Topic spotlight
TopicWorld Wide

CNS

Discover seminars, jobs, and research tagged with CNS across World Wide.
74 curated items60 Seminars14 ePosters
Updated 24 days ago
74 items · CNS
74 results
SeminarNeuroscience

Microglia regulate remyelination via inflammatory phenotypic polarization in CNS demyelinating disorders

Athena Boutou
Hellenic Pasteur Institute
Nov 12, 2025
SeminarNeuroscience

NF1 exon 51 alternative splicing: functional implications in Central Nervous System (CNS) Cells

Charoula Peta
Biomedical research Foundation of the Academy of Athens
Oct 21, 2025
SeminarNeuroscience

CNS Control of Peripheral Mitochondrial Form and Function: Mitokines

Andy Dillin
University of California, Berkeley
Jan 27, 2025

My laboratory has made an intriguing discovery that mitochondrial stress in one tissue can be communicated to distal tissues. We find that mitochondrial stress in the nervous system triggers the production of entities known as mitokines. These mitokines are discharged from the nervous system, orchestrating a response in peripheral tissues that extends the lifespan of C. elegans. The revelation came as a surprise, given the prevalent belief that cell autonomous mechanisms would underlie the relationship between mitochondrial function and aging. It was also surprising given the prevailing dogma that mitochondrial function must be increased, not decreased, to improve health and longevity. Our work also underscores the fact that mitochondria, which originated as a microbial entity and later evolved into an intracellular symbiont, have retained their capacity for intercommunication, now facilitated by signals from the nervous system. We hypothesize that this communication has evolved as a mechanism to reduce infection from pathogens.

SeminarNeuroscience

How the brain barriers ensure CNSimmune privilege”

Britta Engelhardt
Theodor Kocher Institute, University of Bern, Switzerland
Sep 25, 2024

Britta Engelhard’s research is devoted to understanding thefunction of the different brain barriers in regulating CNS immunesurveillance and how their impaired function contributes toneuroinflammatory diseases such as Multiple Sclerosis (MS) orAlzheimer’s disease (AD). Her laboratory combines expertise invascular biology, neuroimmunology and live cell imaging and hasdeveloped sophisticated in vitro and in vivo approaches to studyimmune cell interactions with the brain barriers in health andneuroinflammation.

SeminarNeuroscience

The role of CNS microglia in health and disease

Kyrargyri Vassiliki
Department of Immunology, Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
Oct 24, 2023

Microglia are the resident CNS macrophages of the brain parenchyma. They have many and opposing roles in health and disease, ranging from inflammatory to anti-inflammatory and protective functions, depending on the developmental stage and the disease context. In Multiple Sclerosis, microglia are involved to important hallmarks of the disease, such as inflammation, demyelination, axonal damage and remyelination, however the exact mechanisms controlling their transformation towards a protective or devastating phenotype during the disease progression remains largely unknown until now. We wish to understand how brain microglia respond to demyelinating insults and how their behaviour changes in recovery. To do so we developed a novel histopathological analysis approach in 3D and a cell-based analysis tool that when applied in the cuprizone model of demyelination revealed region- and disease- dependent changes in microglial dynamics in the brain grey matter during demyelination and remyelination. We now use similar approaches with the aim to unravel sensitive changes in microglial dynamics during neuroinflammation in the EAE model. Furthermore, we employ constitutive knockout and tamoxifen-inducible gene-targeting approaches, immunological techniques, genetics and bioinformatics and currently seek to clarify the specific role of the brain resident microglial NF-κB molecular pathway versus other tissue macrophages in EAE.

SeminarNeuroscienceRecording

Microglia regulate central nervous system myelin growth and integrity

Niamh McNamahara
U of Edinburgh / Netherlands Institute of Neuroscience
May 15, 2023
SeminarNeuroscience

Obesity and Brain – Bidirectional Influences

Alain Dagher
McGill University
Apr 10, 2023

The regulation of body weight relies on homeostatic mechanisms that use a combination of internal signals and external cues to initiate and terminate food intake. Homeostasis depends on intricate communication between the body and the hypothalamus involving numerous neural and hormonal signals. However, there is growing evidence that higher-level cognitive function may also influence energy balance. For instance, research has shown that BMI is consistently linked to various brain, cognitive, and personality measures, implicating executive, reward, and attentional systems. Moreover, the rise in obesity rates over the past half-century is attributed to the affordability and widespread availability of highly processed foods, a phenomenon that contradicts the idea that food intake is solely regulated by homeostasis. I will suggest that prefrontal systems involved in value computation and motivation act to limit food overconsumption when food is scarce or expensive, but promote over-eating when food is abundant, an optimum strategy from an economic standpoint. I will review the genetic and neuroscience literature on the CNS control of body weight. I will present recent studies supporting a role of prefrontal systems in weight control. I will also present contradictory evidence showing that frontal executive and cognitive findings in obesity may be a consequence not a cause of increased hunger. Finally I will review the effects of obesity on brain anatomy and function. Chronic adiposity leads to cerebrovascular dysfunction, cortical thinning, and cognitive impairment. As the most common preventable risk factor for dementia, obesity poses a significant threat to brain health. I will conclude by reviewing evidence for treatment of obesity in adults to prevent brain disease.

SeminarNeuroscienceRecording

Engineering an inhibitor-resistant human CSF1R variant for microglia replacement

Terhi Lohela
University of Helsinki
Jan 18, 2023
SeminarNeuroscienceRecording

Meningeal macrophages protect against viral neuroinfection

Rejane Rua
Aix Marseille Université, Inserm
Jan 16, 2023

https://doi.org/10.1016/j.immuni.2022.10.005

SeminarNeuroscienceRecording

Humoral immunity at the brain borders in homeostasis and a scRNA-seq atlas of immune cells at the CNS borders

David Posner and Colin YC Lee
Wellcome Sanger Institute
Jan 16, 2023

https://www.cnsbordercellatlas.org/

SeminarNeuroscienceRecording

CNStalk: Finding the network balance in Parkinson’s hallucinations

Angeliki Zarkali
UCL
Nov 23, 2022
SeminarNeuroscienceRecording

Nonlinear computations in spiking neural networks through multiplicative synapses

M. Nardin
IST Austria
Nov 8, 2022

The brain efficiently performs nonlinear computations through its intricate networks of spiking neurons, but how this is done remains elusive. While recurrent spiking networks implementing linear computations can be directly derived and easily understood (e.g., in the spike coding network (SCN) framework), the connectivity required for nonlinear computations can be harder to interpret, as they require additional non-linearities (e.g., dendritic or synaptic) weighted through supervised training. Here we extend the SCN framework to directly implement any polynomial dynamical system. This results in networks requiring multiplicative synapses, which we term the multiplicative spike coding network (mSCN). We demonstrate how the required connectivity for several nonlinear dynamical systems can be directly derived and implemented in mSCNs, without training. We also show how to precisely carry out higher-order polynomials with coupled networks that use only pair-wise multiplicative synapses, and provide expected numbers of connections for each synapse type. Overall, our work provides an alternative method for implementing nonlinear computations in spiking neural networks, while keeping all the attractive features of standard SCNs such as robustness, irregular and sparse firing, and interpretable connectivity. Finally, we discuss the biological plausibility of mSCNs, and how the high accuracy and robustness of the approach may be of interest for neuromorphic computing.

SeminarNeuroscience

An epigenetic perspective on stem cell specification in the developing CNS

Tanja Vogel, PhD
University of Freiburg
Oct 4, 2022
SeminarNeuroscienceRecording

CNStalk: Involvement of the cerebellum in motor and emotional learning

Dagmar Timmann
Sep 28, 2022
SeminarNeuroscience

Untitled Seminar

Giordano Lippi (USA), Maria Carreño-Muñoz (Canada), Rhys Knowles (Australia), Nigel Kee (Sweden)
Sep 27, 2022

Giordano Lippi – Beyond transcription – microRNA mechanisms of brain development; Maria Isabel Carreño-Muñoz– Role of GABAergic circuits in the generation of sensory processing dysregulations in SYNGAP1 haploinsufficiency; Rhys Knowles-TBA; Nigel Kee- That other half: Derivation of posterior axial tissues from human stem cells

SeminarNeuroscience

Development and evolution of neuronal connectivity

Alain Chédotal
Vision Institute, Paris, France
Sep 27, 2022

In most animal species including humans, commissural axons connect neurons on the left and right side of the nervous system. In humans, abnormal axon midline crossing during development causes a whole range of neurological disorders ranging from congenital mirror movements, horizontal gaze palsy, scoliosis or binocular vision deficits. The mechanisms which guide axons across the CNS midline were thought to be evolutionary conserved but our recent results suggesting that they differ across vertebrates.  I will discuss the evolution of visual projection laterality during vertebrate evolution.  In most vertebrates, camera-style eyes contain retinal ganglion cell (RGC) neurons projecting to visual centers on both sides of the brain. However, in fish, RGCs are thought to only innervate the contralateral side. Using 3D imaging and tissue clearing we found that bilateral visual projections exist in non-teleost fishes. We also found that the developmental program specifying visual system laterality differs between fishes and mammals. We are currently using various strategies to discover genes controlling the development of visual projections. I will also present ongoing work using 3D imaging techniques to study the development of the visual system in human embryo.

SeminarNeuroscience

SCN8A (Nav1.6) and DEE:  mouse models and pre-clinical therapies

Miriam Meisler
University of Michigan
Sep 6, 2022

SCN8A encodes a major voltage-gated sodium channel expressed in CNS and PNS neurons.  Gain-of-function and loss-of-function mutations contribute to  human disorders, most notably Developmental and Epileptic Encephalophy (DEE). More than 600 affected individuals have been reported, with the most common  mechanism of de novo, gain-of-function mutations.  We have developed constitutive  and conditional models of gain- and loss- of function mutations in the mouse and  characterized the effects of on neuronal firing and neurological phenotypes.  Using CRE lines with cellular and developmental specificity, we have probed the effects of activating  mutant alleles in various classes of neurons in the developing and adult mouse.   Most recently, we are testing genetic therapies that reduce the expression  of gain-of-function mutant alleles.  We are comparing the effectiveness of allele specific  oligos (ASOs), viral delivery of shRNAs, and allele-specific targeting of mutant alleles  using Crispr/Cas9 in mouse models of DEE.

SeminarNeuroscience

Untitled Seminar

Heiko Luhmann (Germany), Mary Tolcos (Australia), Silvia Velasco (Australia)
Jul 26, 2022

Heiko Luhmann (Germany) – How neuronal activity builds the cerebral cortex; Mary Tolcos (Australia) – Cortical development and fetal brain injury; Silvia Velasco (Australia) – Human brain organoids to study neurodevelopment and disease

SeminarNeuroscienceRecording

A Game Theoretical Framework for Quantifying​ Causes in Neural Networks

Kayson Fakhar​
ICNS Hamburg
Jul 5, 2022

Which nodes in a brain network causally influence one another, and how do such interactions utilize the underlying structural connectivity? One of the fundamental goals of neuroscience is to pinpoint such causal relations. Conventionally, these relationships are established by manipulating a node while tracking changes in another node. A causal role is then assigned to the first node if this intervention led to a significant change in the state of the tracked node. In this presentation, I use a series of intuitive thought experiments to demonstrate the methodological shortcomings of the current ‘causation via manipulation’ framework. Namely, a node might causally influence another node, but how much and through which mechanistic interactions? Therefore, establishing a causal relationship, however reliable, does not provide the proper causal understanding of the system, because there often exists a wide range of causal influences that require to be adequately decomposed. To do so, I introduce a game-theoretical framework called Multi-perturbation Shapley value Analysis (MSA). Then, I present our work in which we employed MSA on an Echo State Network (ESN), quantified how much its nodes were influencing each other, and compared these measures with the underlying synaptic strength. We found that: 1. Even though the network itself was sparse, every node could causally influence other nodes. In this case, a mere elucidation of causal relationships did not provide any useful information. 2. Additionally, the full knowledge of the structural connectome did not provide a complete causal picture of the system either, since nodes frequently influenced each other indirectly, that is, via other intermediate nodes. Our results show that just elucidating causal contributions in complex networks such as the brain is not sufficient to draw mechanistic conclusions. Moreover, quantifying causal interactions requires a systematic and extensive manipulation framework. The framework put forward here benefits from employing neural network models, and in turn, provides explainability for them.

SeminarNeuroscienceRecording

CNStalk: Mapping brain function with ultra-high field MRI

Wietske van der Zwaag
THE SPINOZA CENTRE FOR NEUROIMAGING in AMSTERDAM
Jun 29, 2022
SeminarNeuroscience

Untitled Seminar

Guillermina Lopez-Bendito, Spain and Rodrigo Suarez, Australia
Jun 28, 2022

G. Lopez-Bendito, Spain: “Spontaneous Activity in the Specification and Plasticity of Sensory Circuits”; R. Suarez , Australia: “Marsupials illuminate brain wiring”

SeminarNeuroscience

Pro-regenerative functions of microglia in demyelinating diseases

Mikael Simons
Institute of Neuronal Cell Biology, German Center for Neurodegenerative Diseases, Technical University Munich, Germany
Jun 13, 2022

Our goal is to understand why myelin repair fails in multiple sclerosis and to develop regenerative medicines for the nervous system. A central obstacle for progress in this area has been the complex biology underlying the response to CNS injury. Acute CNS damage is followed by a multicellular response that encompasses different cell types and spans different scales. Currently, we do not understand which factors determines lesion recovery. Failure of inflammation to resolve is a key underlying reason of poor regeneration, and one focus is therefore on the biology of microglia during de- and remyelination, and their cross talk to other cells, in particular oligodendrocytes and the progenitor cells. In addition, we are exploring the link between lipid metabolism and inflammation, and its role in the regulation of regeneration. I will report about our recent progress in our understanding of how microglia promote regeneration in the CNS.

SeminarNeuroscience

Untitled Seminar

G. Quattrocolo (Norway) and F. Garcia-Moreno (Spain)
May 24, 2022

G. Quattrocolo: Cajal-Retzius cells in the postnatal hippocampus; F. Garcia-Moreno: Mosaic evolutionary history of brain circuits through the lens of neurogenesis

SeminarNeuroscienceRecording

CNStalk: The emergence of High order Hubs in the Human Connectome

Fernando Santos
University van Amsterdam, Amsterdam, The Netherlands
Apr 27, 2022
SeminarNeuroscience

Untitled Seminar

Kaylene Young (Australia), Ben Emery (USA), Carlie Cullen (Australia)
Apr 26, 2022

Kaylene Young (Australia) – How does protocadherin 15 direct oligodendrocyte progenitor cell behaviour? Ben Emery (USA) - Loss of oligodendroglial support induces DLK-mediated degeneration of neurons; Carlie Cullen (Australia) – Do myelinating oligodendrocytes help us learn?

SeminarNeuroscience

MBI Webinar on preclinical research into brain tumours and neurodegenerative disorders

Ekaterina (Caty) Salimova and Ms Sanjeevini Babu Reddiar
Apr 12, 2022

WEBINAR 1 Breaking the barrier: Using focused ultrasound for the development of targeted therapies for brain tumours presented by Dr Ekaterina (Caty) Salimova, Monash Biomedical Imaging Glioblastoma multiforme (GBM) - brain cancer - is aggressive and difficult to treat as systemic therapies are hindered by the blood-brain barrier (BBB). Focused ultrasound (FUS) - a non-invasive technique that can induce targeted temporary disruption of the BBB – is a promising tool to improve GBM treatments. In this webinar, Dr Ekaterina Salimova will discuss the MRI-guided FUS modality at MBI and her research to develop novel targeted therapies for brain tumours. Dr Ekaterina (Caty) Salimova is a Research Fellow in the Preclinical Team at Monash Biomedical Imaging. Her research interests include imaging cardiovascular disease and MRI-guided focused ultrasound for investigating new therapeutic targets in neuro-oncology. - WEBINAR 2 Disposition of the Kv1.3 inhibitory peptide HsTX1[R14A], a novel attenuator of neuroinflammation presented by Sanjeevini Babu Reddiar, Monash Institute of Pharmaceutical Sciences The voltage-gated potassium channel (Kv1.3) in microglia regulates membrane potential and pro-inflammatory functions, and non-selective blockade of Kv1.3 has shown anti-inflammatory and disease improvement in animal models of Alzheimer’s and Parkinson’s diseases. Therefore, specific inhibitors of pro-inflammatory microglial processes with CNS bioavailability are urgently needed, as disease-modifying treatments for neurodegenerative disorders are lacking. In this webinar, PhD candidate Ms Sanju Reddiar will discuss the synthesis and biodistribution of a Kv1.3-inhibitory peptide using a [64Cu]Cu-DOTA labelled conjugate. Sanjeevini Babu Reddiar is a PhD student at the Monash Institute of Pharmaceutical Sciences. She is working on a project identifying the factors governing the brain disposition and blood-brain barrier permeability of a Kv1.3-blocking peptide.

SeminarNeuroscienceRecording

CNStalk: Using machine learning to predict mental health on the basis of brain, behaviour and environment

Andre Marquand
Donders Institute
Mar 30, 2022
SeminarNeuroscience

Untitled Seminar

Emilia Favuzzi (USA), Ewoud Schmidt (USA), Tracy Bale (USA), Anastassia Voronova (Canada)
Mar 29, 2022

Emilia Favuzzi (USA): Artisans of Brain Wiring: GABA-Receptive Microglia Selectively Sculpt Inhibitory Circuits; Ewoud Schmidt (USA): Humanizing the mouse brain: reorganizing cortical circuits through modified synaptic development; Tracy Bale (USA): Trophoblast mechanisms key in regulating neurodevelopment Anastassia Voronova (Canada): Regulation of neural stem cell fates by neuronal ligands

SeminarNeuroscienceRecording

CNStalk: Being awake while asleep, being asleep while awake

Thomas Andrillon
The Brain and Spinal Cord Institute
Feb 23, 2022
SeminarNeuroscience

Untitled Seminar

Rachel Moore (UK), Michael Notaras (USA), Rachel Wong (USA)
Feb 22, 2022

Rachel Moore- Microtubules are not required to generate a nascent axon in embryonic spinal neurons in vivo Michael Notaras-TBA Rachel Wong- Circuit assembly in the vertebrate retina

SeminarNeuroscience

Modulation of oligodendrocyte development and myelination by voltage-gated Ca++ channels

Pablo Paez, PhD
Associate Professor, Institute for Myelin and Glia Exploration, Department of Ph ...
Feb 7, 2022

The oligodendrocyte generates CNS myelin, which is essential for normal nervous system function. Thus, investigating the regulatory and signaling mechanisms that control its differentiation and the production of myelin is relevant to our understanding of brain development and of adult pathologies such as multiple sclerosis. We have recently established that the activity of voltage-gated Ca++ channels is crucial for the adequate migration, proliferation and maturation of oligodendrocyte progenitor cells (OPCs). Furthermore, we have found that voltage-gated Ca++ channels that function in synaptic communication between neurons also mediate synaptic signaling between neurons and OPCs. Thus, we hypothesize that voltage-gated Ca++ channels are central components of OPC-neuronal synapses and are the principal ion channels mediating activity-dependent myelination.

SeminarNeuroscienceRecording

CNStalk: Brain-behavior evolution in domesticated dogs and foxes

Erin Hecht
Department of Human Evolutionary Biology, Harvard University
Jan 26, 2022
SeminarNeuroscience

JAK/STAT regulation of the transcriptomic response during epileptogenesis

Amy Brooks-Kayal
Children's Hospital Colorado / UC Davis
Dec 14, 2021

Temporal lobe epilepsy (TLE) is a progressive disorder mediated by pathological changes in molecular cascades and neural circuit remodeling in the hippocampus resulting in increased susceptibility to spontaneous seizures and cognitive dysfunction. Targeting these cascades could prevent or reverse symptom progression and has the potential to provide viable disease-modifying treatments that could reduce the portion of TLE patients (>30%) not responsive to current medical therapies. Changes in GABA(A) receptor subunit expression have been implicated in the pathogenesis of TLE, and the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway has been shown to be a key regulator of these changes. The JAK/STAT pathway is known to be involved in inflammation and immunity, and to be critical for neuronal functions such as synaptic plasticity and synaptogenesis. Our laboratories have shown that a STAT3 inhibitor, WP1066, could greatly reduce the number of spontaneous recurrent seizures (SRS) in an animal model of pilocarpine-induced status epilepticus (SE). This suggests promise for JAK/STAT inhibitors as disease-modifying therapies, however, the potential adverse effects of systemic or global CNS pathway inhibition limits their use. Development of more targeted therapeutics will require a detailed understanding of JAK/STAT-induced epileptogenic responses in different cell types. To this end, we have developed a new transgenic line where dimer-dependent STAT3 signaling is functionally knocked out (fKO) by tamoxifen-induced Cre expression specifically in forebrain excitatory neurons (eNs) via the Calcium/Calmodulin Dependent Protein Kinase II alpha (CamK2a) promoter. Most recently, we have demonstrated that STAT3 KO in excitatory neurons (eNSTAT3fKO) markedly reduces the progression of epilepsy (SRS frequency) in the intrahippocampal kainate (IHKA) TLE model and protects mice from kainic acid (KA)-induced memory deficits as assessed by Contextual Fear Conditioning. Using data from bulk hippocampal tissue RNA-sequencing, we further discovered a transcriptomic signature for the IHKA model that contains a substantial number of genes, particularly in synaptic plasticity and inflammatory gene networks, that are down-regulated after KA-induced SE in wild-type but not eNSTAT3fKO mice. Finally, we will review data from other models of brain injury that lead to epilepsy, such as TBI, that implicate activation of the JAK/STAT pathway that may contribute to epilepsy development.

SeminarNeuroscience

Untitled Seminar

Leanne Godinho (Germany), Gabriele Ciceri (USA) and Daniel Poppe (Australia)
Nov 23, 2021

Leanne Godinho (Germany): Probing the mechanisms underlying cell fate in vivo in the developing retina; Gabriele Ciceri (USA): Directing the timing of maturation in human pluripotent stem cell-derived cortical neurons; Daniel Poppe (Australia): Conserved and divergent features of DNA methylation in embryonic stem cell-derived neurons

SeminarNeuroscience

A transdiagnostic data-driven study of children’s behaviour and the functional connectome

Jonathan Jones
Universiy of Cambridge, MRC CBU
Nov 23, 2021

Behavioural difficulties are seen as hallmarks of many neurodevelopmental conditions. Differences in functional brain organisation have been observed in these conditions, but little is known about how they are related to a child’s profile of behavioural difficulties. We investigated whether behavioural difficulties are associated with how the brain is functionally organised in an intentionally heterogeneous and transdiagnostic sample of 957 children aged 5-15. We used consensus community detection to derive data-driven profiles of behavioural difficulties and constructed functional connectomes from a subset of 238 children with resting-state functional Magnetic Resonance Imaging (fMRI) data. We identified three distinct profiles of behaviour that were characterised by principal difficulties with hot executive function, cool executive function, and learning. Global organisation of the functional connectome did not differ between the groups, but multivariate patterns of connectivity at the level of Intrinsic Connectivity Networks (ICNs), nodes, and hubs significantly predicted group membership in held-out data. Fronto-parietal connector hubs were under-connected in all groups relative to a comparison sample, and children with hot vs cool executive function difficulties were distinguished by connectivity in ICNs associated with cognitive control, emotion processing, and social cognition. This demonstrates both general and specific neurodevelopmental risk factors in the functional connectome. (https://www.medrxiv.org/content/10.1101/2021.09.15.21262637v1)

SeminarNeuroscienceRecording

Neural Population Dynamics for Skilled Motor Control

Britton Sauerbrei
Case Western Reserve University School of Medicine
Nov 3, 2021

The ability to reach, grasp, and manipulate objects is a remarkable expression of motor skill, and the loss of this ability in injury, stroke, or disease can be devastating. These behaviors are controlled by the coordinated activity of tens of millions of neurons distributed across many CNS regions, including the primary motor cortex. While many studies have characterized the activity of single cortical neurons during reaching, the principles governing the dynamics of large, distributed neural populations remain largely unknown. Recent work in primates has suggested that during the execution of reaching, motor cortex may autonomously generate the neural pattern controlling the movement, much like the spinal central pattern generator for locomotion. In this seminar, I will describe recent work that tests this hypothesis using large-scale neural recording, high-resolution behavioral measurements, dynamical systems approaches to data analysis, and optogenetic perturbations in mice. We find, by contrast, that motor cortex requires strong, continuous, and time-varying thalamic input to generate the neural pattern driving reaching. In a second line of work, we demonstrate that the cortico-cerebellar loop is not critical for driving the arm towards the target, but instead fine-tunes movement parameters to enable precise and accurate behavior. Finally, I will describe my future plans to apply these experimental and analytical approaches to the adaptive control of locomotion in complex environments.

SeminarNeuroscience

Untitled Seminar

Laura Fenlon (Australia), Laurent Nguyen (Belgium), Carol Ann Mason (USA), Thomas Perlmann (Sweden)
Oct 26, 2021

Laura Fenlon (Australia): Time shapes all brains: timing of a conserved transcriptional network underlies divergent cortical connectivity routes in mammalian brain development and evolution; Laurent Nguyen (Belgium): Regulation of cerebral cortex morphogenesis by migrating cells; Carol Ann Mason (USA): Wiring the eye to brain for binocular vision: lessons from the albino visual system. Thomas Perlmann (Sweden): Interrogating dopamine neuron development at the single cell level

SeminarNeuroscienceRecording

Activity dependent myelination: a mechanism for learning and regeneration?

Thóra Káradóttir
WT-MRC Stem Cell Institute, University of Cambridge
Oct 11, 2021

The CNS is responsive to an ever-changing environment. Until recently, studies of neural plasticity focused almost exclusively on functional and structural changes of neuronal synapses. In recent years, myelin plasticity has emerged as a potential modulator of neural networks. Myelination of previously unmyelinated axons, and changes in the structure on already-myelinated axons, can have large effects on network function. The heterogeneity of the extent of how axons in the CNS are myelinated offers diverse scope for dynamic myelin changes to fine-tune neural circuits. The traditionally held view of myelin as a passive insulator of axons is now changing to one of lifelong changes in myelin, modulated by neuronal activity and experience. Myelin, produced by oligodendrocytes (OLs), is essential for normal brain function, as it provides fast signal transmission, promotes synchronization of neuronal signals and helps to maintain neuronal function. OLs differentiate from oligodendrocyte precursor cells (OPCs), which are distributed throughout the adult brain, and myelination continues into late adulthood. OPCs can sense neuronal activity as they receive synaptic inputs from neurons and express voltage-gated ion channels and neurotransmitter receptors, and differentiate into myelinating OLs in response to changes in neuronal activity. This lecture will explore to what extent myelin plasticity occurs in adult animals, whether myelin changes occur in non-motor learning tasks, especially in learning and memory, and questions whether myelin plasticity and myelin regeneration are two sides of the same coin.

SeminarNeuroscienceRecording

CNStalk: Anatomo-functional organisation of the grasping network in the primate brain

Elena Borra
Dipartimento di Medicina e Chirurgia, Sezione di Neuroscienze, Università di Parma
Sep 29, 2021

Cortical functions result from the conjoint activity of different, reciprocally connected areas working together as large-scale functionally specialized networks. In the macaque brain, neural tracers and functional data have provided evidence for functionally specialized large-scale cortical networks involving temporal, parietal, and frontal areas. One of these networks, the lateral grasping network, appears to play a primary role in controlling hand action organization and recognition. Available functional and tractograpy data suggest the existence of a human counterpart of this network.

SeminarNeuroscience

Untitled Seminar

Isabelle Brunet (France), Debby Silver (USA), Robin Vigouroux (France), Patricia Garcez (Brazil)
Sep 29, 2021

Isabelle Brunet (France) – Neurovascular development Debby Silver (USA) - Dynamic post-transcriptional control of cortical development Robin Vigouroux (France) – Evolution of binocular vision Patricia Garcez (Brazil) – Beyond microcephaly: how Zika virus impacts brain development

SeminarNeuroscienceRecording

Gap Junction Coupling between Photoreceptors

Stephen Massey
University of Texas
Sep 19, 2021

Simply put, the goal of my research is to describe the neuronal circuitry of the retina. The organization of the mammalian retina is certainly complex but it is not chaotic. Although there are many cell types, most adhere to a relatively constant morphology and they are distributed in non-random mosaics. Furthermore, each cell type ramifies at a characteristic depth in the retina and makes a stereotyped set of synaptic connections. In other words, these neurons form a series of local circuits across the retina. The next step is to identify the simplest and commonest of these repeating neural circuits. They are the building blocks of retinal function. If we think of it in this way, the retina is a fabulous model for the rest of the CNS. We are interested in identifying specific circuits and cell types that support the different functions of the retina. For example, there appear to be specific pathways for rod and cone mediated vision. Rods are used under low light conditions and rod circuitry is specialized for high sensitivity when photons are scarce (when you’re out camping, starlight). The hallmark of the rod-mediated system is monochromatic vision. In contrast, the cone circuits are specialized for high acuity and color vision under relatively bright or daylight conditions. Individual neurons may be filled with fluorescent dyes under visual control. This is achieved by impaling the cell with a glass microelectrode using a 3D micromanipulator. We are also interested in the diffusion of dye through coupled neuronal networks in the retina. The dye filled cells are also combined with antibody labeling to reveal neuronal connections and circuits. This triple-labeled material may be viewed and reconstructed in 3 dimensions by multi-channel confocal microscopy. We have our own confocal microscope facility in the department and timeslots are available to students in my lab.

SeminarNeuroscience

Untitled Seminar

Jess Nithianantharajah, The Florey Melbourne, Australia; Robin Vigouroux, La Vision Paris, France.
Aug 25, 2021

A/Prof Jess Nithianantharajah , Group leader at the Florey Melbourne France will talk about "Molecular components of flexible behaviour” and Dr Robin Vigouroux from the La Vision Institute, Paris France will deal with the "Evolution of binocular vision” .

SeminarNeuroscience

Exploring and targeting CNS inflammation in brain metastases

Lisa Sevenich
Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt
Jun 30, 2021
SeminarNeuroscienceRecording

Regenerative Neuroimmunology - a stem cell perspective

Stefano Pluchino
Department of Clinical Neurosciences, University of Cambridge
May 31, 2021

There are currently no approved therapies to slow down the accumulation of neurological disability that occurs independently of relapses in multiple sclerosis (MS). International agencies are engaging to expedite the development of novel strategies capable of modifying disease progression, abrogating persistent CNS inflammation, and support degenerating axons in people with progressive MS. Understanding why regeneration fails in the progressive MS brain and developing new regenerative approaches is a key priority for the Pluchino Lab. In particular, we aim to elucidate how the immune system, in particular its cells called myeloid cells, affects brain structure and function under normal healthy conditions and in disease. Our objective is to find how myeloid cells communicate with the central nervous system and affect tissue healing and functional recovery by stimulating mechanisms of brain plasticity mechanisms such as the generation of new nerve cells and the reduction of scar formation. Applying combination of state-of-the-art omic technologies, and molecular approaches to study murine and human disease models of inflammation and neurodegeneration, we aim to develop experimental molecular medicines, including those with stem cells and gene therapy vectors, which slow down the accumulation of irreversible disabilities and improve functional recovery after progressive multiple sclerosis, stroke and traumatic injuries. By understanding the mechanisms of intercellular (neuro-immune) signalling, diseases of the brain and spinal cord may be treated more effectively, and significant neuroprotection may be achieved with new tailored molecular therapeutics.

SeminarNeuroscience

Untitled Seminar

Sean Millard (Brisbane, Australia), Patricia Jusuf (Melbourne, Australia), Victor Borrell (Alicante, Spain), Louise Cheng (Melbourne, Australia)
May 25, 2021

Sean Miller will present "From brain wiring to synaptic physiology - reuse of a cell recognition molecule to carry out higher order nervous system functions". Then, Patricia Jusuf will talk about " Visual vertebrate pipeline for assessing novel human GWAS gene candidates". Victor Borrell with deal with the "Genetic evolution of cerebral cortex size determinants" and Louise Cheng will present

SeminarNeuroscience

Synapse and Circuit Development

Jenny Gunnersen (Australia), Tommas Ellender (UK), Thomas Marissal (France)
Mar 23, 2021

The symposium will start with A/Prof Jenny Gunnersen who will present “New insights into mechanisms of excitatory synapse development”. Then, Dr Tommas Ellender will deal with the “Embryonic neural progenitor pools and the generation of fine-scale neural circuits” and Dr Thomas Marissal will talk about “Parvalbumin interneurons: the missing link between the micro and macroscopic alterations related to neurodevelopmental disorders?"”.

SeminarNeuroscience

New Strategies and Approaches to Tackle and Understand Neurological Disorder

Mauro Costa-Mattioli
The Memory & Brain Research Center (MBRC), Baylor College of Medicine, Houston, Texas, USA
Mar 17, 2021

Broadly, the Mauro Costa-Mattioli laboratory (The MCM Lab) encompasses two complementary lines of research. The first one, more traditional but very important, aims at unraveling the molecular mechanisms underlying memory formation (e.g., using state-of-the-art molecular and cell-specific genetic approaches). Learning and memory disorders can strike the brain during development (e.g., Autism Spectrum Disorders and Down Syndrome), as well as during adulthood (e.g., Alzheimer’s disease). We are interested in understanding the specific circuits and molecular pathways that are primarily targeted in these disorders and how they can be restored. To tackle these questions, we use a multidisciplinary, convergent and cross-species approach that combines mouse and fly genetics, molecular biology, electrophysiology, stem cell biology, optogenetics and behavioral techniques. The second line of research, more recent and relatively unexplored, is focused on understanding how gut microbes control CNS driven-behavior and brain function. Our recent discoveries, that microbes in the gut could modulate brain function and behavior in a very powerful way, have added a whole new dimension to the classic view of how complex behaviors are controlled. The unexpected findings have opened new avenues of study for us and are currently driving my lab to answer a host of new and very interesting questions: - What are the gut microbes (and metabolites) that regulate CNS-driven behaviors? Would it be possible to develop an unbiased screening method to identify specific microbes that regulate different behaviors? - If this is the case, can we identify how members of the gut microbiome (and their metabolites) mechanistically influence brain function? - What is the communication channel between the gut microbiota and the brain? Do different gut microbes use different ways to interact with the brain? - Could disruption of the gut microbial ecology cause neurodevelopmental dysfunction? If so, what is the impact of disruption in young and adult animals? - More importantly, could specific restoration of selected bacterial strains (new generation probiotics) represent a novel therapeutic approach for the targeted treatment of neurodevelopmental disorders? - Finally, can we develop microbiota-directed therapeutic foods to repair brain dysfunction in a variety of neurological disorders?

SeminarNeuroscience

Assembly of the neocortex

Song-Hai Shi (China), Lynette Lim (Belgium), Alfredo Molina (UK), Tomasz Nowakowski (USA)
Feb 23, 2021

The symposium will start with Prof Song-Hai Shi who will present “Assembly of the neocortex”. Then, Dr Lynette Lim will talk about “Shared and Unique Developmental Trajectories of Cortical Inhibitory Neurons”. Dr Alfredo Molina will deal with the “Tuneable progenitor cells to build the cerebral cortex”, and Prof Tomasz Nowakowski will present “Charting the molecular 'protomap' of the human cerebral cortex using single cell genomic”.

SeminarNeuroscience

Gene Therapy for Neurodegeneration

Ronald G. Crystal
Cornell Research
Jan 31, 2021

One of the major challenges in developing therapeutics for the neurodegenerative disorders is the blood-brain barrier, limiting the availability of systemically administered therapies such as recombinant proteins or monoclonal antibodies from reaching the brain. Direct central nervous system (CNS) gene therapy using adeno-associated virus vectors expressing a therapeutic protein, monoclonal antibody or inhibiting RNA-coding sequences has two characteristics ideal for therapy of neurodegenerative disorders: circumventing the blood-brain barrier by directly expressing the therapy in the brain and the ability to provide persistent therapy with only a single administration. There are several critical parameters relevant to successful CNS gene therapy, including choice of vector, design of the gene to be expressed, delivery/route of administration, dose and anti-vector immune responses. The presentation will focus on these issues, the current status of clinical trials of gene therapy for neurodegeneration and specific challenges that will need to be overcome to ensure the success of these therapies.

SeminarNeuroscience

Fundamental Cellular and Molecular Mechanisms governing Brain Development

Helen Cooper (UQ, Australia), Jin-Wu Tsai (National Yang-Ming University, Taiwan), Dr Isabel Del Pino (Instituto Principe Felipe, Spain), Dr Hongyan Wang (Duke-NUS, Singapore)
Jan 26, 2021

The symposium will start with Prof Cooper who will present “From neural tube to neocortex: the role of adhesion in maintaining stem cell morphology and function”. Then, Dr Tsai will talk about “In the search for new genes involved in brain development and disorders”. Dr Del Pino will deal with the “Regulation of intrinsic network activity during area patterning in the cerebral cortex”, and Dr Wang will present “Modelling Neurodevelopmental Disorders in Flies”.

SeminarNeuroscienceRecording

Beyond energy - an unconventional role of mitochondria in cone photoreceptors

Wei Li
NIH Bethesda
Dec 7, 2020

The long-term goal of my research is to study the mammalian retina as a model for the central nervous system (CNS) -- to understand how it functions in physiological conditions, how it is formed, how it breaks down in pathological conditions, and how it can be repaired. I have focused on two research themes: 1) Photoreceptor structure, synapse, circuits, and development, 2) Hibernation and metabolic adaptations in the retina and beyond. As the first neuron of the visual system, photoreceptors are vital for photoreception and transmission of visual signals. I am particularly interested in cone photoreceptors, as they mediate our daylight vision with high resolution color information. Diseases affecting cone photoreceptors compromise visual functions in the central macular area of the human retina and are thus most detrimental to our vision. However, because cones are much less abundant compared to rods in most mammals, they are less well studied. We have used the ground squirrel (GS) as a model system to study cone vision, taking advantage of their unique cone-dominant retina. In particular, we have focused on short-wavelength sensitive cones (S-cones), which are not only essential for color vision, but are also an important origin of signals for biological rhythm, mood and cognitive functions, and the growth of the eye during development. We are studying critical cone synaptic structures – synaptic ribbons, the synaptic connections of S-cones, and the development of S-cones with regard to their specific connections. These works will provide knowledge of normal retinal development and function, which can also be extended to the rest of CNS; for example, the mechanisms of synaptic targeting during development. In addition, such knowledge will benefit the development of optimal therapeutic strategies for regeneration and repair in cases of retinal degenerative disease. Many neurodegenerative diseases, including retinal diseases, are rooted in metabolic stress in neurons and/or glial cells. Using the same GS model, we aim to learn from this hibernating mammal, which possesses an amazing capability to adapt to the extreme metabolic conditions during hibernation. By exploring the mechanisms of such adaptation, we hope to discover novel therapeutic tactics for neurodegenerative diseases.

SeminarNeuroscienceRecording

When spontaneous waves meet angiogenesis: a case study from the neonatal retina

Evelyne Sernagor
Newcastle University
Oct 11, 2020

By continuously producing electrical signals, neurones are amongst the most energy-demanding cells in the organism. Resting ionic levels are restored via metabolic pumps that receive the necessary energy from oxygen supplied by blood vessels. Intense spontaneous neural activity is omnipresent in the developing CNS. It occurs during short, well-defined periods that coincide precisely with the timing of angiogenesis. Such coincidence cannot be random; there must be a universal mechanism triggering spontaneous activity concurrently with blood vessels invading neural territories for the first time. However, surprisingly little is known about the role of neural activity per se in guiding angiogenesis. Part of the reason is that it is challenging to study developing neurovascular networks in tri-dimensional space in the brain. We investigate these questions in the neonatal mouse retina, where blood vessels are much easier to visualise because they initially grow in a plane, while waves of spontaneous neural activity (spreading via cholinergic starburst amacrine cells) sweep across the retinal ganglion cell layer, in close juxtaposition with the growing vasculature. Blood vessels reach the periphery by postnatal day (P) 7-8, shortly before the cholinergic waves disappear (at P10). We discovered transient clusters of auto-fluorescent cells that form an annulus around the optic disc, gradually expanding to the periphery, which they reach at the same time as the growing blood vessels. Remarkably, these cells appear locked to the frontline of the growing vasculature. Moreover, by recording waves with a large-scale multielectrode array that enables us to visualise them at pan-retinal level, we found that their initiation points are not random; they follow a developmental centre-to-periphery pattern similar to the clusters and blood vessels. The density of growing blood vessels is higher in cluster areas than in-between clusters at matching eccentricity. The cluster cells appear to be phagocytosed by microglia. Blocking Pannexin1 (PANX1) hemichannels activity with probenecid completely blocks the spontaneous waves and results in the disappearance of the fluorescent cell clusters. We suggest that these transient cells are specialised, hyperactive neurones that form spontaneous activity hotspots, thereby triggering retinal waves through the release of ATP via PANX1 hemichannels. These activity hotspots attract new blood vessels to enhance local oxygen supply. Signalling through PANX1 attracts microglia that establish contact with these cells, eventually eliminating them once blood vessels have reached their vicinity. The auto-fluorescence that characterises the cell clusters may develop only once the process of microglial phagocytosis is initiated.

SeminarNeuroscience

Meningeal lymphatics and peripheral immunity in brain function and dysfunction

Jonathan Kipnis
Washington University in St Louis, Missouri
Oct 4, 2020

Immune cells and their derived molecules have major impact on brain function. Mice deficient in adaptive immunity have impaired cognitive and social function compared to that of wild-type mice. Importantly, replenishment of the T cell compartment in immune deficient mice restored proper brain function. Despite the robust influence on brain function, T cells are not found within the brain parenchyma, a fact that only adds more mystery into these enigmatic interactions between T cells and the brain. Our results suggest that meningeal space, surrounding the brain, is the site where CNS-associated immune activity takes place. We have recently discovered a presence of meningeal lymphatic vessels that drain CNS molecules and immune cells to the deep cervical lymph nodes. This communication between the CNS and the peripheral immunity is playing a key role in neurophysiology and in several CNS disorders. Interestingly, meningeal lymphatics are impaired in aging and their dysfunction may be related to age-related cognitive decline as well as to Alzheimer’s pathology. In addition to providing new insights into age-related disorders, meningeal lymphatics may also serve as a novel therapeutic target for these diseases and are worth of in-depth mechanistic exploration.

SeminarNeuroscienceRecording

The thalamus that speaks to the cortex: spontaneous activity in the developing brain

Guillermina Lopez Bendito
Instituto de Neurociencias, Alicante (Spain)
Jun 21, 2020

Our research team runs several related projects studying the cellular and molecular mechanisms involved in the development of axonal connections in the brain. In particular, our aim is to uncover the principles underlying thalamocortical axonal wiring, maintenance and ultimately the rewiring of connections, through an integrated and innovative experimental programme. The development of the thalamocortical wiring requires a precise topographical sorting of its connections. Each thalamic nucleus receives specific sensory information from the environment and projects topographically to its corresponding cortical. A second level of organization is achieved within each area, where thalamocortical connections display an intra-areal topographical organization, allowing the generation of accurate spatial representations within each cortical area. Therefore, the level of organization and specificity of the thalamocortical projections is much more complex than other projection systems in the CNS. The central hypothesis of our laboratory is that thalamocortical input influences and maintains the functional architecture of the sensory cortices. We also believe that rewiring and plasticity events can be triggered by activity-dependent mechanisms in the thalamus. Three major questions are been focused in the laboratory: i) the role of spontaneous patterns of activity in thalamocortical wiring and cortical development, ii) the role of the thalamus and its connectivity in the neuroplastic cortical changes following sensory deprivation, and iii) reprogramming thalamic cells for sensory circuit restoration. Within these projects we are using several experimental programmes, these include: optical imaging, manipulation of gene expression in vivo, cell and molecular biology, biochemistry, cell culture, sensory deprivation paradigms and electrophysiology. The results derived from our investigations will contribute to our understating of how reprogramming of cortical wiring takes place following brain damage and how cortical structure is maintained.

SeminarNeuroscienceRecording

The subcellular organization of excitation and inhibition underlying high-fidelity direction coding in the retina

Gautam Awatramani
University of Victoria
May 10, 2020

Understanding how neural circuits in the brain compute information not only requires determining how individual inhibitory and excitatory elements of circuits are wired together, but also a detailed knowledge of their functional interactions. Recent advances in optogenetic techniques and mouse genetics now offer ways to specifically probe the functional properties of neural circuits with unprecedented specificity. Perhaps one of the most heavily interrogated circuits in the mouse brain is one in the retina that is involved in coding direction (reviewed by Mauss et al., 2017; Vaney et al., 2012). In this circuit, direction is encoded by specialized direction-selective (DS) ganglion cells (DSGCs), which respond robustly to objects moving in a ‘preferred’ direction but not in the opposite or ‘null’ direction (Barlow and Levick, 1965). We now know this computation relies on the coordination of three transmitter systems: glutamate, GABA and acetylcholine (ACh). In this talk, I will discuss the synaptic mechanisms that produce the spatiotemporal patterns of inhibition and excitation that are crucial for shaping directional selectivity. Special emphasis will be placed on the role of ACh, as it is unclear whether it is mediated by synaptic or non-synaptic mechanisms, which is in fact a central issue in the CNS. Barlow, H.B., and Levick, W.R. (1965). The mechanism of directionally selective units in rabbit's retina. J Physiol 178, 477-504. Mauss, A.S., Vlasits, A., Borst, A., and Feller, M. (2017). Visual Circuits for Direction Selectivity. Annu Rev Neurosci 40, 211-230. Vaney, D.I., Sivyer, B., and Taylor, W.R. (2012). Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat Rev Neurosci 13, 194-208

SeminarNeuroscience

Cell Fate Determination in the Retina

Constance Cepko
Harvard Medical School & HHMI
Apr 19, 2020

The Cepko lab investigates the mechanisms that direct development of the central nervous system (CNS) of vertebrates, with a focus on the retina. These studies have revealed that the retina has distinct types of progenitor cells that are biased, or committed, to produce distinct types of daughter cells in terminal divisions. The gene regulatory networks that underlie these cell fate choices are being studied by analysis of both gene function and cis-regulatory networks. New methods that enable these studies have been developed, including high throughput enhancer assays and quantitative, inexpensive and sensitive multiplex in situ hybridization methods.

ePoster

CD8 T cells play a major role in CNS inflammation and brain atrophy in type I interferon-mediated neuroinflammation of RNaseT2-deficient mice

Matthias Kettwig, Katharina Ternka, Alia Alia, Stefan Nessler, Jutta Gärtner

FENS Forum 2024

ePoster

Characterization of CNS-LNC in primary mouse astrocytes

Uğur Coşkun, Nina Hempel, Dennis M. Krüger, Susanne Burkhardt, Anna-Lena Schuetz, Farahnaz Sananbenesi, André Fischer

FENS Forum 2024

ePoster

A CNS-enriched miRNA as a biomarker for major depressive disorder

Eren Diniz, Ranjit Pradhan, Lalit Kaurani, Yuliya Badayeva, Dennis M. Krueger, Susanne Burkhardt, Anna-Lena Schuetz, Farahnaz Sananbenesi, Andre Fischer

FENS Forum 2024

ePoster

CNS-targeted antioxidant gene therapy for treating epilepsy

Aseel Saadi, Prince Kumar Singh, Tawfeeq Shekh-Ahmad

FENS Forum 2024

ePoster

Design and development of nanoliposomes based on soy lecithin for the delivery of molecules to the CNS as strategy for the treatment of neurodegenerative diseases

Alvaro Barrera-Ocampo, Andres Camilo Arana Linares, Paola Andrea Caicedo Burbano, Natalie Charlotte Cortés Rendón, Edison Humberto Osorio López, María Francisca Villegas Torres, Andrés Fernando González Barrios

FENS Forum 2024

ePoster

Determination of the threshold plasma Aβ42/40 ratio for Alzheimer's disease diagnosis and identification of confounding factors: The role of CNS-derived EVs

Emilien Boyer, Lise Colmant, Louise Deltenre, Marion Dourte, Esther Paître, Bernard Hanseeuw, Pascal Kienlen Campard

FENS Forum 2024

ePoster

Distinct neuropeptide secretion mechanisms across cell types in the mammalian CNS

Fiona H. Murphy, Adlin Abramian, Urszula Bagińska, Enedina Zepcan, Noortje van Geest, Ruud F. G. Toonen, Matthijs Verhage

FENS Forum 2024

ePoster

The effect of depleting the CNS border-associated macrophages at the pre-symptomatic stage of ALS on neuroinflammation, symptoms, and survival

Narges Shomalizadeh, Selçuk Polat, Judy Kesibi, Muhammet M. Ozturk, Sebastian A. Lewandowski, Esra Özkan, Yasemin Gürsoy Özdemir

FENS Forum 2024

ePoster

Integrating different approaches for establishing a multi-scale functional validation platform for RNA-based drugs in the CNS (MULTIVAL)

Chiara Adriana Elia, Sebastiano Bariselli, Antonella Borreca, Matteo Fossati, Marianna Leonzino, Davide Pozzi, Marco Rasile, Roberto Rusconi, Michela Matteoli, Simona Lodato, Maria Luisa Malosio

FENS Forum 2024

ePoster

Interleukin-33 as a player in axon remyelination in response to CNS and PNS injury

Małgorzata Zawadzka, Beata Kucharz, Katarzyna Konarzewska, Urszula Sławińska

FENS Forum 2024

ePoster

Microglia morphophysiological diversity and its implications for the CNS after peripheral nerve injury

Andres Vidal-Itriago, Rowan A Radford, Pradeep Manuneedhi Cholan, Cindy Maurel, Albert Lee, Roger S Chung, Manuel B Graeber, Marco Morsch

FENS Forum 2024

ePoster

Morphological heterogeneity of CNS border-associated macrophages after photothrombotic stroke

Do-Gyun Kim, Ji-Won Hwang, Ara Cho, Hong Lim Kim, Yuna Oh, Wha-Sun Kang, Dongha Kim, Mun-Yong Lee, Tae-Ryong Riew

FENS Forum 2024

ePoster

Targeting PAC1 receptors to prevent CNS white matter inflammation, synapse loss, and locomotor deficits in the cuprizone demyelination model

Margo Jansen, Yasir Mahmood, Jordan Lee, Sarah Thomas Broome, James Waschek, Alessandro Castorina

FENS Forum 2024

ePoster

Unraveling the role of PIK3CD GOI mutation on CNS and behavior

Devika Kurup, Ines Serra, Aleksandra Badura

FENS Forum 2024