations, which dynamically synchronize neural activity across circuit elements. In MEC, theta and gamma oscillations provide temporal structure to the neural population activity at subsecond time scales. It remains an open question, however, whether similarly coordination occurs in MEC at behavioural time scales, in the second-to-minute regime. In this talk I will show that MEC activity can be organized into a minute-scale oscillation that entrains nearly the entire cell population, with periods ranging from 10 to 100 seconds. Throughout this ultraslow oscillation, neural activity progresses in periodic and stereotyped sequences. The oscillation sometimes advances uninterruptedly for tens of minutes, transcending epochs of locomotion and immobility. Similar oscillatory sequences were not observed in neighboring parasubiculum or in visual cortex. The ultraslow periodic sequences in MEC may have the potential to couple its neurons and circuits across extended time scales and to serve as a scaffold for processes that unfold at behavioural time scales.
Microglial efferocytosis: Diving into the Alzheimer's Disease gene pool
Genome-wide association studies and functional genomics studies have linked specific cell types, genes, and pathways to Alzheimer’s disease (AD) risk. In particular, AD risk alleles primarily affect the abundance or structure, and thus the activity, of genes expressed in macrophages, strongly implicating microglia (the brain-resident macrophages) in the etiology of AD. These genes converge on pathways (endocytosis/phagocytosis, cholesterol metabolism, and immune response) with critical roles in core macrophage functions such as efferocytosis. Here, we review these pathways, highlighting relevant genes identified in the latest AD genetics and genomics studies, and describe how they may contribute to AD pathogenesis. Investigating the functional impact of AD-associated variants and genes in microglia is essential for elucidating disease risk mechanisms and developing effective therapeutic approaches." https://doi.org/10.1016/j.neuron.2022.10.015
Cholesterol and matrisome pathways dysregulated in Alzheimer’s disease brain astrocytes and microglia
The impact of apolipoprotein E ε4 (APOE4), the strongest genetic risk factor for Alzheimer’s disease (AD), on human brain cellular function remains unclear. Here, we investigated the effects of APOE4 on brain cell types derived from population and isogenic human induced pluripotent stem cells, post-mortem brain, and APOE targeted replacement mice. Population and isogenic models demonstrate that APOE4 local haplotype, rather than a single risk allele, contributes to risk. Global transcriptomic analyses reveal human-specific, APOE4-driven lipid metabolic dysregulation in astrocytes and microglia. APOE4 enhances de novo cholesterol synthesis despite elevated intracellular cholesterol due to lysosomal cholesterol sequestration in astrocytes. Further, matrisome dysregulation is associated with upregulated chemotaxis, glial activation, and lipid biosynthesis in astrocytes co-cultured with neurons, which recapitulates altered astrocyte matrisome signaling in human brain. Thus, APOE4 initiates glia-specific cell and non-cell autonomous dysregulation that may contribute to increased AD risk." https://doi.org/10.1016/j.cell.2022.05.017
Behavioral Timescale Synaptic Plasticity (BTSP) for biologically plausible credit assignment across multiple layers via top-down gating of dendritic plasticity
A central problem in biological learning is how information about the outcome of a decision or behavior can be used to reliably guide learning across distributed neural circuits while obeying biological constraints. This “credit assignment” problem is commonly solved in artificial neural networks through supervised gradient descent and the backpropagation algorithm. In contrast, biological learning is typically modelled using unsupervised Hebbian learning rules. While these rules only use local information to update synaptic weights, and are sometimes combined with weight constraints to reflect a diversity of excitatory (only positive weights) and inhibitory (only negative weights) cell types, they do not prescribe a clear mechanism for how to coordinate learning across multiple layers and propagate error information accurately across the network. In recent years, several groups have drawn inspiration from the known dendritic non-linearities of pyramidal neurons to propose new learning rules and network architectures that enable biologically plausible multi-layer learning by processing error information in segregated dendrites. Meanwhile, recent experimental results from the hippocampus have revealed a new form of plasticity—Behavioral Timescale Synaptic Plasticity (BTSP)—in which large dendritic depolarizations rapidly reshape synaptic weights and stimulus selectivity with as little as a single stimulus presentation (“one-shot learning”). Here we explore the implications of this new learning rule through a biologically plausible implementation in a rate neuron network. We demonstrate that regulation of dendritic spiking and BTSP by top-down feedback signals can effectively coordinate plasticity across multiple network layers in a simple pattern recognition task. By analyzing hidden feature representations and weight trajectories during learning, we show the differences between networks trained with standard backpropagation, Hebbian learning rules, and BTSP.
What shapes the transcriptional identity of a neuron?
Within the vertebrate neocortex and other telencephalic structures, molecularly-defined neurons tend to segregate at first order into GABAergic types and glutamatergic types. Two fundamental questions arise: (1) do non-telencephalic neurons similarly segregate by neurotransmitter status, and (2) do GABAergic (or glutamatergic) types sampled in different structures share many molecular features in common, beyond the few genes directly responsible for neurotransmitter synthesis and release? To address these questions, we used single-nucleus RNA sequencing, analyzing over 2.4 million brain cells sampled from 16 locations in a primate (the common marmoset). Unexpectedly, we find the answer to both is “no”. I will discuss implications for generalizing associations between neurotransmitter utilization and other phenotypes, and share ongoing efforts to map the biodistributions of cell types in the primate brain.
Pro-regenerative functions of microglia in demyelinating diseases
Our goal is to understand why myelin repair fails in multiple sclerosis and to develop regenerative medicines for the nervous system. A central obstacle for progress in this area has been the complex biology underlying the response to CNS injury. Acute CNS damage is followed by a multicellular response that encompasses different cell types and spans different scales. Currently, we do not understand which factors determines lesion recovery. Failure of inflammation to resolve is a key underlying reason of poor regeneration, and one focus is therefore on the biology of microglia during de- and remyelination, and their cross talk to other cells, in particular oligodendrocytes and the progenitor cells. In addition, we are exploring the link between lipid metabolism and inflammation, and its role in the regulation of regeneration. I will report about our recent progress in our understanding of how microglia promote regeneration in the CNS.
What the fly’s eye tells the fly’s brain…and beyond
Fly Escape Behaviors: Flexible and Modular We have identified a set of escape maneuvers performed by a fly when confronted by a looming object. These escape responses can be divided into distinct behavioral modules. Some of the modules are very stereotyped, as when the fly rapidly extends its middle legs to jump off the ground. Other modules are more complex and require the fly to combine information about both the location of the threat and its own body posture. In response to an approaching object, a fly chooses some varying subset of these behaviors to perform. We would like to understand the neural process by which a fly chooses when to perform a given escape behavior. Beyond an appealing set of behaviors, this system has two other distinct advantages for probing neural circuitry. First, the fly will perform escape behaviors even when tethered such that its head is fixed and neural activity can be imaged or monitored using electrophysiology. Second, using Drosophila as an experimental animal makes available a rich suite of genetic tools to activate, silence, or image small numbers of cells potentially involved in the behaviors. Neural Circuits for Escape Until recently, visually induced escape responses have been considered a hardwired reflex in Drosophila. White-eyed flies with deficient visual pigment will perform a stereotyped middle-leg jump in response to a light-off stimulus, and this reflexive response is known to be coordinated by the well-studied giant fiber (GF) pathway. The GFs are a pair of electrically connected, large-diameter interneurons that traverse the cervical connective. A single GF spike results in a stereotyped pattern of muscle potentials on both sides of the body that extends the fly's middle pair of legs and starts the flight motor. Recently, we have found that a fly escaping a looming object displays many more behaviors than just leg extension. Most of these behaviors could not possibly be coordinated by the known anatomy of the GF pathway. Response to a looming threat thus appears to involve activation of numerous different neural pathways, which the fly may decide if and when to employ. Our goal is to identify the descending pathways involved in coordinating these escape behaviors as well as the central brain circuits, if any, that govern their activation. Automated Single-Fly Screening We have developed a new kind of high-throughput genetic screen to automatically capture fly escape sequences and quantify individual behaviors. We use this system to perform a high-throughput genetic silencing screen to identify cell types of interest. Automation permits analysis at the level of individual fly movements, while retaining the capacity to screen through thousands of GAL4 promoter lines. Single-fly behavioral analysis is essential to detect more subtle changes in behavior during the silencing screen, and thus to identify more specific components of the contributing circuits than previously possible when screening populations of flies. Our goal is to identify candidate neurons involved in coordination and choice of escape behaviors. Measuring Neural Activity During Behavior We use whole-cell patch-clamp electrophysiology to determine the functional roles of any identified candidate neurons. Flies perform escape behaviors even when their head and thorax are immobilized for physiological recording. This allows us to link a neuron's responses directly to an action.
Neural Circuit Mechanisms of Pattern Separation in the Dentate Gyrus
The ability to discriminate different sensory patterns by disentangling their neural representations is an important property of neural networks. While a variety of learning rules are known to be highly effective at fine-tuning synapses to achieve this, less is known about how different cell types in the brain can facilitate this process by providing architectural priors that bias the network towards sparse, selective, and discriminable representations. We studied this by simulating a neuronal network modelled on the dentate gyrus—an area characterised by sparse activity associated with pattern separation in spatial memory tasks. To test the contribution of different cell types to these functions, we presented the model with a wide dynamic range of input patterns and systematically added or removed different circuit elements. We found that recruiting feedback inhibition indirectly via recurrent excitatory neurons proved particularly helpful in disentangling patterns, and show that simple alignment principles for excitatory and inhibitory connections are a highly effective strategy.
Reconstructing inhibitory circuits in a damaged brain
Inhibitory interneurons govern the sparse activation of principal cells that permits appropriate behaviors, but they among the most vulnerable to brain damage. Our recent work has demonstrated important roles for inhibitory neurons in disorders of brain development, injury and epilepsy. These studies have motivated our ongoing efforts to understand how these cells operate at the synaptic, circuit and behavioral levels and in designing new technologies targeting specific populations of interneurons for therapy. I will discuss our recent efforts examining the role of interneurons in traumatic brain injury and in designing cell transplantation strategies - based on the generation of new inhibitory interneurons - that enable precise manipulation of inhibitory circuits in the injured brain. I will also discuss our ongoing efforts using monosynaptic virus tracing and whole-brain clearing methods to generate brain-wide maps of inhibitory circuits in the rodent brain. By comprehensively mapping the wiring of individual cell types on a global scale, we have uncovered a fundamental strategy to sustain and optimize inhibition following traumatic brain injury that involves spatial reorganization of local and long-range inputs to inhibitory neurons. These recent findings suggest that brain damage, even when focally restricted, likely has a far broader affect on brain-wide neural function than previously appreciated.
A draft connectome for ganglion cell types of the mouse retina
The visual system of the brain is highly parallel in its architecture. This is clearly evident in the outputs of the retina, which arise from neurons called ganglion cells. Work in our lab has shown that mammalian retinas contain more than a dozen distinct types of ganglion cells. Each type appears to filter the retinal image in a unique way and to relay this processed signal to a specific set of targets in the brain. My students and I are working to understand the meaning of this parallel organization through electrophysiological and anatomical studies. We record from light-responsive ganglion cells in vitro using the whole-cell patch method. This allows us to correlate directly the visual response properties, intrinsic electrical behavior, synaptic pharmacology, dendritic morphology and axonal projections of single neurons. Other methods used in the lab include neuroanatomical tracing techniques, single-unit recording and immunohistochemistry. We seek to specify the total number of ganglion cell types, the distinguishing characteristics of each type, and the intraretinal mechanisms (structural, electrical, and synaptic) that shape their stimulus selectivities. Recent work in the lab has identified a bizarre new ganglion cell type that is also a photoreceptor, capable of responding to light even when it is synaptically uncoupled from conventional (rod and cone) photoreceptors. These ganglion cells appear to play a key role in resetting the biological clock. It is just this sort of link, between a specific cell type and a well-defined behavioral or perceptual function, that we seek to establish for the full range of ganglion cell types. My research concerns the structural and functional organization of retinal ganglion cells, the output cells of the retina whose axons make up the optic nerve. Ganglion cells exhibit great diversity both in their morphology and in their responses to light stimuli. On this basis, they are divisible into a large number of types (>15). Each ganglion-cell type appears to send its outputs to a specific set of central visual nuclei. This suggests that ganglion cell heterogeneity has evolved to provide each visual center in the brain with pre-processed representations of the visual scene tailored to its specific functional requirements. Though the outline of this story has been appreciated for some time, it has received little systematic exploration. My laboratory is addressing in parallel three sets of related questions: 1) How many types of ganglion cells are there in a typical mammalian retina and what are their structural and functional characteristics? 2) What combination of synaptic networks and intrinsic membrane properties are responsible for the characteristic light responses of individual types? 3) What do the functional specializations of individual classes contribute to perceptual function or to visually mediated behavior? To pursue these questions, we label retinal ganglion cells by retrograde transport from the brain; analyze in vitro their light responses, intrinsic membrane properties and synaptic pharmacology using the whole-cell patch clamp method; and reveal their morphology with intracellular dyes. Recently, we have discovered a novel ganglion cell in rat retina that is intrinsically photosensitive. These ganglion cells exhibit robust light responses even when all influences from classical photoreceptors (rods and cones) are blocked, either by applying pharmacological agents or by dissociating the ganglion cell from the retina. These photosensitive ganglion cells seem likely to serve as photoreceptors for the photic synchronization of circadian rhythms, the mechanism that allows us to overcome jet lag. They project to the circadian pacemaker of the brain, the suprachiasmatic nucleus of the hypothalamus. Their temporal kinetics, threshold, dynamic range, and spectral tuning all match known properties of the synchronization or "entrainment" mechanism. These photosensitive ganglion cells innervate various other brain targets, such as the midbrain pupillary control center, and apparently contribute to a host of behavioral responses to ambient lighting conditions. These findings help to explain why circadian and pupillary light responses persist in mammals, including humans, with profound disruption of rod and cone function. Ongoing experiments are designed to elucidate the phototransduction mechanism, including the identity of the photopigment and the nature of downstream signaling pathways. In other studies, we seek to provide a more detailed characterization of the photic responsiveness and both morphological and functional evidence concerning possible interactions with conventional rod- and cone-driven retinal circuits. These studies are of potential value in understanding and designing appropriate therapies for jet lag, the negative consequences of shift work, and seasonal affective disorder.
The Synaptome Architecture of the Brain: Lifespan, disease, evolution and behavior
The overall aim of my research is to understand how the organisation of the synapse, with particular reference to the postsynaptic proteome (PSP) of excitatory synapses in the brain, informs the fundamental mechanisms of learning, memory and behaviour and how these mechanisms go awry in neurological dysfunction. The PSP indeed bears a remarkable burden of disease, with components being disrupted in disorders (synaptopathies) including schizophrenia, depression, autism and intellectual disability. Our work has been fundamental in revealing and then characterising the unprecedented complexity (>1000 highly conserved proteins) of the PSP in terms of the subsynaptic architecture of postsynaptic proteins such as PSD95 and how these proteins assemble into complexes and supercomplexes in different neurons and regions of the brain. Characterising the PSPs in multiple species, including human and mouse, has revealed differences in key sets of functionally important proteins, correlates with brain imaging and connectome data, and a differential distribution of disease-relevant proteins and pathways. Such studies have also provided important insight into synapse evolution, establishing that vertebrate behavioural complexity is a product of the evolutionary expansion in synapse proteomes that occurred ~500 million years ago. My lab has identified many mutations causing cognitive impairments in mice before they were found to cause human disorders. Our proteomic studies revealed that >130 brain diseases are caused by mutations affecting postsynaptic proteins. We uncovered mechanisms that explain the polygenic basis and age of onset of schizophrenia, with postsynaptic proteins, including PSD95 supercomplexes, carrying much of the polygenic burden. We discovered the “Genetic Lifespan Calendar”, a genomic programme controlling when genes are regulated. We showed that this could explain how schizophrenia susceptibility genes are timed to exert their effects in young adults. The Genes to Cognition programme is the largest genetic study so far undertaken into the synaptic molecular mechanisms underlying behaviour and physiology. We made important conceptual advances that inform how the repertoire of both innate and learned behaviours is built from unique combinations of postsynaptic proteins that either amplify or attenuate the behavioural response. This constitutes a key advance in understanding how the brain decodes information inherent in patterns of nerve impulses, and provides insight into why the PSP has evolved to be so complex, and consequently why the phenotypes of synaptopathies are so diverse. Our most recent work has opened a new phase, and scale, in understanding synapses with the first synaptome maps of the brain. We have developed next-generation methods (SYNMAP) that enable single-synapse resolution molecular mapping across the whole mouse brain and extensive regions of the human brain, revealing the molecular and morphological features of a billion synapses. This has already uncovered unprecedented spatiotemporal synapse diversity organised into an architecture that correlates with the structural and functional connectomes, and shown how mutations that cause cognitive disorders reorganise these synaptome maps; for example, by detecting vulnerable synapse subtypes and synapse loss in Alzheimer’s disease. This innovative synaptome mapping technology has huge potential to help characterise how the brain changes during normal development, including in specific cell types, and with degeneration, facilitating novel pathways to diagnosis and therapy.
Functional Divergence at the Mouse Bipolar Cell Terminal
Research in our lab focuses on the circuit mechanisms underlying sensory computation. We use the mouse retina as a model system because it allows us to stimulate the circuit precisely with its natural input, patterns of light, and record its natural output, the spike trains of retinal ganglion cells. We harness the power of genetic manipulations and detailed information about cell types to uncover new circuits and discover their role in visual processing. Our methods include electrophysiology, computational modeling, and circuit tracing using a variety of imaging techniques.
Mapping the Dynamics of the Linear and 3D Genome of Single Cells in the Developing Brain
Three intimately related dimensions of the mammalian genome—linear DNA sequence, gene transcription, and 3D genome architecture—are crucial for the development of nervous systems. Changes in the linear genome (e.g., de novo mutations), transcriptome, and 3D genome structure lead to debilitating neurodevelopmental disorders, such as autism and schizophrenia. However, current technologies and data are severely limited: (1) 3D genome structures of single brain cells have not been solved; (2) little is known about the dynamics of single-cell transcriptome and 3D genome after birth; (3) true de novo mutations are extremely difficult to distinguish from false positives (DNA damage and/or amplification errors). Here, I filled in this longstanding technological and knowledge gap. I recently developed a high-resolution method—diploid chromatin conformation capture (Dip-C)—which resolved the first 3D structure of the human genome, tackling a longstanding problem dating back to the 1880s. Using Dip-C, I obtained the first 3D genome structure of a single brain cell, and created the first transcriptome and 3D genome atlas of the mouse brain during postnatal development. I found that in adults, 3D genome “structure types” delineate all major cell types, with high correlation between chromatin A/B compartments and gene expression. During development, both transcriptome and 3D genome are extensively transformed in the first month of life. In neurons, 3D genome is rewired across scales, correlated with gene expression modules, and independent of sensory experience. Finally, I examined allele-specific structure of imprinted genes, revealing local and chromosome-wide differences. More recently, I expanded my 3D genome atlas to the human and mouse cerebellum—the most consistently affected brain region in autism. I uncovered unique 3D genome rewiring throughout life, providing a structural basis for the cerebellum’s unique mode of development and aging. In addition, to accurately measure de novo mutations in a single cell, I developed a new method—multiplex end-tagging amplification of complementary strands (META-CS), which eliminates nearly all false positives by virtue of DNA complementarity. Using META-CS, I determined the true mutation spectrum of single human brain cells, free from chemical artifacts. Together, my findings uncovered an unknown dimension of neurodevelopment, and open up opportunities for new treatments for autism and other developmental disorders.
Dissecting the role of accumbal D1 and D2 medium spiny neurons in information encoding
Nearly all motivated behaviors require the ability to associate outcomes with specific actions and make adaptive decisions about future behavior. The nucleus accumbens (NAc) is integrally involved in these processes. The NAc is a heterogeneous population primarily composed of D1 and D2 medium spiny projection (MSN) neurons that are thought to have opposed roles in behavior, with D1 MSNs promoting reward and D2 MSNs promoting aversion. Here we examined what types of information are encoded by the D1 and D2 MSNs using optogenetics, fiber photometry, and cellular resolution calcium imaging. First, we showed that mice responded for optical self-stimulation of both cell types, suggesting D2-MSN activation is not inherently aversive. Next, we recorded population and single cell activity patterns of D1 and D2 MSNs during reinforcement as well as Pavlovian learning paradigms that allow dissociation of stimulus value, outcome, cue learning, and action. We demonstrated that D1 MSNs respond to the presence and intensity of unconditioned stimuli – regardless of value. Conversely, D2 MSNs responded to the prediction of these outcomes during specific cues. Overall, these results provide foundational evidence for the discrete aspects of information that are encoded within the NAc D1 and D2 MSN populations. These results will significantly enhance our understanding of the involvement of the NAc MSNs in learning and memory as well as how these neurons contribute to the development and maintenance of substance use disorders.
JAK/STAT regulation of the transcriptomic response during epileptogenesis
Temporal lobe epilepsy (TLE) is a progressive disorder mediated by pathological changes in molecular cascades and neural circuit remodeling in the hippocampus resulting in increased susceptibility to spontaneous seizures and cognitive dysfunction. Targeting these cascades could prevent or reverse symptom progression and has the potential to provide viable disease-modifying treatments that could reduce the portion of TLE patients (>30%) not responsive to current medical therapies. Changes in GABA(A) receptor subunit expression have been implicated in the pathogenesis of TLE, and the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway has been shown to be a key regulator of these changes. The JAK/STAT pathway is known to be involved in inflammation and immunity, and to be critical for neuronal functions such as synaptic plasticity and synaptogenesis. Our laboratories have shown that a STAT3 inhibitor, WP1066, could greatly reduce the number of spontaneous recurrent seizures (SRS) in an animal model of pilocarpine-induced status epilepticus (SE). This suggests promise for JAK/STAT inhibitors as disease-modifying therapies, however, the potential adverse effects of systemic or global CNS pathway inhibition limits their use. Development of more targeted therapeutics will require a detailed understanding of JAK/STAT-induced epileptogenic responses in different cell types. To this end, we have developed a new transgenic line where dimer-dependent STAT3 signaling is functionally knocked out (fKO) by tamoxifen-induced Cre expression specifically in forebrain excitatory neurons (eNs) via the Calcium/Calmodulin Dependent Protein Kinase II alpha (CamK2a) promoter. Most recently, we have demonstrated that STAT3 KO in excitatory neurons (eNSTAT3fKO) markedly reduces the progression of epilepsy (SRS frequency) in the intrahippocampal kainate (IHKA) TLE model and protects mice from kainic acid (KA)-induced memory deficits as assessed by Contextual Fear Conditioning. Using data from bulk hippocampal tissue RNA-sequencing, we further discovered a transcriptomic signature for the IHKA model that contains a substantial number of genes, particularly in synaptic plasticity and inflammatory gene networks, that are down-regulated after KA-induced SE in wild-type but not eNSTAT3fKO mice. Finally, we will review data from other models of brain injury that lead to epilepsy, such as TBI, that implicate activation of the JAK/STAT pathway that may contribute to epilepsy development.
NMC4 Short Talk: Resilience through diversity: Loss of neuronal heterogeneity in epileptogenic human tissue impairs network resilience to sudden changes in synchrony
A myriad of pathological changes associated with epilepsy, including the loss of specific cell types, improper expression of individual ion channels, and synaptic sprouting, can be recast as decreases in cell and circuit heterogeneity. In recent experimental work, we demonstrated that biophysical diversity is a key characteristic of human cortical pyramidal cells, and past theoretical work has shown that neuronal heterogeneity improves a neural circuit’s ability to encode information. Viewed alongside the fact that seizure is an information-poor brain state, these findings motivate the hypothesis that epileptogenesis can be recontextualized as a process where reduction in cellular heterogeneity renders neural circuits less resilient to seizure onset. By comparing whole-cell patch clamp recordings from layer 5 (L5) human cortical pyramidal neurons from epileptogenic and non-epileptogenic tissue, we present the first direct experimental evidence that a significant reduction in neural heterogeneity accompanies epilepsy. We directly implement experimentally-obtained heterogeneity levels in cortical excitatory-inhibitory (E-I) stochastic spiking network models. Low heterogeneity networks display unique dynamics typified by a sudden transition into a hyper-active and synchronous state paralleling ictogenesis. Mean-field analysis reveals a distinct mathematical structure in these networks distinguished by multi-stability. Furthermore, the mathematically characterized linearizing effect of heterogeneity on input-output response functions explains the counter-intuitive experimentally observed reduction in single-cell excitability in epileptogenic neurons. This joint experimental, computational, and mathematical study showcases that decreased neuronal heterogeneity exists in epileptogenic human cortical tissue, that this difference yields dynamical changes in neural networks paralleling ictogenesis, and that there is a fundamental explanation for these dynamics based in mathematically characterized effects of heterogeneity. These interdisciplinary results provide convincing evidence that biophysical diversity imbues neural circuits with resilience to seizure and a new lens through which to view epilepsy, the most common serious neurological disorder in the world, that could reveal new targets for clinical treatment.
What transcriptomics tells us about retinal development, disease and evolution
Classification of neurons, long viewed as a fairly boring enterprise, has emerged as a major bottleneck in analysis of neural circuits. High throughput single cell RNA-seq has provided a new way to improve the situation. We initially applied this method to mouse retina, showing that its five neuronal classes (photoreceptors, three groups of interneurons, and retinal ganglion cells) can be divided into 130 discrete types. We then applied the method to other species including human, macaque, zebrafish and chick. With the atlases in hand, we are now using them to address questions about how retinal cell types diversify, how they differ in their responses to injury and disease, and the extent to which cell classes and types are conserved among vertebrates.
Dynamic maps of a dynamic world
Extensive research has revealed that the hippocampus and entorhinal cortex maintain a rich representation of space through the coordinated activity of place cells, grid cells, and other spatial cell types. Frequently described as a ‘cognitive map’ or a ‘hippocampal map’, these maps are thought to support episodic memory through their instantiation and retrieval. Though often a useful and intuitive metaphor, a map typically evokes a static representation of the external world. However, the world itself, and our experience of it, are intrinsically dynamic. In order to make the most of their maps, a navigator must be able to adapt to, incorporate, and overcome these dynamics. Here I describe three projects where we address how hippocampal and entorhinal representations do just that. In the first project, I describe how boundaries dynamically anchor entorhinal grid cells and human spatial memory alike when the shape of a familiar environment is changed. In the second project, I describe how the hippocampus maintains a representation of the recent past even in the absence of disambiguating sensory and explicit task demands, a representation which causally depends on intrinsic hippocampal circuitry. In the third project, I describe how the hippocampus preserves a stable representation of context despite ongoing representational changes across a timescale of weeks. Together, these projects highlight the dynamic and adaptive nature of our hippocampal and entorhinal representations, and set the stage for future work building on these techniques and paradigms.
Gap Junction Coupling between Photoreceptors
Simply put, the goal of my research is to describe the neuronal circuitry of the retina. The organization of the mammalian retina is certainly complex but it is not chaotic. Although there are many cell types, most adhere to a relatively constant morphology and they are distributed in non-random mosaics. Furthermore, each cell type ramifies at a characteristic depth in the retina and makes a stereotyped set of synaptic connections. In other words, these neurons form a series of local circuits across the retina. The next step is to identify the simplest and commonest of these repeating neural circuits. They are the building blocks of retinal function. If we think of it in this way, the retina is a fabulous model for the rest of the CNS. We are interested in identifying specific circuits and cell types that support the different functions of the retina. For example, there appear to be specific pathways for rod and cone mediated vision. Rods are used under low light conditions and rod circuitry is specialized for high sensitivity when photons are scarce (when you’re out camping, starlight). The hallmark of the rod-mediated system is monochromatic vision. In contrast, the cone circuits are specialized for high acuity and color vision under relatively bright or daylight conditions. Individual neurons may be filled with fluorescent dyes under visual control. This is achieved by impaling the cell with a glass microelectrode using a 3D micromanipulator. We are also interested in the diffusion of dye through coupled neuronal networks in the retina. The dye filled cells are also combined with antibody labeling to reveal neuronal connections and circuits. This triple-labeled material may be viewed and reconstructed in 3 dimensions by multi-channel confocal microscopy. We have our own confocal microscope facility in the department and timeslots are available to students in my lab.
Neural circuits that support robust and flexible navigation in dynamic naturalistic environments
Tracking heading within an environment is a fundamental requirement for flexible, goal-directed navigation. In insects, a head-direction representation that guides the animal’s movements is maintained in a conserved brain region called the central complex. Two-photon calcium imaging of genetically targeted neural populations in the central complex of tethered fruit flies behaving in virtual reality (VR) environments has shown that the head-direction representation is updated based on self-motion cues and external sensory information, such as visual features and wind direction. Thus far, the head direction representation has mainly been studied in VR settings that only give flies control of the angular rotation of simple sensory cues. How the fly’s head direction circuitry enables the animal to navigate in dynamic, immersive and naturalistic environments is largely unexplored. I have developed a novel setup that permits imaging in complex VR environments that also accommodate flies’ translational movements. I have previously demonstrated that flies perform visually-guided navigation in such an immersive VR setting, and also that they learn to associate aversive optogenetically-generated heat stimuli with specific visual landmarks. A stable head direction representation is likely necessary to support such behaviors, but the underlying neural mechanisms are unclear. Based on a connectomic analysis of the central complex, I identified likely circuit mechanisms for prioritizing and combining different sensory cues to generate a stable head direction representation in complex, multimodal environments. I am now testing these predictions using calcium imaging in genetically targeted cell types in flies performing 2D navigation in immersive VR.
Cell types of adult mouse cortex and hippocampus
A fresh look at the bird retina
I am working on the vertebrate retina, with a main focus on the mouse and bird retina. Currently my work is focused on three major topics: Functional and molecular analysis of electrical synapses in the retina Circuitry and functional role of retinal interneurons: horizontal cells Circuitry for light-dependent magnetoreception in the bird retina Electrical synapses Electrical synapses (gap junctions) permit fast transmission of electrical signals and passage of metabolites by means of channels, which directly connect the cytoplasm of adjoining cells. A functional gap junction channel consists of two hemichannels (one provided by each of the cells), each comprised of a set of six protein subunits, termed connexins. These building blocks exist in a variety of different subtypes, and the connexin composition determines permeability and gating properties of a gap junction channel, thereby enabling electrical synapses to meet a diversity of physiological requirements. In the retina, various connexins are expressed in different cell types. We study the cellular distribution of different connexins as well as the modulation induced by transmitter action or change of ambient light levels, which leads to altered electrical coupling properties. We are also interested in exploiting them as therapeutic avenue for retinal degeneration diseases. Horizontal cells Horizontal cells receive excitatory input from photoreceptors and provide feedback inhibition to photoreceptors and feedforward inhibition to bipolar cells. Because of strong electrical coupling horizontal cells integrate the photoreceptor input over a wide area and are thought to contribute to the antagonistic organization of bipolar cell and ganglion cell receptive fields and to tune the photoreceptor–bipolar cell synapse with respect to the ambient light conditions. However, the extent to which this influence shapes retinal output is unclear, and we aim to elucidate the functional importance of horizontal cells for retinal signal processing by studying various transgenic mouse models. Retinal circuitry for light-dependent magnetoreception in the bird We are studying which neuronal cell types and pathways in the bird retina are involved in the processing of magnetic signals. Likely, magnetic information is detected in cryptochrome-expressing photoreceptors and leaves the retina through ganglion cell axons that project via the thalamofugal pathway to Cluster N, a part of the visual wulst essential for the avian magnetic compass. Thus, we aim to elucidate the synaptic connections and retinal signaling pathways from putatively magnetosensitive photoreceptors to thalamus-projecting ganglion cells in migratory birds using neuroanatomical and electrophysiological techniques.
Vision outside of the visual system (in Drosophila)
We seek to understand the control of behavior – by animals, their brains, and their neurons. Reiser and his team are focused on the fly visual system, using modern methods from the Drosophila toolkit to understand how visual pathways are involved in specific behaviors. Due to the recent connectomics explosion, they now study the brain-wide networks organizing visual information for behavior control. The team combines explorations of visually guided behaviors with functional investigations of specific cell types throughout the fly brain. The Reiser lab actively develops and disseminates new methods and instruments enabling increasingly precise quantification of animal behavior.
Bedside to bench and back again, a path to translational pain research?
Pain has both a sensory and emotional component and is driven by activation of sensory neurones called nociceptors that are tuned to detect noxious stimuli in a process called nociception. Although nociception functions as a detect and protect mechanism. and is found in many organisms, this system becomes dysregulated in a number of conditions where chronic pain presents as a key symptom, for example osteoarthritis. Nociceptors do not innervate empty space though and do not act alone. Going beyond the neurone, other cell types, such as fibroblast-like synoviocytes interact with and modify the function of nociceptors, which is likely a key contributor to the chronification of pain. In this talk, I will look at how combining pre-clinical mouse work with human tissue and genetics might provide a way to accelerate new analgesics from bench to bedside, giving examples from our work in joint pain, bowel pain and labour pain.
The Dark Side of Vision: Resolving the Neural Code
All sensory information – like what we see, hear and smell – gets encoded in spike trains by sensory neurons and gets sent to the brain. Due to the complexity of neural circuits and the difficulty of quantifying complex animal behavior, it has been exceedingly hard to resolve how the brain decodes these spike trains to drive behavior. We now measure quantal signals originating from sparse photons through the most sensitive neural circuits of the mammalian retina and correlate the retinal output spike trains with precisely quantified behavioral decisions. We utilize a combination of electrophysiological measurements on the most sensitive ON and OFF retinal ganglion cell types and a novel deep-learning based tracking technology of the head and body positions of freely-moving mice. We show that visually-guided behavior relies on information from the retinal ON pathway for the dimmest light increments and on information from the retinal OFF pathway for the dimmest light decrements (“quantal shadows”). Our results show that the distribution of labor between ON and OFF pathways starts already at starlight supporting distinct pathway-specific visual computations to drive visually-guided behavior. These results have several fundamental consequences for understanding how the brain integrates information across parallel information streams as well as for understanding the limits of sensory signal processing. In my talk, I will discuss some of the most eminent consequences including the extension of this “Quantum Behavior” paradigm from mouse vision to monkey and human visual systems.
Dorothy J Killam Lecture: Cell Type Classification and Circuit Mapping in the Mouse Brain
To understand the function of the brain and how its dysfunction leads to brain diseases, it is essential to have a deep understanding of the cell type composition of the brain, how the cell types are connected with each other and what their roles are in circuit function. At the Allen Institute, we have built multiple platforms, including single-cell transcriptomics, single and multi-patching electrophysiology, 3D reconstruction of neuronal morphology, high throughput brain-wide connectivity mapping, and large-scale neuronal activity imaging, to characterize the transcriptomic, physiological, morphological, and connectional properties of different types of neurons in a standardized way, towards a taxonomy of cell types and a description of their wiring diagram for the mouse brain, with a focus on the visual cortico-thalamic system. Building such knowledge base lays the foundation towards the understanding of the computational mechanisms of brain circuit function.
Cortical networks for flexible decisions during spatial navigation
My lab seeks to understand how the mammalian brain performs the computations that underlie cognitive functions, including decision-making, short-term memory, and spatial navigation, at the level of the building blocks of the nervous system, cell types and neural populations organized into circuits. We have developed methods to measure, manipulate, and analyze neural circuits across various spatial and temporal scales, including technology for virtual reality, optical imaging, optogenetics, intracellular electrophysiology, molecular sensors, and computational modeling. I will present recent work that uses large scale calcium imaging to reveal the functional organization of the mouse posterior cortex for flexible decision-making during spatial navigation in virtual reality. I will also discuss work that uses optogenetics and calcium imaging during a variety of decision-making tasks to highlight how cognitive experience and context greatly alter the cortical circuits necessary for navigation decisions.
Slow global population dynamics propagating through the medial entorhinal cortex
The medial entorhinal cortex (MEC) supports the brain’s representation of space with distinct cell types whose firing is tuned to features of the environment (grid, border, and object-vector cells) or navigation (head-direction and speed cells). While the firing properties of these functionally-distinct cell types are well characterized, how they interact with one another remains unknown. To determine how activity self-organizes in the MEC network, we tested mice in a spontaneous locomotion task under sensory-deprived conditions. Using 2-photon calcium imaging, we monitored the activity of large populations of MEC neurons in head-fixed mice running on a wheel in darkness, in the absence of external sensory feedback tuned to navigation. We unveiled the presence of motifs that involve the sequential activation of cells in layer II of MEC (MEC-L2). We call these motifs waves. Waves lasted tens of seconds to minutes, were robust, swept through the entire network of active cells and did not exhibit any anatomical organization. Furthermore, waves did not map the position of the mouse on the wheel and were not restricted to running epochs. The majority of MEC-L2 neurons participate in this global sequential dynamics, that ties all functional cell types together. We found the waves in the most lateral region of MEC, but not in adjacent areas such as PaS or in a sensory cortex such as V1.
Stem Cells in the Adult Brain: Regulation and Diversity
Neural stem cells reside in the adult mammalian brain. The ventricular-subventricular zone (V-SVZ) gives rise to olfactory bulb neurons, as well as small numbers of glia throughout life. Adult V-SVZ neural stem cells dynamically integrate intrinsic and extrinsic signals to either maintain the quiescent state or to become activated to divide and generate progeny. I will present our recent findings highlighting adult neural stem cell heterogeneity, including the identification of novel gliogenic domains and cell types, and the key roles of physiological state and long-range signals in the regulation of regionally distinct pools of adult neural stem cells.
Fate and freedom in the developing mammalian brain
While the diversity of neurons in the adult mammalian brain is staggering, these cells emerge from a seemingly limited set of progenitors during development. This begs the question of how complexity emerges from a finite number of elements during dynamic biological processes. Here, I will discuss recent work from my laboratory addressing relationships between genetic diversity and connectivity in single-cell types, and how progenitor diversity may constrain adult brain cellular states during normal and abnormal brain development.
Predicting the future from the past: Motion processing in the primate retina
The Manookin lab is investigating the structure and function of neural circuits within the retina and developing techniques for treating blindness. Many blinding diseases, such as retinitis pigmentosa, cause death of the rods and cones, but spare other cell types within the retina. Thus, many techniques for restoring visual function following blindness are based on the premise that other cells within the retina remain viable and capable of performing their various roles in visual processing. There are more than 80 different neuronal types in the human retina and these form the components of the specialized circuits that transform the signals from photoreceptors into a neural code responsible for our perception of color, form, and motion, and thus visual experience. The Manookin laboratory is investigating the function and connectivity of neural circuits in the retina using a variety of techniques including electrophysiology, calcium imaging, and electron microscopy. This knowledge is being used to develop more effective techniques for restoring visual function following blindness.
Microenvironment role in axonal regeneration- looking beyond the neurons
After an injury in the adult mammalian central nervous system, lesioned axons fail to regenerate. This failure to regenerate contrasts with the remarkable potential of axons to grow during embryonic development and after an injury in the peripheral nervous system. Peripheral sensory neurons with cell soma in dorsal root ganglia (DRG) switch to a regenerative state after nerve injury to enable axon regeneration and functional recovery. Decades of research have focused on the signaling pathways elicited by injury in sensory neurons and in Schwann cells that insulate axons as central mechanisms regulating nerve repair. However, neuronal microenvironment is far more complex and is composed of multiple cell types including endothelial, immune and glial cells. Whether the microenvironment surrounding neuronal soma contribute to the poor regenerative outcomes following central injuries remains largely unexplored. To answer this question, we performed a single cell transcriptional profiling of the DRG neuronal microenvironment response to peripheral and central injuries. In dissecting the roles of the microenvironment contribution, we have focused on a poorly studied population of Satellite Glial Cells (SGC) surrounding the neuronal cell soma. This study has uncovered a previously unknown role for SGC in nerve regeneration and defined SGC as transcriptionally distinct from Schwann cells while sharing similarities with astrocytes. Upon a peripheral injury, SGC contribute to axon regeneration via Fatty acid synthase (Fasn)-PPARα signaling pathway. Through repurposing fenofibrate, an FDA- approved PPARα agonist used for dyslipidemia treatment, we were able to rescue the impaired regeneration in mice lacking Fasn in SGC. Our analysis reveals that in response to central injuries, SGC do not activate the PPAR signaling pathway. However, induction of this pathway with fenofibrate treatment, rescued axon regeneration following an injury to the central nerves. Collectively, our results uncovered a previously unappreciated role of the neuronal microenvironment differential response in central and peripheral injuries.
The cellular basis of Parkinson’s disease
Parkinson’s disease is affects millions of people around the world. The disease is characterized by typical movement defects that are caused by the loss of dopaminergic neurons, but several very debilitating non-motor symptoms occur more than 10 years before the motor symptoms. I will discuss how we study these non-motor symptoms including sleep disturbances and olfactory defects using large collections of knock in fruit flies that model the numerous familial forms of Parkinson’s disease as well as using human iPS cells from patients. A common emerging theme are defects in protein homeostasis that in specific neuronal cell types, cause cellular defects that explain the Parkinson-relevant phenotypes. Our work reveals the mechanisms that cause early defects in Parkinson’s disease and it opens therapeutic avenues to start tackling this disease.
Sensing Light for Sight and Physiological Control
Organisms sense light for purposes that range from recognizing objects to synchronizing activity with environmental cycles. What mechanisms serve these diverse tasks? This seminar will examine the specializations of two cell types. First are the foveal cone photoreceptors. These neurons are used by primates to see far greater detail than other mammals, which lack them. How do the biophysical properties of foveal cones support high-acuity vision? Second are the melanopsin retinal ganglion cells, which are conserved among mammals and essential for processes that include regulation of the circadian clock, sleep, and hormone levels. How do these neurons encode light, and is encoding customized for animals of different niches? In pursuing these questions, a broad goal is to learn how various levels of biological organization are shaped to behavioural needs.
Interneuron desynchronization and breakdown of long-term place cell stability in temporal lobe epilepsy
Temporal lobe epilepsy is associated with memory deficits but the circuit mechanisms underlying these cognitive disabilities are not understood. We used electrophysiological recordings, open-source wire-free miniaturized microscopy and computational modeling to probe these deficits in a model of temporal lobe epilepsy. We find desynchronization of dentate gyrus interneurons with CA1 interneurons during theta oscillations and a loss of precision and stability of place fields. We also find that emergence of place cell dysfunction is delayed, providing a potential temporal window for treatments. Computation modeling shows that desynchronization rather than interneuron cell loss can drive place cell dysfunction. Future studies will uncover cell types driving these changes and transcriptional changes that may be driving dysfunction.
Using evolutionary algorithms to explore single-cell heterogeneity and microcircuit operation in the hippocampus
The hippocampus-entorhinal system is critical for learning and memory. Recent cutting-edge single-cell technologies from RNAseq to electrophysiology are disclosing a so far unrecognized heterogeneity within the major cell types (1). Surprisingly, massive high-throughput recordings of these very same cells identify low dimensional microcircuit dynamics (2,3). Reconciling both views is critical to understand how the brain operates. " "The CA1 region is considered high in the hierarchy of the entorhinal-hippocampal system. Traditionally viewed as a single layered structure, recent evidence has disclosed an exquisite laminar organization across deep and superficial pyramidal sublayers at the transcriptional, morphological and functional levels (1,4,5). Such a low-dimensional segregation may be driven by a combination of intrinsic, biophysical and microcircuit factors but mechanisms are unknown." "Here, we exploit evolutionary algorithms to address the effect of single-cell heterogeneity on CA1 pyramidal cell activity (6). First, we developed a biophysically realistic model of CA1 pyramidal cells using the Hodgkin-Huxley multi-compartment formalism in the Neuron+Python platform and the morphological database Neuromorpho.org. We adopted genetic algorithms (GA) to identify passive, active and synaptic conductances resulting in realistic electrophysiological behavior. We then used the generated models to explore the functional effect of intrinsic, synaptic and morphological heterogeneity during oscillatory activities. By combining results from all simulations in a logistic regression model we evaluated the effect of up/down-regulation of different factors. We found that muyltidimensional excitatory and inhibitory inputs interact with morphological and intrinsic factors to determine a low dimensional subset of output features (e.g. phase-locking preference) that matches non-fitted experimental data.
Towards hybrid models of retinal circuits - integrating biophysical realism, anatomical constraints and predictive performance
Visual processing in the retina has been studied in great detail at all levels such that a comprehensive picture of the retina's cell types and the many neural circuits they form is emerging. However, the currently best performing models of retinal function are black-box CNN models which are agnostic to such biological knowledge. Here, I present two of our recent attempts to develop computational models of processing in the inner retina, which both respect biophysical and anatomical constraints yet provide accurate predictions of retinal activity
Toward a Comprehensive Classification of Mouse Retinal Ganglion Cells: Morphology, Function, Gene Expression, and Central Projections
I will introduce a web portal for the retinal neuroscience community to explore the catalog of mouse retinal ganglion cell (RGC) types, including data on light responses, correspondences with morphological types in EyeWire, and gene expression data from single-cell transcriptomics. Our current classification includes 43 types, accounting for 90% of the cells in EyeWire. Many of these cell types have new stories to tell, and I will cover two of them that represent opposite ends of the spectrum of levels of analysis in my lab. First, I will introduce the “Bursty Suppressed-by-Contrast” RGC and show how its intrinsic properties rather than its synaptic inputs differentiate its function from that of a different well-known RGC type. Second, I will present the histogram of cell types that project to the Olivary Pretectal Nucleus, focusing on the recently discovered M6 ipRGC.
Hippocampal disinhibitory circuits: cell types, connectivity and function
The concept of a dynamic excitation / inhibition ratio, that can shape information flow in cortical circuits during complex behavioural tasks due to circuit disinhibition, has recently arisen as an important and conserved processing motif. It has been also recognized that, in cortical circuits, a subpopulation of GABAergic cells that express vasoactive intestinal polypeptide (VIP) innervates selectively inhibitory interneurons, providing for circuit disinhibition as a possible outcome, depending on the network state and behavioural context. In this talk, I will highlight the latest discoveries on the dynamic organization of hippocampal disinhibitory circuits with a focus on VIP-expressing interneurons. I will discuss the neuron types that can be involved in disinhibition and their local circuit and long-range synaptic connections. I will also discuss some recent findings on how hippocampal VIP circuits may coordinate spatial learning.
The evolutionary origins of cortical cell types
In the last 500 million years, the dorsal telencephalon changed like no other region of the vertebrate brain. Differences range from the six-layered neocortex of mammals, to the small three-layered cortex of reptiles, and the complete absence of lamination in birds. These anatomical differences have prompted endless discussions on the origins and evolution of the cerebral cortex. We have approached this problem from a cell type and transcriptomics perspective. This reveals a more granular picture, where different cell types and classes have followed independent trajectories of evolutionary change. In this presentation, I will discuss how the molecular analysis of cell types in the brains of turtles, lizards and amphibians is updating our views on the evolution of the cerebral cortex, and the new questions emerging from these results.
Motion vision in Drosophila: from single neuron computation to behaviour
How nervous systems control behaviour is the main question we seek to answer in neuroscience. Although visual systems have been a popular entry point into the brain, we don’t understand—in any deep sense—how visual perception guides navigation in flies (or any organism). I will present recent progress towards this goal from our lab. We are using anatomical insights from connectomics, genetic methods for labelling and manipulating identified cell types, neurophysiology, behaviour, and computational modeling to explain how the fly brain processes visual motion to regulate behaviour.
Natural stimulus encoding in the retina with linear and nonlinear receptive fields
Popular notions of how the retina encodes visual stimuli typically focus on the center-surround receptive fields of retinal ganglion cells, the output neurons of the retina. In this view, the receptive field acts as a linear filter on the visual stimulus, highlighting spatial contrast and providing efficient representations of natural images. Yet, we also know that many ganglion cells respond vigorously to fine spatial gratings that should not activate the linear filter of the receptive field. Thus, ganglion cells may integrate visual signals nonlinearly across space. In this talk, I will discuss how these (and other) nonlinearities relate to the encoding of natural visual stimuli in the retina. Based on electrophysiological recordings of ganglion and bipolar cells from mouse and salamander retina, I will present methods for assessing nonlinear processing in different cell types and examine their importance and potential function under natural stimulation.
Revealing the neural basis of human memory with direct recordings of place and grid cells and traveling waves
The ability to remember spatial environments is critical for everyday life. In this talk, I will discuss my lab’s findings on how the human brain supports spatial memory and navigation based on our experiments with direct brain recordings from neurosurgical patients performing virtual-reality spatial memory tasks. I will show that humans have a network of neurons that represent where we are located and trying to go. This network includes some cell types that are similar to those seen in animals, such as place and grid cells, as well as others that have not been seen before in animals, such as anchor and spatial-target cells. I also will explore the role of network oscillations in human memory, where humans again show several distinctive patterns compared to animals. Whereas rodents generally show a hippocampal oscillation at ~8Hz, humans have two separate hippocampal oscillations, at low and high frequencies, which support memory and navigation, respectively. Finally, I will show that neural oscillations in humans are traveling waves, propagating across the cortex, to coordinate the timing of neuronal activity across regions, which is another property not seen in animals. A theme from this work is that in terms of navigation and memory the human brain has novel characteristics compared with animals, which helps explain our rich behavioural abilities and has implications for treating disease and neurological disorders.
Diverse synaptic mechanisms underlie visual signaling in the retina
Our laboratory seeks to understand how neural circuits receive, compute, encode and transmit information. More specifically, we’d like to learn what biophysical and morphological features equip synapses, neurons and networks to perform these tasks. The retina is a model system for the study of neuronal information processing: We can deliver precisely defined physiological stimuli and record responses from many different cell types at various points within the network; in addition, retinal circuitry is particularly well understood, enabling us to interpret more directly the impact of synaptic and cellular mechanisms on circuit function. I will present recent experiments in the lab that exploit these advantages to examine how synapses and neurons within retinal amacrine cell circuits perform specific visual computations.
Multi-modal composition of physiological signals to delineate candidate cell types in-vivo
COSYNE 2023
Computational specialization of cortical cell types
COSYNE 2025
Mapping functional differences across cell types using a group embedding-enhanced transformer
COSYNE 2025
Distinct neuropeptide secretion mechanisms across cell types in the mammalian CNS
FENS Forum 2024
Interleukin 1 signaling modulates pro- and anti-neurogenic effects through activation of interleukin 1 receptor type 1 on different cell types
FENS Forum 2024
Lesion-induced neuroblasts in the striatum are LGE-class interneurons and are not fated towards adult striatal neuron cell types
FENS Forum 2024
Mouse hippocampal slice cultures as an ex vivo model for investigating SGSH enzyme replacement therapy in different brain cell types
FENS Forum 2024
ProB13 and ProD20: Understanding the role of two potential novel retinal amacrine cell types
FENS Forum 2024
Topographical organization of functional cell types in the medial entorhinal cortex
FENS Forum 2024