Circuit Mechanisms
circuit mechanisms
Prof Saket Navlakha
We are looking for post-docs broadly interested in studying biological information processing from an algorithmic perspective. The goal is to discover new ideas for computation by studying problem-solving strategies used in nature, and to ground these ideas by fostering deep collaborations with experimental biologists. Most recently, we have been interested in neural circuit computation, but new areas are also welcome, including plant biology and genomics.
Haim Sompolinsky, Kenneth Blum
The Swartz Program at Harvard University seeks applicants for a postdoctoral fellow in theoretical and computational neuroscience. Based on a grant from the Swartz Foundation, a Swartz postdoctoral fellowship is available at Harvard University with a start date in the summer or fall of 2024. Postdocs join a vibrant group of theoretical and experimental neuroscientists plus theorists in allied fields at Harvard’s Center for Brain Science. The Center for Brain Science includes faculty doing research on a wide variety of topics, including neural mechanisms of rodent learning, decision-making, and sex-specific and social behaviors; reinforcement learning in rodents and humans; human motor control; behavioral and fMRI studies of human cognition; circuit mechanisms of learning and behavior in worms, larval flies, and larval zebrafish; circuit mechanisms of individual differences in flies and humans; rodent and fly olfaction; inhibitory circuit development; retinal circuits; and large-scale reconstruction of detailed brain circuitry.
Professor Geoffrey J Goodhill
The Department of Neuroscience at Washington University School of Medicine is seeking a tenure-track investigator at the level of Assistant Professor to develop an innovative research program in Theoretical/Computational Neuroscience. The successful candidate will join a thriving theoretical/computational neuroscience community at Washington University, including the new Center for Theoretical and Computational Neuroscience. In addition, the Department also has world-class research strengths in systems, circuits and behavior, cellular and molecular neuroscience using a variety of animal models including worms, flies, zebrafish, rodents and non-human primates. The Department’s focus on fundamental neuroscience, outstanding research support facilities, and the depth, breadth and collegiality of our culture provide an exceptional environment to launch your independent research program.
Go with the visual flow: circuit mechanisms for gaze control during locomotion
Neural circuits underlying sleep structure and functions
Sleep is an active state critical for processing emotional memories encoded during waking in both humans and animals. There is a remarkable overlap between the brain structures and circuits active during sleep, particularly rapid eye-movement (REM) sleep, and the those encoding emotions. Accordingly, disruptions in sleep quality or quantity, including REM sleep, are often associated with, and precede the onset of, nearly all affective psychiatric and mood disorders. In this context, a major biomedical challenge is to better understand the underlying mechanisms of the relationship between (REM) sleep and emotion encoding to improve treatments for mental health. This lecture will summarize our investigation of the cellular and circuit mechanisms underlying sleep architecture, sleep oscillations, and local brain dynamics across sleep-wake states using electrophysiological recordings combined with single-cell calcium imaging or optogenetics. The presentation will detail the discovery of a 'somato-dendritic decoupling'in prefrontal cortex pyramidal neurons underlying REM sleep-dependent stabilization of optimal emotional memory traces. This decoupling reflects a tonic inhibition at the somas of pyramidal cells, occurring simultaneously with a selective disinhibition of their dendritic arbors selectively during REM sleep. Recent findings on REM sleep-dependent subcortical inputs and neuromodulation of this decoupling will be discussed in the context of synaptic plasticity and the optimization of emotional responses in the maintenance of mental health.
Circuit Mechanisms of Remote Memory
Memories of emotionally-salient events are long-lasting, guiding behavior from minutes to years after learning. The prelimbic cortex (PL) is required for fear memory retrieval across time and is densely interconnected with many subcortical and cortical areas involved in recent and remote memory recall, including the temporal association area (TeA). While the behavioral expression of a memory may remain constant over time, the neural activity mediating memory-guided behavior is dynamic. In PL, different neurons underlie recent and remote memory retrieval and remote memory-encoding neurons have preferential functional connectivity with cortical association areas, including TeA. TeA plays a preferential role in remote compared to recent memory retrieval, yet how TeA circuits drive remote memory retrieval remains poorly understood. Here we used a combination of activity-dependent neuronal tagging, viral circuit mapping and miniscope imaging to investigate the role of the PL-TeA circuit in fear memory retrieval across time in mice. We show that PL memory ensembles recruit PL-TeA neurons across time, and that PL-TeA neurons have enhanced encoding of salient cues and behaviors at remote timepoints. This recruitment depends upon ongoing synaptic activity in the learning-activated PL ensemble. Our results reveal a novel circuit encoding remote memory and provide insight into the principles of memory circuit reorganization across time.
Dimensionality reduction beyond neural subspaces
Over the past decade, neural representations have been studied from the lens of low-dimensional subspaces defined by the co-activation of neurons. However, this view has overlooked other forms of covarying structure in neural activity, including i) condition-specific high-dimensional neural sequences, and ii) representations that change over time due to learning or drift. In this talk, I will present a new framework that extends the classic view towards additional types of covariability that are not constrained to a fixed, low-dimensional subspace. In addition, I will present sliceTCA, a new tensor decomposition that captures and demixes these different types of covariability to reveal task-relevant structure in neural activity. Finally, I will close with some thoughts regarding the circuit mechanisms that could generate mixed covariability. Together this work points to a need to consider new possibilities for how neural populations encode sensory, cognitive, and behavioral variables beyond neural subspaces.
Identifying mechanisms of cognitive computations from spikes
Higher cortical areas carry a wide range of sensory, cognitive, and motor signals supporting complex goal-directed behavior. These signals mix in heterogeneous responses of single neurons, making it difficult to untangle underlying mechanisms. I will present two approaches for revealing interpretable circuit mechanisms from heterogeneous neural responses during cognitive tasks. First, I will show a flexible nonparametric framework for simultaneously inferring population dynamics on single trials and tuning functions of individual neurons to the latent population state. When applied to recordings from the premotor cortex during decision-making, our approach revealed that populations of neurons encoded the same dynamic variable predicting choices, and heterogeneous firing rates resulted from the diverse tuning of single neurons to this decision variable. The inferred dynamics indicated an attractor mechanism for decision computation. Second, I will show an approach for inferring an interpretable network model of a cognitive task—the latent circuit—from neural response data. We developed a theory to causally validate latent circuit mechanisms via patterned perturbations of activity and connectivity in the high-dimensional network. This work opens new possibilities for deriving testable mechanistic hypotheses from complex neural response data.
Circuit mechanisms of attention dysfunction in Scn8a+/- mice: implications for epilepsy and neurodevelopmental disorders
Self-perception: mechanosensation and beyond
Brain-organ communications play a crucial role in maintaining the body's physiological and psychological homeostasis, and are controlled by complex neural and hormonal systems, including the internal mechanosensory organs. However, the progress has been slow due to technical hurdles: the sensory neurons are deeply buried inside the body and are not readily accessible for direct observation, the projection patterns from different organs or body parts are complex rather than converging into dedicate brain regions, the coding principle cannot be directly adapted from that learned from conventional sensory pathways. Our lab apply the pipeline of "biophysics of receptors-cell biology of neurons-functionality of neural circuits-animal behaviors" to explore the molecular and neural mechanisms of self-perception. In the lab, we mainly focus on the following three questions: 1, The molecular and cellular basis for proprioception and interoception. 2, The circuit mechanisms of sensory coding and integration of internal and external information. 3, The function of interoception in regulating behavior homeostasis.
Neural Circuit Mechanisms of Abstract Decision Making
Neural Circuit Mechanisms of Pattern Separation in the Dentate Gyrus
The ability to discriminate different sensory patterns by disentangling their neural representations is an important property of neural networks. While a variety of learning rules are known to be highly effective at fine-tuning synapses to achieve this, less is known about how different cell types in the brain can facilitate this process by providing architectural priors that bias the network towards sparse, selective, and discriminable representations. We studied this by simulating a neuronal network modelled on the dentate gyrus—an area characterised by sparse activity associated with pattern separation in spatial memory tasks. To test the contribution of different cell types to these functions, we presented the model with a wide dynamic range of input patterns and systematically added or removed different circuit elements. We found that recruiting feedback inhibition indirectly via recurrent excitatory neurons proved particularly helpful in disentangling patterns, and show that simple alignment principles for excitatory and inhibitory connections are a highly effective strategy.
Functional Divergence at the Mouse Bipolar Cell Terminal
Research in our lab focuses on the circuit mechanisms underlying sensory computation. We use the mouse retina as a model system because it allows us to stimulate the circuit precisely with its natural input, patterns of light, and record its natural output, the spike trains of retinal ganglion cells. We harness the power of genetic manipulations and detailed information about cell types to uncover new circuits and discover their role in visual processing. Our methods include electrophysiology, computational modeling, and circuit tracing using a variety of imaging techniques.
Integrators in short- and long-term memory
The accumulation and storage of information in memory is a fundamental computation underlying animal behavior. In many brain regions and task paradigms, ranging from motor control to navigation to decision-making, such accumulation is accomplished through neural integrator circuits that enable external inputs to move a system’s population-wide patterns of neural activity along a continuous attractor. In the first portion of the talk, I will discuss our efforts to dissect the circuit mechanisms underlying a neural integrator from a rich array of anatomical, physiological, and perturbation experiments. In the second portion of the talk, I will show how the accumulation and storage of information in long-term memory may also be described by attractor dynamics, but now within the space of synaptic weights rather than neural activity. Altogether, this work suggests a conceptual unification of seemingly distinct short- and long-term memory processes.
Neural representations of space in the hippocampus of a food-caching bird
Spatial memory in vertebrates requires brain regions homologous to the mammalian hippocampus. Between vertebrate clades, however, these regions are anatomically distinct and appear to produce different spatial patterns of neural activity. We asked whether hippocampal activity is fundamentally different even between distant vertebrates that share a strong dependence on spatial memory. We studied tufted titmice – food-caching birds capable of remembering many concealed food locations. We found mammalian-like neural activity in the titmouse hippocampus, including sharp-wave ripples and anatomically organized place cells. In a non-food-caching bird species, spatial firing was less informative and was exhibited by fewer neurons. These findings suggest that hippocampal circuit mechanisms are similar between birds and mammals, but that the resulting patterns of activity may vary quantitatively with species-specific ethological needs.
Wiring & Rewiring: Experience-Dependent Circuit Development and Plasticity in Sensory Cortices
To build an appropriate representation of the sensory stimuli around the world, neural circuits are wired according to both intrinsic factors and external sensory stimuli. Moreover, the brain circuits have the capacity to rewire in response to altered environment, both during early development and throughout life. In this talk, I will give an overview about my past research in studying the dynamic processes underlying functional maturation and plasticity in rodent sensory cortices. I will also present data about the current and future research in my lab – that is, the synaptic and circuit mechanisms by which the mature brain circuits employ to regulate the balance between stability and plasticity. By applying chronic 2-photon calcium and close-loop visual exposure, we studied the circuit changes at single-neuron resolution to show that concurrent running with visual stimulus is required to drive neuroplasticity in the adult brain.
Migraine: a disorder of excitatory-inhibitory balance in multiple brain networks? Insights from genetic mouse models of the disease
Migraine is much more than an episodic headache. It is a complex brain disorder, characterized by a global dysfunction in multisensory information processing and integration. In a third of patients, the headache is preceded by transient sensory disturbances (aura), whose neurophysiological correlate is cortical spreading depression (CSD). The molecular, cellular and circuit mechanisms of the primary brain dysfunctions that underlie migraine onset, susceptibility to CSD and altered sensory processing remain largely unknown and are major open issues in the neurobiology of migraine. Genetic mouse models of a rare monogenic form of migraine with aura provide a unique experimental system to tackle these key unanswered questions. I will describe the functional alterations we have uncovered in the cerebral cortex of genetic mouse models and discuss the insights into the cellular and circuit mechanisms of migraine obtained from these findings.
Neural dynamics of probabilistic information processing in humans and recurrent neural networks
In nature, sensory inputs are often highly structured, and statistical regularities of these signals can be extracted to form expectation about future sensorimotor associations, thereby optimizing behavior. One of the fundamental questions in neuroscience concerns the neural computations that underlie these probabilistic sensorimotor processing. Through a recurrent neural network (RNN) model and human psychophysics and electroencephalography (EEG), the present study investigates circuit mechanisms for processing probabilistic structures of sensory signals to guide behavior. We first constructed and trained a biophysically constrained RNN model to perform a series of probabilistic decision-making tasks similar to paradigms designed for humans. Specifically, the training environment was probabilistic such that one stimulus was more probable than the others. We show that both humans and the RNN model successfully extract information about stimulus probability and integrate this knowledge into their decisions and task strategy in a new environment. Specifically, performance of both humans and the RNN model varied with the degree to which the stimulus probability of the new environment matched the formed expectation. In both cases, this expectation effect was more prominent when the strength of sensory evidence was low, suggesting that like humans, our RNNs placed more emphasis on prior expectation (top-down signals) when the available sensory information (bottom-up signals) was limited, thereby optimizing task performance. Finally, by dissecting the trained RNN model, we demonstrate how competitive inhibition and recurrent excitation form the basis for neural circuitry optimized to perform probabilistic information processing.
Themes and Variations: Circuit mechanisms of behavioral evolution
Animals exhibit extraordinary variation in their behavior, yet little is known about the neural mechanisms that generate this diversity. My lab has been taking advantage of the rapid diversification of male courtship behaviors in Drosophila to glean insight into how evolution shapes the nervous system to generate species-specific behaviors. By translating neurogenetic tools from D. melanogaster to closely related Drosophila species, we have begun to directly compare the homologous neural circuits and pinpoint sites of adaptive change. Across species, P1 neurons serve as a conserved node in regulating male courtship: these neurons are selectively activated by the sensory cues indicative of an appropriate mate and their activation triggers enduring courtship displays. We have been examining how different sensory pathways converge onto P1 neurons to regulate a male’s state of arousal, honing his pursuit of a prospective partner. Moreover, by performing cross-species comparison of these circuits, we have begun to gain insight into how reweighting of sensory inputs to P1 neurons underlies species-specific mate recognition. Our results suggest how variation at flexible nodes within the nervous system can serve as a substrate for behavioral evolution, shedding light on the types of changes that are possible and preferable within brain circuits.
Learning to aggress – Behavioral and circuit mechanisms of aggression reward
Aggression is an ethologically complex behavior with equally complex underlying mechanisms. Here, I present data on one form of aggression, appetitive or rewarding aggression, and the behavioral, cellular and system-level mechanisms guiding this behavior. First, I will present one way in which appetitive aggression is modeled in mice, and extend aggression motivation to the concept of compulsive aggression seeking and relapse. I will then briefly highlight recent advances in computer vision and machine learning for automated scoring of aggressive behavior, the role of specific cell-types in controlling aggression reward, and close with preliminary data on the whole brain aggression reward functional connectome using light sheet fluorescent microscopy (LSFM).
Neural circuits that support robust and flexible navigation in dynamic naturalistic environments
Tracking heading within an environment is a fundamental requirement for flexible, goal-directed navigation. In insects, a head-direction representation that guides the animal’s movements is maintained in a conserved brain region called the central complex. Two-photon calcium imaging of genetically targeted neural populations in the central complex of tethered fruit flies behaving in virtual reality (VR) environments has shown that the head-direction representation is updated based on self-motion cues and external sensory information, such as visual features and wind direction. Thus far, the head direction representation has mainly been studied in VR settings that only give flies control of the angular rotation of simple sensory cues. How the fly’s head direction circuitry enables the animal to navigate in dynamic, immersive and naturalistic environments is largely unexplored. I have developed a novel setup that permits imaging in complex VR environments that also accommodate flies’ translational movements. I have previously demonstrated that flies perform visually-guided navigation in such an immersive VR setting, and also that they learn to associate aversive optogenetically-generated heat stimuli with specific visual landmarks. A stable head direction representation is likely necessary to support such behaviors, but the underlying neural mechanisms are unclear. Based on a connectomic analysis of the central complex, I identified likely circuit mechanisms for prioritizing and combining different sensory cues to generate a stable head direction representation in complex, multimodal environments. I am now testing these predictions using calcium imaging in genetically targeted cell types in flies performing 2D navigation in immersive VR.
Estimation of current and future physiological states in insular cortex
Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. While human insular cortex (InsCtx) is implicated in interoception, the cellular and circuit mechanisms remain unclear. I will describe our recent work imaging mouse InsCtx neurons during two physiological deficiency states – hunger and thirst. InsCtx ongoing activity patterns reliably tracked the gradual return to homeostasis, but not changes in behavior. Accordingly, while artificial induction of hunger/thirst in sated mice via activation of specific hypothalamic neurons (AgRP/SFOGLUT) restored cue-evoked food/water-seeking, InsCtx ongoing activity continued to reflect physiological satiety. During natural hunger/thirst, food/water cues rapidly and transiently shifted InsCtx population activity to the future satiety-related pattern. During artificial hunger/thirst, food/water cues further shifted activity beyond the current satiety-related pattern. Together with circuit-mapping experiments, these findings suggest that InsCtx integrates visceral-sensory inputs regarding current physiological state with hypothalamus-gated amygdala inputs signaling upcoming ingestion of food/water, to compute a prediction of future physiological state.
Neural Circuit Mechanisms for Navigating to Shelter During Instinctive Escape
“Circuit mechanisms for flexible behaviors”
Animals constantly modify their behavior through experience. Flexible behavior is key to our ability to adapt to the ever-changing environment. My laboratory is interested in studying the activity of neuronal ensembles in behaving animals, and how it changes with learning. We have recently set up a paradigm where mice learn to associate sensory information (two different odors) to motor outputs (lick vs no-lick) under head-fixation. We combined this with two-photon calcium imaging, which can monitor the activity of a microcircuit of many tens of neurons simultaneously from a small area of the brain. Imaging the motor cortex during the learning of this task revealed neurons with diverse task-related response types. Intriguingly, different response types were spatially intermingled; even immediately adjacent neurons often had very different response types. As the mouse learned the task under the microscope, the activity coupling of neurons with similar response types specifically increased, even though they are intermingled with neurons with dissimilar response types. This suggests that intermingled subnetworks of functionally-related neurons form in a learning-related way, an observation that became possible with our cutting-edge technique combining imaging and behavior. We are working to extend this study. How plastic are neuronal microcircuits during other forms of learning? How plastic are they in other parts of the brain? What are the cellular and molecular mechanisms of the microcircuit plasticity? Are the observed activity and plasticity required for learning? How does the activity of identified individual neurons change over days to weeks? We are asking these questions, combining a variety of techniques including in vivo two-photon imaging, optogenetics, electrophysiology, genetics and behavior.
Circuit mechanisms for synaptic plasticity in the rodent somatosensory cortex
Sensory experience and perceptual learning changes receptive field properties of cortical pyramidal neurons possibly mediated by long-term potentiation (LTP) of synapses. We have previously shown in the mouse somatosensory cortex (S1) that sensory-driven LTP in layer (L) 2/3 pyramidal neurons is dependent on higher order thalamic feedback from the posteromedial nucleus (POm), which is thought to convey contextual information from various cortical regions integrated with sensory input. We have followed up on this work by dissecting the cortical microcircuitry that underlies this form of LTP. We found that repeated pairing of Pom thalamocortical and intracortical pathway activity in brain slices induces NMDAr-dependent LTP of the L2/3 synapses that are driven by the intracortical pathway. Repeated pairing also recruits activity of vasoactive intestinal peptide (VIP) interneurons, whereas it reduces the activity of somatostatin (SST) interneurons. VIP interneuron-mediated inhibition of SST interneurons has been established as a motif for the disinhibition of pyramidal neurons. By chemogenetic interrogation we found that activation of this disinhibitory microcircuit motif by higher-order thalamic feedback is indispensable for eliciting LTP. Preliminary results in vivo suggest that VIP neuron activity also increases during sensory-evoked LTP. Together, this suggests that the higherorder thalamocortical feedback may help modifying the strength of synaptic circuits that process first-order sensory information in S1. To start characterizing the relationship between higher-order feedback and cortical plasticity during learning in vivo, we adapted a perceptual learning paradigm in which head-fixed mice have to discriminate two types of textures in order to obtain a reward. POm axons or L2/3 pyramidal neurons labeled with the genetically encoded calcium indicator GCaMP6s were imaged during the acquisition of this task as well as the subsequent learning of a new discrimination rule. We found that a subpopulation of the POm axons and L2/3 neurons dynamically represent textures. Moreover, upon a change in reward contingencies, a fraction of the L2/3 neurons re-tune their selectivity to the texture that is newly associated with the reward. Altogether, our data indicates that higher-order thalamic feedback can facilitate synaptic plasticity and may be implicated in dynamic sensory stimulus representations in S1, which depends on higher-order features that are associated with the stimuli.
Inhibitory neural circuit mechanisms underlying neural coding of sensory information in the neocortex
Neural codes, such as temporal codes (precisely timed spikes) and rate codes (instantaneous spike firing rates), are believed to be used in encoding sensory information into spike trains of cortical neurons. Temporal and rate codes co-exist in the spike train and such multiplexed neural code-carrying spike trains have been shown to be spatially synchronized in multiple neurons across different cortical layers during sensory information processing. Inhibition is suggested to promote such synchronization, but it is unclear whether distinct subtypes of interneurons make different contributions in the synchronization of multiplexed neural codes. To test this, in vivo single-unit recordings from barrel cortex were combined with optogenetic manipulations to determine the contributions of parvalbumin (PV)- and somatostatin (SST)-positive interneurons to synchronization of precisely timed spike sequences. We found that PV interneurons preferentially promote the synchronization of spike times when instantaneous firing rates are low (<12 Hz), whereas SST interneurons preferentially promote the synchronization of spike times when instantaneous firing rates are high (>12 Hz). Furthermore, using a computational model, we demonstrate that these effects can be explained by PV and SST interneurons having preferential contribution to feedforward and feedback inhibition, respectively. Overall, these results show that PV and SST interneurons have distinct frequency (rate code)-selective roles in dynamically gating the synchronization of spike times (temporal code) through preferentially recruiting feedforward and feedback inhibitory circuit motifs. The inhibitory neural circuit mechanisms we uncovered here his may have critical roles in regulating neural code-based somatosensory information processing in the neocortex.
Cellular mechanisms behind stimulus evoked quenching of variability
A wealth of experimental studies show that the trial-to-trial variability of neuronal activity is quenched during stimulus evoked responses. This fact has helped ground a popular view that the variability of spiking activity can be decomposed into two components. The first is due to irregular spike timing conditioned on the firing rate of a neuron (i.e. a Poisson process), and the second is the trial-to-trial variability of the firing rate itself. Quenching of the variability of the overall response is assumed to be a reflection of a suppression of firing rate variability. Network models have explained this phenomenon through a variety of circuit mechanisms. However, in all cases, from the vantage of a neuron embedded within the network, quenching of its response variability is inherited from its synaptic input. We analyze in vivo whole cell recordings from principal cells in layer (L) 2/3 of mouse visual cortex. While the variability of the membrane potential is quenched upon stimulation, the variability of excitatory and inhibitory currents afferent to the neuron are amplified. This discord complicates the simple inheritance assumption that underpins network models of neuronal variability. We propose and validate an alternative (yet not mutually exclusive) mechanism for the quenching of neuronal variability. We show how an increase in synaptic conductance in the evoked state shunts the transfer of current to the membrane potential, formally decoupling changes in their trial-to-trial variability. The ubiquity of conductance based neuronal transfer combined with the simplicity of our model, provides an appealing framework. In particular, it shows how the dependence of cellular properties upon neuronal state is a critical, yet often ignored, factor. Further, our mechanism does not require a decomposition of variability into spiking and firing rate components, thereby challenging a long held view of neuronal activity.
Cortical estimation of current and future bodily states
Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. Human neuroimaging studies suggest insular cortex plays a central role in interoception, yet the cellular and circuit mechanisms of its involvement remain unclear. We developed a microprism-based cellular imaging approach to monitor insular cortex activity in behaving mice across different physiological need states. We combine this imaging approach with manipulations of peripheral physiology, circuit-mapping, cell type-specific and circuit-specific manipulation approaches to investigate the underlying circuit mechanisms. I will present our recent data investigating insular cortex activity during two physiological need states – hunger and thirst. These wereinduced naturally by caloric/fluid deficiency, or artificially by activation of specific hypothalamic “hunger neurons” and “thirst neurons”. We found that insular cortex ongoing activity faithfully represents current physiological state, independently of behavior or arousal levels. In contrast, transient responses to learned food- or water-predicting cues reflect a population-level “simulation” of future predicted satiety. Together with additional circuit-mapping and manipulation experiments, our findings suggest that insular cortex integrates visceral-sensory inputs regarding current physiological state with hypothalamus-gated amygdala inputs signaling availability of food/water. This way, insular cortex computes a prediction of future physiological state that can be used to guide behavioral choice.
Circuit mechanisms underlying the dynamic control of cortical processing by subcortical neuromodulators
Behavioral states such as arousal and attention can have profound effects on sensory processing, determining how – sometimes whether – a stimulus is processed. This state-dependence is believed to arise, at least in part, as a result of inputs to cortex from subcortical structures that release neuromodulators such as acetylcholine, noradrenaline, and serotonin, often non-synaptically. The mechanisms that underlie the interaction between these “wireless” non-synaptic signals and the “wired” cortical circuit are not well understood. Furthermore, neuromodulatory signaling is traditionally considered broad in its impact across cortex (within a species) and consistent in its form and function across species (at least in mammals). The work I will present approaches the challenge of understanding neuromodulatory action in the cortex from a number of angles: anatomy, physiology, pharmacology, and chemistry. The overarching goal of our effort is to elucidate the mechanisms behind local neuromodulation in the cortex of non-human primates, and to reveal differences in structure and function across cortical model systems.
The role of spatiotemporal waves in coordinating regional dopamine decision signals
The neurotransmitter dopamine is essential for normal reward learning and motivational arousal processes. Indeed these core functions are implicated in the major neurological and psychiatric dopamine disorders such as schizophrenia, substance abuse disorders/addiction and Parkinson's disease. Over the years, we have made significant strides in understanding the dopamine system across multiple levels of description, and I will focus on our recent advances in the computational description, and brain circuit mechanisms that facilitate the dual role of dopamine in learning and performance. I will specifically describe our recent work with imaging the activity of dopamine axons and measurements of dopamine release in mice performing various behavioural tasks. We discovered wave-like spatiotemporal activity of dopamine in the striatal region, and I will argue that this pattern of activation supports a critical computational operation; spatiotemporal credit assignment to regional striatal subexperts. Our findings provide a mechanistic description for vectorizing reward prediction error signals relayed by dopamine.
Dynamic computation in the retina by retuning of neurons and synapses
How does a circuit of neurons process sensory information? And how are transformations of neural signals altered by changes in synaptic strength? We investigate these questions in the context of the visual system and the lateral line of fish. A distinguishing feature of our approach is the imaging of activity across populations of synapses – the fundamental elements of signal transfer within all brain circuits. A guiding hypothesis is that the plasticity of neurotransmission plays a major part in controlling the input-output relation of sensory circuits, regulating the tuning and sensitivity of neurons to allow adaptation or sensitization to particular features of the input. Sensory systems continuously adjust their input-output relation according to the recent history of the stimulus. A common alteration is a decrease in the gain of the response to a constant feature of the input, termed adaptation. For instance, in the retina, many of the ganglion cells (RGCs) providing the output produce their strongest responses just after the temporal contrast of the stimulus increases, but the response declines if this input is maintained. The advantage of adaptation is that it prevents saturation of the response to strong stimuli and allows for continued signaling of future increases in stimulus strength. But adaptation comes at a cost: a reduced sensitivity to a future decrease in stimulus strength. The retina compensates for this loss of information through an intriguing strategy: while some RGCs adapt following a strong stimulus, a second population gradually becomes sensitized. We found that the underlying circuit mechanisms involve two opposing forms of synaptic plasticity in bipolar cells: synaptic depression causes adaptation and facilitation causes sensitization. Facilitation is in turn caused by depression in inhibitory synapses providing negative feedback. These opposing forms of plasticity can cause simultaneous increases and decreases in contrast-sensitivity of different RGCs, which suggests a general framework for understanding the function of sensory circuits: plasticity of both excitatory and inhibitory synapses control dynamic changes in tuning and gain.
Interneuron desynchronization and breakdown of long-term place cell stability in temporal lobe epilepsy
Temporal lobe epilepsy is associated with memory deficits but the circuit mechanisms underlying these cognitive disabilities are not understood. We used electrophysiological recordings, open-source wire-free miniaturized microscopy and computational modeling to probe these deficits in a model of temporal lobe epilepsy. We find desynchronization of dentate gyrus interneurons with CA1 interneurons during theta oscillations and a loss of precision and stability of place fields. We also find that emergence of place cell dysfunction is delayed, providing a potential temporal window for treatments. Computation modeling shows that desynchronization rather than interneuron cell loss can drive place cell dysfunction. Future studies will uncover cell types driving these changes and transcriptional changes that may be driving dysfunction.
Synaptic, cellular, and circuit mechanisms for learning: insights from electric fish
Understanding learning in neural circuits requires answering a number of difficult questions: (1) What is the computation being performed and what is its behavioral significance? (2) What are the inputs required for the computation and how are they represented at the level of spikes? (3) What are the sites and rules governing plasticity, i.e. how do pre and post-synaptic activity patterns produce persistent changes in synaptic strength? (4) How does network connectivity and dynamics shape the computation being performed? I will discuss joint experimental and theoretical work addressing these questions in the context of the electrosensory lobe (ELL) of weakly electric mormyrid fish.
Theme and variations: circuit mechanisms of behavioural evolution
Animals exhibit extraordinary variation in their behaviour, yet little is known about the neural mechanisms that generate this diversity. My lab has been taking advantage of the rapid diversification of male courtship behaviours in Drosophila to gain insight into how evolution shapes the nervous system to generate species-specific behaviours. By translating neurogenetic tools from D. melanogaster to closely related Drosophila species, we have begun to directly compare the homologous neural circuits and pinpoint sites of adaptive change. Across species, P1 interneurons serve as a conserved and key node in regulating male courtship: these neurons are selectively activated by the sensory cues carried by an appropriate mate and their activation triggers enduring courtship displays. We have been examining how different sensory pathways converge onto P1 neurons to regulate a male’s state of arousal, honing his pursuit of a prospective partner. Moreover, by performing cross-species comparison of these circuits, we have begun to gain insight into how reweighting of sensory inputs to P1 neurons underlies species-specific mate recognition. Our results suggest how variation at flexible nodes within the nervous system can serve as a substrate for behavioural evolution, shedding light on the types of changes that are possible and preferable within brain circuits.
Geometry of Neural Computation Unifies Working Memory and Planning
Cognitive tasks typically require the integration of working memory, contextual processing, and planning to be carried out in close coordination. However, these computations are typically studied within neuroscience as independent modular processes in the brain. In this talk I will present an alternative view, that neural representations of mappings between expected stimuli and contingent goal actions can unify working memory and planning computations. We term these stored maps contingency representations. We developed a "conditional delayed logic" task capable of disambiguating the types of representations used during performance of delay tasks. Human behaviour in this task is consistent with the contingency representation, and not with traditional sensory models of working memory. In task-optimized artificial recurrent neural network models, we investigated the representational geometry and dynamical circuit mechanisms supporting contingency-based computation, and show how contingency representation explains salient observations of neuronal tuning properties in prefrontal cortex. Finally, our theory generates novel and falsifiable predictions for single-unit and population neural recordings.
Neural Circuit Mechanisms of Emotional and Social Processing
How does our brain rapidly determine if something is good or bad? How do we know our place within a social group? How do we know how to behave appropriately in dynamic environments with ever-changing conditions? The Tye Lab is interested in understanding how neural circuits important for driving positive and negative motivational valence (seeking pleasure or avoiding punishment) are anatomically, genetically and functionally arranged. We study the neural mechanisms that underlie a wide range of behaviours ranging from learned to innate, including social, feeding, reward-seeking and anxiety-related behaviours. We have also become interested in “social homeostasis” -- how our brains establish a preferred set-point for social contact, and how this maintains stability within a social group. How are these circuits interconnected with one another, and how are competing mechanisms orchestrated on a neural population level? We employ optogenetic, electrophysiological, electrochemical, pharmacological and imaging approaches to probe these circuits during behaviour.
Vision in dynamically changing environments
Many visual systems can process information in dynamically changing environments. In general, visual perception scales with changes in the visual stimulus, or contrast, irrespective of background illumination. This is achieved by adaptation. However, visual perception is challenged when adaptation is not fast enough to deal with sudden changes in overall illumination, for example when gaze follows a moving object from bright sunlight into a shaded area. We have recently shown that the visual system of the fly found a solution by propagating a corrective luminance-sensitive signal to higher processing stages. Using in vivo two-photon imaging and behavioural analyses we showed that distinct OFF-pathway inputs encode contrast and luminance. The luminance-sensitive pathway is particularly required when processing visual motion in contextual dim light, when pure contrast sensitivity underestimates the salience of a stimulus. Recent work in the lab has addressed the question how two visual pathways obtain such fundamentally different sensitivities, given common photoreceptor input. We are furthermore currently working out the network-based strategies by which luminance- and contrast-sensitive signals are combined to guide appropriate visual behaviour. Together, I will discuss the molecular, cellular, and circuit mechanisms that ensure contrast computation, and therefore robust vision, in fast changing visual scenes.
Neural control of vocal interactions in songbirds
During conversations we rapidly switch between listening and speaking which often requires withholding or delaying our speech in order to hear others and avoid overlapping. This capacity for vocal turn-taking is exhibited by non-linguistic species as well, however the neural circuit mechanisms that enable us to regulate the precise timing of our vocalizations during interactions are unknown. We aim to identify the neural mechanisms underlying the coordination of vocal interactions. Therefore, we paired zebra finches with a vocal robot (1Hz call playback) and measured the bird’s call response times. We found that individual birds called with a stereotyped delay in respect to the robot call. Pharmacological inactivation of the premotor nucleus HVC revealed its necessity for the temporal coordination of calls. We further investigated the contributing neural activity within HVC by performing intracellular recordings from premotor neurons and inhibitory interneurons in calling zebra finches. We found that inhibition is preceding excitation before and during call onset. To test whether inhibition guides call timing we pharmacologically limited the impact of inhibition on premotor neurons. As a result zebra finches converged on a similar delay time i.e. birds called more rapidly after the vocal robot call suggesting that HVC inhibitory interneurons regulate the coordination of social contact calls. In addition, we aim to investigate the vocal turn-taking capabilities of the common nightingale. Male nightingales learn over 100 different song motifs which are being used in order to attract mates or defend territories. Previously, it has been shown that nightingales counter-sing with each other following a similar temporal structure to human vocal turn-taking. These animals are also able to spontaneously imitate a motif of another nightingale. The neural mechanisms underlying this behaviour are not yet understood. In my lab, we further probe the capabilities of these animals in order to access the dynamic range of their vocal turn taking flexibility.
Circuit Mechanisms for Dynamic Social Interactions
Bernstein Conference 2024
Flexible circuit mechanisms for context-dependent song sequencing
COSYNE 2022
Flexible circuit mechanisms for context-dependent song sequencing
COSYNE 2022
Deep inverse modeling reveals dynamic-dependent invariances in neural circuit mechanisms
COSYNE 2025
Neural circuit mechanisms of bottom-up reward learning
COSYNE 2025
Circuit mechanisms underlying the sexual dimorphic effects of restraint stress on prefrontal cortical neuronal properties
FENS Forum 2024