← Back

Cognitive

Topic spotlight
TopicWorld Wide

Cognitive Neuroscience

Discover seminars, jobs, and research tagged with Cognitive Neuroscience across World Wide.
64 curated items39 Seminars25 Positions
Updated about 15 hours ago
64 items · Cognitive Neuroscience
64 results
PositionNeuroscience

SISSA Neuroscience department

International School for Advanced Studies (SISSA)
Trieste, Italy
Dec 5, 2025

The Neuroscience Department of the International School for Advanced Studies (SISSA; https://www.sissa.it/research/neuroscience) invites expressions of interest from scientists from various fields of Neuroscience for multiple tenure-track positions with anticipated start in 2025. Ongoing neuroscience research at SISSA includes cognitive neuroscience, computational and theoretical neuroscience, systems neuroscience, molecular and cellular research as well as genomics and genetics. The Department intends to potentiate its activities in these fields and to strengthen cross-field interactions. Expressions of interest from scientists in any of these fields are welcome. The working and teaching language of SISSA is English. This is an equal opportunity career initiative and we encourage applications from qualified women, racial and ethnic minorities, and persons with disabilities. Candidates should have a PhD in a relevant field and a proven record of research achievements. A clear potential to promote and lead research activities, and a specific interest in training and supervising PhD students is essential. Interested colleagues should present an original and innovative plan for their independent future research. We encourage both proposals within existing fields at SISSA as well as novel ideas outside of those or spanning various topics and methodologies of Neuroscience. SISSA is an international school promoting basic and applied research in Neuroscience, Mathematics and Physics and dedicated to the training of PhD students. Lab space and other resources will be commensurate with the appointment. Shared facilities include cell culture rooms, viral vector facilities, confocal microscopes, animal facilities, molecular and biochemical facilities, human cognition labs with EEG, TMS, and eye tracking systems, mechatronics workshop, and computing facilities. Agreements with national and international MRI scanning facilities are also in place. SISSA encourages fruitful exchanges between neuroscientists and other researchers including data scientists, physicists and mathematicians. Interested colleagues are invited to send a single pdf file including a full CV, a brief description of past and future research interests (up to 1,000 words), and the names of three referees to neuro.search@sissa.it. Selected candidates will be invited for an online or in-person seminar and 1- on-1 meetings in summer/autumn 2024. Deadline: A first evaluation round will consider all applications submitted before 15 May 2024. Later applications might be considered if no suitable candidates have been identified yet.

Position

Eugenio Piasini

International School for Advanced Studies (SISSA)
Trieste
Dec 5, 2025

Up to 6 PhD positions in Cognitive Neuroscience are available at SISSA, Trieste, starting October 2024. SISSA is an elite postgraduate research institution for Maths, Physics and Neuroscience, located in Trieste, Italy. SISSA operates in English, and its faculty and student community is diverse and strongly international. The Cognitive Neuroscience group (https://phdcns.sissa.it/) hosts 7 research labs that study the neuronal bases of time and magnitude processing, visual perception, motivation and intelligence, language and reading, tactile perception and learning, and neural computation. Our research is highly interdisciplinary; our approaches include behavioural, psychophysics, and neurophysiological experiments with humans and animals, as well as computational, statistical and mathematical models. Students from a broad range of backgrounds (physics, maths, medicine, psychology, biology) are encouraged to apply. This year, one of the PhD scholarships is set aside for joint PhD projects across PhD programs within the Neuroscience department (https://www.sissa.it/research/neuroscience). The selection procedure is now open. The application deadline is 28 March 2024. To learn how to apply, please visit https://phdcns.sissa.it/admission-procedure . Please contact the PhD Coordinator Mathew Diamond (diamond@sissa.it) and/or your prospective supervisor for more information and informal inquiries.

Position

Cognitive Neuroscience PhD program @ SISSA

International School for Advanced Studies (SISSA)
Trieste, Italy
Dec 5, 2025

Up to 6 PhD positions in Cognitive Neuroscience are available at SISSA, Trieste, starting October 2023. SISSA is an elite postgraduate research institution for Maths, Physics and Neuroscience, located in Trieste, Italy. SISSA operates in English, and its faculty and student community is diverse and strongly international. The Cognitive Neuroscience Department (https://phdcns.sissa.it/) hosts 7 research labs that study the neuronal bases of time and magnitude processing, visual perception, motivation and intelligence, language and reading, tactile perception and learning, and neural computation. The Department is highly interdisciplinary; our approaches include behavioural, psychophysics, and neurophysiological experiments with humans and animals, as well as computational, statistical and mathematical models. Students from a broad range of backgrounds (physics, maths, medicine, psychology, biology) are encouraged to apply. The selection procedure is now open. The first application deadline is 31 March 2023. To learn how to apply, please visit https://phdcns.sissa.it/admission-procedure. Please contact the PhD Coordinator Mathew Diamond (diamond@sissa.it) and/or your prospective supervisor for more information and informal inquiries.

Position

University of California Irvine

University of California Irvine
Irvine, California, USA
Dec 5, 2025

The Department of Cognitive Sciences at the University of California, Irvine (UCI) invites applications for an assistant professor (tenure-track) position with an anticipated start date of July 1, 2023. We are seeking scientists who study human vision, with a particular interest in those who combine an empirical research program with innovative approaches in neuroscience and/or cutting-edge computational tools such as machine learning. The successful candidate will establish a vital research program, and contribute to teaching, mentoring, and to inclusive excellence. They will interact with a dynamic and growing community in cognitive, computational, and neural sciences within the department (http://www.cogsci.uci.edu/) and the broader campus. Applicants should submit a cover letter, curriculum vitae, research and teaching statements, a statement describing past or potential contributions to diversity, equity, and inclusion, three recent or relevant publications, and the names and contact information of three references. The application requirements along with the online application can be found at: https://recruit.ap.uci.edu/JPF07912. To ensure full consideration, applications must be completed by December 15, 2022.

Position

Faculty of Psychology

Technische Universitaet Dresden
Dresden, Germany
Dec 5, 2025

TU Dresden is one of eleven German Universities of Excellence. It provides an outstanding scientific infrastructure and ideal environment for interdisciplinary cooperation. The Faculty of Psychology offers a position as Research Associate (m/f/x) (subject to personal qualification employees are remunerated according to salary group E 13 TV-L) starting as soon as possible and limited until December 31, 2022 with the option of extension. The period of employment is governed by the Fixed Term Research Contracts Act (WissZeitVG). The position offers the chance to obtain further academic qualification and is funded by the Saxonian Ministry of Science, Culture, and Tourism (SMWK) and aimed at facilitating major funding initiatives at the TU Dresden. Tasks: The successful candidate will work together with the Faculty of Psychology in applying for major funding initiatives (e.g., Excellence Cluster) within the topics of psychology and neuroscience. The position will entail the following tasks: - preparation and editing of grant proposals including literature review, project descriptions, budget, and work plans - writing scientific publications such as reviews in close collaboration with an interdisciplinary team - research work in the field of psychology and cognitive neuroscience - scientific preparation of events such as workshops and conferences - writing executive summaries, high-level summaries, infographics, and other tools. For questions about the position please contact Prof. Dr. Katharina von Kriegstein (katharina.von_kriegstein@tu-dresden.de). The TU Dresden is an equal opportunities employer, committed to the advancement of individuals without regard to ethnicity, religion, gender, or disability. In case of equal suitability, people with severe disabilities or those with equivalence to the German Social Code IX (SGB IX) will be preferred for employment. Please submit your comprehensive application including a cover letter that briefly describes your personal qualifications and future career interests, CV, 1 to 2 publications, and contact details of two personal references by January 10, 2022 (stamped arrival date of the university central mail service applies), preferably via the TU Dresden SecureMail Portal https://securemail.tu-dresden.de by sending it as a single pdf document to julia.herdin@tu-dresden.de or by mail to: TU Dresden, Fakultät Psychologie, Institut für Allgemeine Psychologie, Biopsychologie und Methoden der Psychologie, Professur für Kognitive und Klinische Neurowissenschaft, Frau Prof. Dr. Katharina von Kriegstein, Helmholtzstr. 10, 01069 Dresden. Please submit copies only, as your application will not be returned to you. Expenses incurred in attending interviews cannot be reimbursed.

Position

Prof David Brang

University of Michigan
Ann Arbor, Michigan
Dec 5, 2025

We are seeking a full-time post-doctoral research fellow to study computational and neuroscientific models of perception and cognition. The research fellow will be jointly supervised by Dr. David Brang (https://sites.lsa.umich.edu/brang-lab/) and Zhongming Liu (https://libi.engin.umich.edu). The goal of this collaboration is to build computational models of cognitive and perceptual processes using data combined from electrocorticography (ECoG) and fMRI. The successful applicant will also have freedom to conduct additional research based on their interests, using a variety of methods -- ECoG, fMRI, DTI, lesion mapping, and EEG. The ideal start date is from spring to fall 2021 and the position is expected to last for at least two years, with the possibility of extension for subsequent years. We are also recruiting a Post-Doc for research on multisensory interactions (particularly how vision modulates speech perception) using Cognitive Neuroscience techniques or to help with our large-scale brain tumor collaboration with Shawn Hervey-Jumper at UCSF (https://herveyjumperlab.ucsf.edu). In this latter collaboration we collect iEEG (from ~50 patients/year) and lesion mapping data (from ~150 patients/year) in patients with a brain tumor to study sensory and cognitive functions in patients. The goals of this project are to better understand the physiology of tumors, study causal mechanisms of brain functions, and generalize iEEG/ECoG findings from epilepsy patients to a second patient population.

Position

Prof. Edmund Wascher / Dr. Laura-Isabelle Klatt

Leibniz Research Centre for Working Environment and Human Factors
Dortmund, Germany
Dec 5, 2025

We are seeking to fill a fully funded PhD position (75% TV-L 13 state employees salary scheme) in cognitive neuroscience. The successful applicant will contribute to a project, investigating selective attention and working memory processes in a multisensory context. In particular, we are interested in how the auditory and the visual system interact during the deployment of attention in multisensory environments and how audio-visual information is integrated. To answer those research questions, we primarily use the EEG in combination with cutting edge analysis methods (e.g., multivariate pattern classification). Beyond that, the application of eye-tracking or (functional) MRI is possible within the project. Your responsibilities will include conducting (EEG-) experiments, data analysis, preparation of manuscripts for publication in peer-reviewed journals, as well as presentation of scientific results at (inter-)national conferences. Official job ad: https://www.ifado.de/ifadoen/careers/current-job-offers/#job3

Position

Chapman University Brain Institute

Chapman University
Irvine, CA, USA
Dec 5, 2025

We are seeking multiple post-bac research assistants with our projects.

Position

Marina Bedny

Johns Hopkins University
Baltimore, Maryland, USA
Dec 5, 2025

The Neuroplasticity & Development Lab investigates the contributions of nature and nurture to human cognition. Areas of interest include the origins of conceptual representations, the contribution of linguistic and sensory experience to knowledge and the neurocognitive basis of cultural skills (e.g., reading, programming). We use functional magnetic resonance imaging (fMRI), transcranial magnetic stimulation (TMS) and behavioral measures to investigate these questions. One line of research in the lab compares the minds and brains of populations with different visual experiences e.g., congenitally blind, late blind and sighted individuals. Working with people who are blind enables disentangling the contributions of sensory and linguistic experience to conceptual representations. We investigate visual cortex plasticity in blindness as a window into the mechanisms and timing of neural specialization in humans.

Position

Doby Rahnev

Georgia Institute of Technology
USA, Atlanta
Dec 5, 2025

The Perception, Neuroimaging, and Modeling lab (PI: Dr. Doby Rahnev, rahnevlab.gatech.edu) is hiring a postdoctoral fellow. The exact topic of research is flexible and could include investigating the neural and/or computational bases of perceptual decision making, metacognition, attention, expectation or learning. A special focus of the lab is how these processes are supported by large distributed brain networks. The Rahnev lab uses a wide range of methods such as fMRI, TMS, psychophysics, computational modeling and concurrent TMS-fMRI. The position is initially for 2 years with a possibility for extension. Candidates will be given the opportunity to conduct studies building on current lab research or developing their own projects ideas. The positions are available immediately. The Rahnev lab, at the Georgia Institute of Technology in Atlanta, has access to exceptional research facilities. The lab space is conveniently located just steps away from a 3T Prisma MRI scanner at the Center for Advanced Brain Imaging (CABI, cabiatl.com). The lab also houses its own TMS equipment and is pioneering the use of concurrent TMS-fMRI that allows TMS to be delivered inside the MRI scanner. Working in the Rahnev lab presents opportunities for collaborations across several Atlanta-based universities including Georgia Tech, Emory and Georgia State. Together, these universities have transformed Atlanta into a hub for psychological and neuroscience research with particular strengths in computational neuroscience, the study of special populations (disease, aging, children), ECoG, concurrent brain stimulation and brain recording, and animal research. Georgia Tech has an attractive campus in the heart of Atlanta, a large, vibrant, multicultural city that boasts impressive cultural, culinary, and entertainment opportunities. The Rahnev lab aims to create a supportive, fun and productive environment. We are especially interested in maintaining our already diverse team and therefore seek applications from qualified individuals from all demographics and backgrounds.

Position

Max Garagnani

Department of Computing, Goldsmiths, University of London
Goldsmiths, University of London, Lewisham Way, New Cross, London SE14 6NW, UK
Dec 5, 2025

The project involves implementing a brain-realistic neurocomputational model able to exhibit the spontaneous emergence of cognitive function from a uniform neural substrate, as a result of unsupervised, biologically realistic learning. Specifically, it will focus on modelling the emergence of unexpected (i.e., non stimulus-driven) action decisions using neo-Hebbian reinforcement learning. The final deliverable will be an artificial brain-like cognitive architecture able to learn to act as humans do when driven by intrinsic motivation and spontaneous, exploratory behaviour.

Position

Maxime Carrière

Freie Universität Berlin
Berlin, Germany
Dec 5, 2025

The ERC Advanced Grant “Material Constraints Enabling Human Cognition (MatCo)” at the Freie Universität Berlin aims to build network models of the human brain that mimic neurocognitive processes involved in language, communication and cognition. A main strategy is to use neural network models constrained by neuroanatomical and neurophysiological features of the human brain in order to explain aspects of human cognition. To this end, neural network simulations are performed and evaluated in neurophysiological and neurometabolic experiments. This neurocomputational and experimental research targets novel explanations of human language and cognition on the basis of neurobiological principles. In the MatCo project, 3 positions are currently available: 1 full time position for a Scientific Researcher at the postdoctoral level Fixed-term (until 30.9.2025), Salary Scale 13 TV-L FU ID: WiMi_MatCo100_08-2022, 2 part time positions (65%) for Scientific Researchers at the predoctoral level Fixed-term (until 30.9.2025), Salary Scale 13 TV-L FU ID: WiMi_MatCo65_08-2022

Position

Shu-Chen Li

Technische Universität Dresden (TU Dresden)
TU Dresden, Germany
Dec 5, 2025

The Chair of Lifespan Developmental Neuroscience investigates neurocognitive mechanisms underlying perceptual, cognitive, and motivational development across the lifespan. The main themes of our research are neurofunctional mechanisms underlying lifespan development of memory, cognitive control, reward processing, decision making, and multisensory perception. We also pursue applied research to study effects of behavioral intervention, non-invasive brain stimulation, or digital technologies in enhancing functional plasticity for individuals of difference ages. We utilize a broad range of neurocognitive (e.g., EEG, fNIRs, fMRI, tDCS) and computational methods. The lab has several testing rooms and is equipped with multiple EEG (64-channel and 32-channel) and fNIRs systems, as well as eye-tracking and virtual-reality devices. The MRI scanner (3T) and TMS-device can be accessed through the university’s NeuroImaging Center. TUD is a university of excellence supported by the DFG, which offers outstanding research opportunities. Researchers in this chair are involved in large research consortium and cluster, such as the DFG SFB 940 „Volition and Cognitive Control“ and DFG EXC 2050 „Tactile Internet with Human-in-the-Loop“.

Position

Tejas Savalia

University of Massachusetts, Amherst
University of Massachusetts, Amherst
Dec 5, 2025

The Department of Psychological and Brain Sciences at the University of Massachusetts, Amherst is inviting applications for a tenure track, academic year, faculty position at the Assistant Professor level in its Cognition and Cognitive Neuroscience Psychology program, starting in Fall 2024. We are seeking outstanding applicants with expertise in any area of cognitive psychology or cognitive neuroscience, including interdisciplinary fields connected to cognitive psychology, whose work complements and broadens existing strengths in our program. The program has current strengths in attention, decision-making, psycholinguistics, and mathematical modeling, with connections to our Behavioral Neuroscience, Clinical Psychology, Developmental Science, and Social Psychology programs. Across the university, our faculty have strong connections to Linguistics, Information and Computer Sciences, and Speech, Language, and Hearing Sciences, as well as the Initiative in Cognitive Science, the Computational and Social Science Institute, the Institute for Diversity Sciences, and the Institute for Applied Life Sciences.

PositionPsychology

N/A

University of Miami
University of Miami
Dec 5, 2025

The Department of Psychology at the University of Miami invites applications for two full-time, tenure-eligible, or tenure-track faculty members to join our department in August 2024. One position is in the department’s Adult Division, and the other is the Cognitive & Behavioral Neuroscience division. The specific area for both positions is open. For the Adult Division, areas of focus could include basic research on affect, cognitive science, and/or mechanistic studies related to mental health or the impact of disparities. Scholars with expertise in lab-based experimental, neurophysiological, computational, and/or mobile health/digital phenotyping methods are welcome. Individuals with interests in data science, including advanced quantitative techniques, big data, and machine learning are also encouraged to apply. For the Cognitive & Behavioral Neuroscience Division, we are particularly interested in individuals who incorporate innovative and sophisticated cognitive, affective, or social neuroscience methods into their research program.

Position

Grit Hein

Julius-Maximilians-Universität Würzburg (JMU)
Würzburg, Germany
Dec 5, 2025

The Translational Social Neuroscience Unit at the Julius-Maximilians-Universität Würzburg (JMU) in Würzburg, Germany is offering a 2-year 100% postdoc position in social neuroscience. The unit studies the psychological and neurobiological processes underlying social interactions and decisions. Current studies investigate drivers of human social behavior such as empathy, social norms, group membership, and egoism, as well as the social modulation of anxiety and pain processing. The unit uses neuroscientific methods (functional magnetic resonance imaging, electroencephalography) and psychophysiological measures (heart rate, skin conductance), combined with experimental paradigms from cognitive and social psychology and simulations of social interactions in virtual reality. The unit also studies social interactions in everyday life using smartphone-based surveys and mobile physiological sensors. The position is initially limited until September 30, 2025 with the option for extension.

PositionNeuroscience

Burcu Ayşen Ürgen

Bilkent University
Ankara, Turkey
Dec 5, 2025

Bilkent University invites applications for multiple open-rank faculty positions in the Department of Neuroscience. The department plans to expand research activities in certain focus areas and accordingly seeks applications from promising or established scholars who have worked in the following or related fields: Cellular/molecular/developmental neuroscience with a strong emphasis on research involving animal models. Systems/cognitive/computational neuroscience with a strong emphasis on research involving emerging data-driven approaches, including artificial intelligence, robotics, brain-machine interfaces, virtual reality, computational imaging, and theoretical modeling. Candidates with a research focus in those areas whose research has a neuroimaging component are particularly encouraged to apply. The Department’s interdisciplinary Graduate Program in Neuroscience that offers Master's and PhD degrees was established in 2014. The department is affiliated with Bilkent’s Aysel Sabuncu Brain Research Center (ASBAM) and the National Magnetic Resonance Research Center (UMRAM). Faculty affiliated with the department has the privilege to access state-of-the-art research facilities in these centers, including animal facilities, cellular/molecular laboratory infrastructure, psychophysics laboratories, eyetracking laboratories, EEG laboratories, a human-robot interaction laboratory, and two MRI scanners (3T and 1.5T).

Position

Dr. Jiri Hammer

2nd Faculty of Medicine, Charles University
Prague, Czech Republic
Dec 5, 2025

The postdoc will be involved in cognitive neuroscience research, specifically in the intracranial EEG recordings. The projects include 'the interplay of movement and touch', which involves analysis of iEEG dynamics during reaching to tactile stimuli on the body, and 'from simple to natural and ecologically valid stimuli', which involves investigating brain responses measured by iEEG among stimuli gradually ranging from the simplest to very complex. The postdoc will also have the opportunity to propose new ideas for research.

Position

CRAIG JIN

University of Sydney, University of Technology Sydney, Westmead Hospital
The University of Sydney, NSW, 2006
Dec 5, 2025

Postdoctoral Research Associate in Fluent Mobility for Visual Impairment Using Auditory Augmentation: You will be working with a dynamic group of researchers at the University of Sydney, University of Technology Sydney and Westmead Hospital. We are exploring the use of non-verbal auditory grammar for spatial cognition and navigation.

Position

N/A

University of Toronto Max Planck Centre for Neural Science and Technology, Max Planck Institute for Software Systems
University of Toronto, Canada and Max Planck Institute for Software Systems, Saarbrücken, Germany
Dec 5, 2025

The PhD research topic will focus on understanding key mechanisms that enable specific cognitive functions in the brain, such as language comprehension, using a combination of computational neuroscience, machine learning, and experimental cognitive neuroscience techniques. The student will develop novel integrations of mechanistic physiological and generative AI-based theories of brain organization, and test these by designing, conducting, and analyzing experiments using advanced neuroimaging and neurostimulation technologies (EEG, fNIRS, TMS, MEG, fMRI, including mobile w/ VR/AR integration).

Position

Dr. John D. Griffiths, Dr. Mariya Toneva

University of Toronto, CAMH KCNI, Max Planck Institute for Software Systems
University of Toronto, Canada and Max Planck Institute for Software Systems, Saarbrücken, Germany
Dec 5, 2025

The PhD research topic will focus on understanding key mechanisms that enable specific cognitive functions in the brain, such as language comprehension, using a combination of computational neuroscience, machine learning, and experimental cognitive neuroscience techniques. The student will develop novel integrations of mechanistic physiological and generative AI-based theories of brain organization, and test these by designing, conducting, and analyzing experiments using advanced neuroimaging and neurostimulation technologies (EEG, fNIRS, TMS, MEG, fMRI, including mobile w/ VR/AR integration).

Position

N/A

Faculty of Psychology and Educational Sciences, University of Coimbra
Coimbra, Portugal
Dec 5, 2025

The Faculty of Psychology and Educational Sciences of the University of Coimbra, Portugal, is seeking applications for 3 Post-Doctoral positions in Cognitive Science and Cognitive Neuroscience as part of the ERA Chair grant CogBooster. The positions are aimed at contributing to the renewal of Psychological Sciences in Portugal and involve working with Alfonso Caramazza and Jorge Almeida. The selected applicants will be based in Coimbra with opportunities to spend time at Harvard University in Alfonso Caramazza’s laboratory. The positions are focused on: 1) lexical processing, visual object recognition, reading, or action recognition; 2) visual object recognition and how object knowledge is organized and represented; 3) object dimensionality and dimensional mapping using population receptive field analysis/connective field modeling.

Position

SISSA cognitive neuroscience PhD

International School for Advanced Studies (SISSA)
Trieste
Dec 5, 2025

Up to 2 PhD positions in Cognitive Neuroscience are available at SISSA, Trieste, starting October 2024. SISSA is an elite postgraduate research institution for Maths, Physics and Neuroscience, located in Trieste, Italy. SISSA operates in English, and its faculty and student community is diverse and strongly international. The Cognitive Neuroscience group (https://phdcns.sissa.it/) hosts 6 research labs that study the neuronal bases of time and magnitude processing, visual perception, motivation and intelligence, language, tactile perception and learning, and neural computation. Our research is highly interdisciplinary; our approaches include behavioural, psychophysics, and neurophysiological experiments with humans and animals, as well as computational, statistical and mathematical models. Students from a broad range of backgrounds (physics, maths, medicine, psychology, biology) are encouraged to apply. The selection procedure is now open. The application deadline is 27 August 2024. Please apply here (https://www.sissa.it/bandi/ammissione-ai-corsi-di-philosophiae-doctor-posizioni-cofinanziate-dal-fondo-sociale-europeo), and see the admission procedure page (https://phdcns.sissa.it/admission-procedure) for more information. Note that the positions available for the Fall admission round are those funded by the "Fondo Sociale Europeo Plus", accessible through the first link above. Please contact the PhD Coordinator Mathew Diamond (diamond@sissa.it) and/or your prospective supervisor for more information and informal inquiries.

SeminarNeuroscience

OpenNeuro FitLins GLM: An Accessible, Semi-Automated Pipeline for OpenNeuro Task fMRI Analysis

Michael Demidenko
Stanford University
Jul 31, 2025

In this talk, I will discuss the OpenNeuro Fitlins GLM package and provide an illustration of the analytic workflow. OpenNeuro FitLins GLM is a semi-automated pipeline that reduces barriers to analyzing task-based fMRI data from OpenNeuro's 600+ task datasets. Created for psychology, psychiatry and cognitive neuroscience researchers without extensive computational expertise, this tool automates what is largely a manual process and compilation of in-house scripts for data retrieval, validation, quality control, statistical modeling and reporting that, in some cases, may require weeks of effort. The workflow abides by open-science practices, enhancing reproducibility and incorporates community feedback for model improvement. The pipeline integrates BIDS-compliant datasets and fMRIPrep preprocessed derivatives, and dynamically creates BIDS Statistical Model specifications (with Fitlins) to perform common mass univariate [GLM] analyses. To enhance and standardize reporting, it generates comprehensive reports which includes design matrices, statistical maps and COBIDAS-aligned reporting that is fully reproducible from the model specifications and derivatives. OpenNeuro Fitlins GLM has been tested on over 30 datasets spanning 50+ unique fMRI tasks (e.g., working memory, social processing, emotion regulation, decision-making, motor paradigms), reducing analysis times from weeks to hours when using high-performance computers, thereby enabling researchers to conduct robust single-study, meta- and mega-analyses of task fMRI data with significantly improved accessibility, standardized reporting and reproducibility.

SeminarNeuroscience

What it’s like is all there is: The value of Consciousness

Axel Cleeremans
Université Libre de Bruxelles
Mar 6, 2025

Over the past thirty years or so, cognitive neuroscience has made spectacular progress understanding the biological mechanisms of consciousness. Consciousness science, as this field is now sometimes called, was not only inexistent thirty years ago, but its very name seemed like an oxymoron: how can there be a science of consciousness? And yet, despite this scepticism, we are now equipped with a rich set of sophisticated behavioural paradigms, with an impressive array of techniques making it possible to see the brain in action, and with an ever-growing collection of theories and speculations about the putative biological mechanisms through which information processing becomes conscious. This is all good and fine, even promising, but we also seem to have thrown the baby out with the bathwater, or at least to have forgotten it in the crib: consciousness is not just mechanisms, it’s what it feels like. In other words, while we know thousands of informative studies about access-consciousness, we have little in the way of phenomenal consciousness. But that — what it feels like — is truly what “consciousness” is about. Understanding why it feels like something to be me and nothing (panpsychists notwithstanding) for a stone to be a stone is what the field has always been after. However, while it is relatively easy to study access-consciousness through the contrastive approach applied to reports, it is much less clear how to study phenomenology, its structure and its function. Here, I first overview work on what consciousness does (the "how"). Next, I ask what difference feeling things makes and what function phenomenology might play. I argue that subjective experience has intrinsic value and plays a functional role in everything that we do.

SeminarNeuroscience

Introducing the 'Cognitive Neuroscience & Neurotechnolog' group: From real-time fMRI to layer-fMRI & back

Romy Lorenz
Max Planck Institute for Biological Cybernetics, Tübingen
Nov 27, 2024
SeminarNeuroscience

Applied cognitive neuroscience to improve learning and therapeutics

Greg Applebaum
Department of Psychiatry, University of California, San Diego
May 15, 2024

Advancements in cognitive neuroscience have provided profound insights into the workings of the human brain and the methods used offer opportunities to enhance performance, cognition, and mental health. Drawing upon interdisciplinary collaborations in the University of California San Diego, Human Performance Optimization Lab, this talk explores the application of cognitive neuroscience principles in three domains to improve human performance and alleviate mental health challenges. The first section will discuss studies addressing the role of vision and oculomotor function in athletic performance and the potential to train these foundational abilities to improve performance and sports outcomes. The second domain considers the use of electrophysiological measurements of the brain and heart to detect, and possibly predict, errors in manual performance, as shown in a series of studies with surgeons as they perform robot-assisted surgery. Lastly, findings from clinical trials testing personalized interventional treatments for mood disorders will be discussed in which the temporal and spatial parameters of transcranial magnetic stimulation (TMS) are individualized to test if personalization improves treatment response and can be used as predictive biomarkers to guide treatment selection. Together, these translational studies use the measurement tools and constructs of cognitive neuroscience to improve human performance and well-being.

SeminarPsychology

Where Cognitive Neuroscience Meets Industry: Navigating the Intersections of Academia and Industry

Mirta Stantic
Royal Holloway, University of London
Feb 18, 2024

In this talk, Mirta will share her journey from her education a mathematically-focused high school to her currently unconventional career in London, emphasizing the evolution from a local education in Croatia to international experiences in the US and UK. We will explore the concept of interdisciplinary careers in the modern world, viewing them through the framework of increasing demand, flexibility, and dynamism in the current workplace. We will underscore the significance of interdisciplinary research for launching careers outside of academia, and bolstering those within. I will challenge the conventional norm of working either in academia or industry, and encourage discussion about the opportunities for combining the two in a myriad of career opportunities. I’ll use examples from my own and others’ research to highlight opportunities for early career researchers to extend their work into practical applications. Such an approach leverages the strengths of both sectors, fostering innovation and practical applications of research findings. I hope these insights can offer valuable perspectives for those looking to navigate the evolving demands of the global job market, illustrating the advantages of a versatile skill set that spans multiple disciplines and allows extensions into exciting career options.

SeminarNeuroscienceRecording

Auditory input to the basal ganglia; Deep brain stimulation and action-stopping: A cognitive neuroscience perspective on the contributions of fronto-basal ganglia circuits to inhibitory control

R. Mark Richardson, MD, PhD & Darcy Diesburg, PhD
Harvard Medical School, Boston, USA / Brown University, Providence, USA
May 24, 2023

On Thursday, May 25th we will host Darcy Diesburg and Mark Richardson. Darcy Diesburg, PhD, is a post-doctoral research fellow at Brown University. She will tell us about “Deep brain stimulation and action-stopping: A cognitive neuroscience perspective on the contributions of fronto-basal ganglia circuits to inhibitory control”. Mark Richardson, MD, PhD, is the Director of Functional Neurosurgery at the Massachusetts General Hospital, Charles Pappas Associate Professor of Neurosciences at Harvard Medical School and Visiting Associate Professor of Brain and Cognitive Sciences at MIT. Beside his scientific presentation on “Auditory input to the basal ganglia”, he will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarPsychology

How AI is advancing Clinical Neuropsychology and Cognitive Neuroscience

Nicolas Langer
University of Zurich
May 16, 2023

This talk aims to highlight the immense potential of Artificial Intelligence (AI) in advancing the field of psychology and cognitive neuroscience. Through the integration of machine learning algorithms, big data analytics, and neuroimaging techniques, AI has the potential to revolutionize the way we study human cognition and brain characteristics. In this talk, I will highlight our latest scientific advancements in utilizing AI to gain deeper insights into variations in cognitive performance across the lifespan and along the continuum from healthy to pathological functioning. The presentation will showcase cutting-edge examples of AI-driven applications, such as deep learning for automated scoring of neuropsychological tests, natural language processing to characeterize semantic coherence of patients with psychosis, and other application to diagnose and treat psychiatric and neurological disorders. Furthermore, the talk will address the challenges and ethical considerations associated with using AI in psychological research, such as data privacy, bias, and interpretability. Finally, the talk will discuss future directions and opportunities for further advancements in this dynamic field.

SeminarNeuroscience

Investigating semantics above and beyond language: a clinical and cognitive neuroscience approach

Valentina Borghesani
University of Geneva, Switzerland & NCCR Evolving Language
Mar 15, 2023

The ability to build, store, and manipulate semantic representations lies at the core of all our (inter)actions. Combining evidence from cognitive neuroimaging and experimental neuropsychology, I study the neurocognitive correlates of semantic knowledge in relation to other cognitive functions, chiefly language. In this talk, I will start by reviewing neuroimaging findings supporting the idea that semantic representations are encoded in distributed yet specialized cortical areas (1), and rapidly recovered (2) according to the requirement of the task at hand (3). I will then focus on studies conducted in neurodegenerative patients, offering a unique window on the key role played by a structurally and functionally heterogeneous piece of cortex: the anterior temporal lobe (4,5). I will present pathological, neuroimaging, cognitive, and behavioral data illustrating how damages to language-related networks can affect or spare semantic knowledge as well as possible paths to functional compensation (6,7). Time permitting, we will discuss the neurocognitive dissociation between nouns and verbs (8) and how verb production is differentially impacted by specific language impairments (9).

SeminarNeuroscienceRecording

Fidelity and Replication: Modelling the Impact of Protocol Deviations on Effect Size

Michelle Ellefson
Faculty of Education, University of Cambridge
Feb 27, 2023

Cognitive science and cognitive neuroscience researchers have agreed that the replication of findings is important for establishing which ideas (or theories) are integral to the study of cognition across the lifespan. Recently, high-profile papers have called into question findings that were once thought to be unassailable. Much attention has been paid to how p-hacking, publication bias, and sample size are responsible for failed replications. However, much less attention has been paid to the fidelity by which researchers enact study protocols. Researchers conducting education or clinical trials are aware of the importance in fidelity – or the extent to which the protocols are delivered in the same way across participants. Nevertheless, this idea has not been applied to cognitive contexts. This seminar discusses factors that impact the replicability of findings alongside recent models suggesting that even small fidelity deviations have real impacts on the data collected.

SeminarNeuroscience

Bridging clinical and cognitive neuroscience together to investigate semantics, above and beyond language

Valentina Borghesani
University of Geneva, Switzerland & NCCR Evolving Language
Jan 19, 2023

We will explore how neuropsychology can be leveraged to directly test cognitive neuroscience theories using the case of frontotemporal dementias affecting the language network. Specifically, we will focus on pathological, neuroimaging, and cognitive data from primary progressive aphasia. We will see how they can help us investigate the reading network, semantic knowledge organisation, and grammatical categories processing. Time permitting, the end of the talk will cover the temporal dynamics of semantic dimensions recovery and the role played by the task.

SeminarNeuroscienceRecording

Geometry of concept learning

Haim Sompolinsky
The Hebrew University of Jerusalem and Harvard University
Jan 3, 2023

Understanding Human ability to learn novel concepts from just a few sensory experiences is a fundamental problem in cognitive neuroscience. I will describe a recent work with Ben Sorcher and Surya Ganguli (PNAS, October 2022) in which we propose a simple, biologically plausible, and mathematically tractable neural mechanism for few-shot learning of naturalistic concepts. We posit that the concepts that can be learned from few examples are defined by tightly circumscribed manifolds in the neural firing-rate space of higher-order sensory areas. Discrimination between novel concepts is performed by downstream neurons implementing ‘prototype’ decision rule, in which a test example is classified according to the nearest prototype constructed from the few training examples. We show that prototype few-shot learning achieves high few-shot learning accuracy on natural visual concepts using both macaque inferotemporal cortex representations and deep neural network (DNN) models of these representations. We develop a mathematical theory that links few-shot learning to the geometric properties of the neural concept manifolds and demonstrate its agreement with our numerical simulations across different DNNs as well as different layers. Intriguingly, we observe striking mismatches between the geometry of manifolds in intermediate stages of the primate visual pathway and in trained DNNs. Finally, we show that linguistic descriptors of visual concepts can be used to discriminate images belonging to novel concepts, without any prior visual experience of these concepts (a task known as ‘zero-shot’ learning), indicated a remarkable alignment of manifold representations of concepts in visual and language modalities. I will discuss ongoing effort to extend this work to other high level cognitive tasks.

SeminarPsychology

The future of neuropsychology will be open, transdiagnostic, and FAIR - why it matters and how we can get there

Valentina Borghesani
University of Geneva
Nov 29, 2022

Cognitive neuroscience has witnessed great progress since modern neuroimaging embraced an open science framework, with the adoption of shared principles (Wilkinson et al., 2016), standards (Gorgolewski et al., 2016), and ontologies (Poldrack et al., 2011), as well as practices of meta-analysis (Yarkoni et al., 2011; Dockès et al., 2020) and data sharing (Gorgolewski et al., 2015). However, while functional neuroimaging data provide correlational maps between cognitive functions and activated brain regions, its usefulness in determining causal link between specific brain regions and given behaviors or functions is disputed (Weber et al., 2010; Siddiqiet al 2022). On the contrary, neuropsychological data enable causal inference, highlighting critical neural substrates and opening a unique window into the inner workings of the brain (Price, 2018). Unfortunately, the adoption of Open Science practices in clinical settings is hampered by several ethical, technical, economic, and political barriers, and as a result, open platforms enabling access to and sharing clinical (meta)data are scarce (e.g., Larivière et al., 2021). We are working with clinicians, neuroimagers, and software developers to develop an open source platform for the storage, sharing, synthesis and meta-analysis of human clinical data to the service of the clinical and cognitive neuroscience community so that the future of neuropsychology can be transdiagnostic, open, and FAIR. We call it neurocausal (https://neurocausal.github.io).

SeminarNeuroscience

Towards multi-system network models for cognitive neuroscience

Robert Guangyu Yang
MIT
Oct 13, 2022

Artificial neural networks can be useful for studying brain functions. In cognitive neuroscience, recurrent neural networks are often used to model cognitive functions. I will first offer my opinion on what is missing in the classical use of recurrent neural networks. Then I will discuss two lines of ongoing efforts in our group to move beyond the classical recurrent neural networks by studying multi-system neural networks (the talk will focus on two-system networks). These are networks that combine modules for several neural systems, such as vision, audition, prefrontal, hippocampal systems. I will showcase how multi-system networks can potentially be constrained by experimental data in fundamental ways and at scale.

SeminarNeuroscienceRecording

A Framework for a Conscious AI: Viewing Consciousness through a Theoretical Computer Science Lens

Lenore and Manuel Blum
Carnegie Mellon University
Aug 4, 2022

We examine consciousness from the perspective of theoretical computer science (TCS), a branch of mathematics concerned with understanding the underlying principles of computation and complexity, including the implications and surprising consequences of resource limitations. We propose a formal TCS model, the Conscious Turing Machine (CTM). The CTM is influenced by Alan Turing's simple yet powerful model of computation, the Turing machine (TM), and by the global workspace theory (GWT) of consciousness originated by cognitive neuroscientist Bernard Baars and further developed by him, Stanislas Dehaene, Jean-Pierre Changeux, George Mashour, and others. However, the CTM is not a standard Turing Machine. It’s not the input-output map that gives the CTM its feeling of consciousness, but what’s under the hood. Nor is the CTM a standard GW model. In addition to its architecture, what gives the CTM its feeling of consciousness is its predictive dynamics (cycles of prediction, feedback and learning), its internal multi-modal language Brainish, and certain special Long Term Memory (LTM) processors, including its Inner Speech and Model of the World processors. Phenomena generally associated with consciousness, such as blindsight, inattentional blindness, change blindness, dream creation, and free will, are considered. Explanations derived from the model draw confirmation from consistencies at a high level, well above the level of neurons, with the cognitive neuroscience literature. Reference. L. Blum and M. Blum, "A theory of consciousness from a theoretical computer science perspective: Insights from the Conscious Turing Machine," PNAS, vol. 119, no. 21, 24 May 2022. https://www.pnas.org/doi/epdf/10.1073/pnas.2115934119

SeminarNeuroscience

Adaptive neural network classifier for decoding finger movements

Alexey Zabolotniy
HSE University
Jun 1, 2022

While non-invasive Brain-to-Computer interface can accurately classify the lateralization of hand moments, the distinction of fingers activation in the same hand is limited by their local and overlapping representation in the motor cortex. In particular, the low signal-to-noise ratio restrains the opportunity to identify meaningful patterns in a supervised fashion. Here we combined Magnetoencephalography (MEG) recordings with advanced decoding strategy to classify finger movements at single trial level. We recorded eight subjects performing a serial reaction time task, where they pressed four buttons with left and right index and middle fingers. We evaluated the classification performance of hand and finger movements with increasingly complex approaches: supervised common spatial patterns and logistic regression (CSP + LR) and unsupervised linear finite convolutional neural network (LF-CNN). The right vs left fingers classification performance was accurate above 90% for all methods. However, the classification of the single finger provided the following accuracy: CSP+SVM : – 68 ± 7%, LF-CNN : 71 ± 10%. CNN methods allowed the inspection of spatial and spectral patterns, which reflected activity in the motor cortex in the theta and alpha ranges. Thus, we have shown that the use of CNN in decoding MEG single trials with low signal to noise ratio is a promising approach that, in turn, could be extended to a manifold of problems in clinical and cognitive neuroscience.

SeminarNeuroscienceRecording

Clinical neuroscience and the heart-brain axis (BACN Mid-career Prize Lecture 2021)

Sarah Garfinkel
Institute of Cognitive Neuroscience, UCL
May 23, 2022

Cognitive and emotional processes are shaped by the dynamic integration of brain and body. A major channel of interoceptive information comes from the heart, where phasic signals are conveyed to the brain to indicate how fast and strong the heart is beating. This talk will discuss how interoceptive processes operate across conscious and unconscious levels to influence emotion and memory. The interoceptive channel is disrupted in distinct ways in individuals with autism and anxiety. Selective interoceptive disturbance is related to symptomatology including dissociation and the transdiagnostic expression of anxiety. Interoceptive training can reduce anxiety, with enhanced interoceptive precision associated with greater insula connectivity following targeted interoceptive feedback. The discrete cardiac effects on emotion and cognition have broad relevance to clinical neuroscience, with implications for peripheral treatment targets and behavioural interventions.

SeminarCognitionRecording

Understanding Natural Language: Insights From Cognitive Science, Cognitive Neuroscience, and Artificial Intelligence

James McClelland
Stanford University
Mar 16, 2022
SeminarNeuroscienceRecording

Brain dynamics and flexible behaviors

Lucina Uddin
Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
Mar 15, 2022

Executive control processes and flexible behaviors rely on the integrity of, and dynamic interactions between, large-scale functional brain networks. The right insular cortex is a critical component of a salience/midcingulo-insular network that is thought to mediate interactions between brain networks involved in externally oriented (central executive/lateral frontoparietal network) and internally oriented (default mode/medial frontoparietal network) processes. How these brain systems reconfigure with development is a critical question for cognitive neuroscience, with implications for neurodevelopmental pathologies affecting brain connectivity. I will describe studies examining how brain network dynamics support flexible behaviors in typical and atypical development, presenting evidence suggesting a unique role for the dorsal anterior insular from studies of meta-analytic connectivity modeling, dynamic functional connectivity, and structural connectivity. These findings from adults, typically developing children, and children with autism suggest that structural and functional maturation of insular pathways is a critical component of the process by which human brain networks mature to support complex, flexible cognitive processes throughout the lifespan.

SeminarNeuroscience

Multimodal framework and fusion of EEG, graph theory and sentiment analysis for the prediction and interpretation of consumer decision

Veeky Baths
Cognitive Neuroscience Lab (Bits Pilani Goa Campus)
Feb 2, 2022

The application of neuroimaging methods to marketing has recently gained lots of attention. In analyzing consumer behaviors, the inclusion of neuroimaging tools and methods is improving our understanding of consumer’s preferences. Human emotions play a significant role in decision making and critical thinking. Emotion classification using EEG data and machine learning techniques has been on the rise in the recent past. We evaluate different feature extraction techniques, feature selection techniques and propose the optimal set of features and electrodes for emotion recognition.Affective neuroscience research can help in detecting emotions when a consumer responds to an advertisement. Successful emotional elicitation is a verification of the effectiveness of an advertisement. EEG provides a cost effective alternative to measure advertisement effectiveness while eliminating several drawbacks of the existing market research tools which depend on self-reporting. We used Graph theoretical principles to differentiate brain connectivity graphs when a consumer likes a logo versus a consumer disliking a logo. The fusion of EEG and sentiment analysis can be a real game changer and this combination has the power and potential to provide innovative tools for market research.

SeminarNeuroscience

Body Representation in Virtual Reality

Mel Slater
Universitat de Barcelona
Jan 11, 2022

How the brain represents the body is a fundamental question in cognitive neuroscience. Experimental studies are difficult because ‘the body is always there’ (William James). In recent years immersive virtual reality techniques have been introduced that deliver apparent changes to the body extending earlier techniques such as the rubber hand illusion, or substituting the whole body by a virtual one visually collocated with the real body, and seen from a normal first person perspective. This talk will introduce these techniques, and concentrate on how changing the body can change the mind and behaviour, especially in the context of combatting aggression based on gender or race.

SeminarNeuroscienceRecording

Refuting the unfolding-argument on the irrelevance of causal structure to consciousness

Marius Usher
Tel-Aviv University
Nov 30, 2021

I will build from Niccolo's discussion of the Blockhead argument to argue that having an FeedForward Network (FN) responding like an recurrent network (RN) in a consciousness experiment is not enough to convince us the two are the same with regards to the posession of mental states and conscious experience. I will then argue that a robust functional equivalence between FFN and RN is akso not supported by the mathematical work on the Universal Approximator theorem, and is also unlikely to hold, as a conjecture, given data in cognitive neuroscience; I will argue that an equivalence of RN and FFN may only apply to static functions between input/output layers and not to the temporal patterns or to the network's reactions to structural perturbations. Finally, I review data indicating that consciousness has functional characteristics, such as a flexible control of behavior, and that cognitive/brain dynamics reveal interacting top-down and bottom-up processes, which are necessary for the mediation of such control processes.

SeminarNeuroscience

Free will over time: Distinguishing top-down and now-then control

John-Dylan Haynes/Kristina Krasich/Samuel Murray
Charité - Universitätsmedizin Berlin/Duke University
Nov 16, 2021

Self-control is a central aspect of free will. Because self-control is often described in terms of resisting temptations, research on the cognitive neuroscience of free will often focuses on mechanisms of top-down regulation. We argue that this obscures a crucial temporal dimension of free will: now-then regulation. We distinguish now-then regulation from top-down regulation, and situate now-then regulation within a broader account of temporally extended agency. In highlighting this temporal dimension of control, we aim to provide a more nuanced account of how motivation informs action over time, different kinds of regulatory processes underlying the planning and execution of action, and the temporal components of reasons-responsiveness.

SeminarNeuroscience

What neural oscillations can(not) do for syntactic structure building

Nina Kazanina
University of Bristol & HSE
Oct 27, 2021

The question of how syntactic structure can be built at the neural level has come to the forefront of cognitive neuroscience in the last decade. Neural oscillations have been widely recognised as playing an important role in building syntactic representations. In this talk I will review existing oscillatory approaches to syntactic structure building and assess their functionality in light of basic properties of a hierarchical syntactic structure, such as varied length of syntactic phrases, nesting of constituents, overlap in length between different levels of the syntactic hierarchy and others. I will also briefly discuss key requirements on neural structure building mechanisms from the perspective of a real-time parser.

SeminarNeuroscience

Metabolic and functional connectivity relate to distinct aspects of cognition

Katharina Voigt
Monash University
Oct 13, 2021

A major challenge of cognitive neuroscience is to understand how the brain as a network gives rise to our cognition. Simultaneous [18F]-fluorodeoxyglucose positron emission tomography functional magnetic resonance imaging (FDG-PET/fMRI) provides the opportunity to investigate brain connectivity not only via spatially distant, synchronous cerebrovascular hemodynamic responses (functional connectivity), but also glucose metabolism (metabolic connectivity). However, how these two modalities of brain connectivity differ in their relation to cognition is unknown. In this webinar, Dr Katharina Voigt will discuss recent findings demonstrating the advantage of simultaneous FDG-PET/fMRI in providing a more complete picture of the neural mechanisms underlying cognition, that calls for a combination of both modalities in future cognitive neuroscience. Dr Katharina Voigt is a Research Fellow within the Turner Institute for Brain and Mental Health, Monash University. Her research interests include systems neuroscience, simultaneous PET-MRI, and decision-making.

SeminarNeuroscienceRecording

Immersive Neuroscience: Bringing Cognitive Neuroscience Closer to the Real World

Jody Culham
Western University
Oct 11, 2021
SeminarPsychology

Enhanced perception and cognition in deaf sign language users: EEG and behavioral evidence

Lorna Quandt
Gallaudet University
Aug 18, 2021

In this talk, Dr. Quandt will share results from behavioral and cognitive neuroscience studies from the past few years of her work in the Action & Brain Lab, an EEG lab at Gallaudet University, the world's premiere university for deaf and hard-of-hearing students. These results will center upon the question of how extensive knowledge of signed language changes, and in some cases enhances, people's perception and cognition. Evidence for this effect comes from studies of human biological motion using point light displays, self-report, and studies of action perception. Dr. Quandt will also discuss some of the lab's efforts in designing and testing a virtual reality environment in which users can learn American Sign Language from signing avatars (virtual humans).

SeminarNeuroscience

Understanding the role of prediction in sensory encoding

Jason Mattingley
Monash Biomedical Imaging
Jul 28, 2021

At any given moment the brain receives more sensory information than it can use to guide adaptive behaviour, creating the need for mechanisms that promote efficient processing of incoming sensory signals. One way in which the brain might reduce its sensory processing load is to encode successive presentations of the same stimulus in a more efficient form, a process known as neural adaptation. Conversely, when a stimulus violates an expected pattern, it should evoke an enhanced neural response. Such a scheme for sensory encoding has been formalised in predictive coding theories, which propose that recent experience establishes expectations in the brain that generate prediction errors when violated. In this webinar, Professor Jason Mattingley will discuss whether the encoding of elementary visual features is modulated when otherwise identical stimuli are expected or unexpected based upon the history of stimulus presentation. In humans, EEG was employed to measure neural activity evoked by gratings of different orientations, and multivariate forward modelling was used to determine how orientation selectivity is affected for expected versus unexpected stimuli. In mice, two-photon calcium imaging was used to quantify orientation tuning of individual neurons in the primary visual cortex to expected and unexpected gratings. Results revealed enhanced orientation tuning to unexpected visual stimuli, both at the level of whole-brain responses and for individual visual cortex neurons. Professor Mattingley will discuss the implications of these findings for predictive coding theories of sensory encoding. Professor Jason Mattingley is a Laureate Fellow and Foundation Chair in Cognitive Neuroscience at The University of Queensland. His research is directed toward understanding the brain processes that support perception, selective attention and decision-making, in health and disease.

SeminarNeuroscienceRecording

Towards a Translational Neuroscience of Consciousness

Hakwan Lau
UCLA Psychology Department
Mar 24, 2021

The cognitive neuroscience of conscious perception has seen considerable growth over the past few decades. Confirming an influential hypothesis driven by earlier studies of neuropsychological patients, we have found that the lateral and polar prefrontal cortices play important causal roles in the generation of subjective experiences. However, this basic empirical finding has been hotly contested by researchers with different theoretical commitments, and the differences are at times difficult to resolve. To address the controversies, I suggest one alternative venue may be to look for clinical applications derived from current theories. I outline an example in which we used closed-loop fMRI combined with machine learning to nonconsciously manipulate the physiological responses to threatening stimuli, such as spiders or snakes. A clinical trial involving patients with phobia is currently taking place. I also outline how this theoretical framework may be extended to other diseases. Ultimately, a truly meaningful understanding of the fundamental nature of our mental existence should lead to useful insights for our colleagues on the clinical frontlines. If we use this as a yardstick, whoever loses the esoteric theoretical debates, both science and the patients will always win.

SeminarNeuroscience

Why birds are smart

Onur Güntürkün
Institute of Cognitive Neuroscience, Ruhr-University Bochum, Germany
Mar 14, 2021
SeminarNeuroscience

The Cognitive Map Theory – 40 Years On

John O'Keefe
University College London
Feb 18, 2021

John O’Keefe is a Professor of Cognitive Neuroscience at UCL and he received the Nobel Prize in Physiology or Medicine in 2014 for his “discoveries of cells that constitute a positioning system in the brain". His revolutionary research on hippocampal place cells provided deeper insight into the neural processes underlying the sense of space. His lab in Sainsbury Wellcome Centre applies a wide range of methods to facilitate our understanding of the role of the entorhinal cortex and hippocampus in spatial memory and the neural mechanisms underlying short-term memories in the amygdala.

SeminarNeuroscienceRecording

Can subjective experience be quantified? Critically examining computational cognitive neuroscience approaches

Megan Peters
UC Irvine
Nov 5, 2020

Computational and cognitive neuroscience techniques have made great strides towards describing the neural computations underlying perceptual inference and decision-making under uncertainty. These tools tell us how and why perceptual illusions occur, which brain areas may represent noisy information in a probabilistic manner, and so on. However, an understanding of the subjective, qualitative aspects of perception remains elusive: qualia, or the personal, intrinsic properties of phenomenal awareness, have remained out of reach of these computational analytic insights. Here, I propose that metacognitive computations, and the subjective feelings that go along with them, give us a solid starting point for understanding subjective experience in general. Specifically, perceptual metacognition possesses ontological and practical properties that provide a powerful and unique opportunity for studying the studying the neural and computational correlates of subjective experience using established tools of computational and cognitive neuroscience. By capitalizing on decades of developments in formal computational model comparisons as applied to the specific properties of perceptual metacognition, we are now in a privileged position to reveal new and exciting insights about how the brain constructs our subjective conscious experiences.

SeminarNeuroscience

Human voluntary action: from thought to movement

Patrick Haggard
Institute of Cognitive Neuroscience, University College London
Nov 1, 2020

The ability to decide and act autonomously is a distinctive feature of human cognition. From a motor neurophysiology viewpoint, these 'voluntary' actions can be distinguished by the lack of an obvious triggering sensory stimulus: the action is considered to be a product of thought, rather than a reflex result of a specific input. A reverse engineering approach shows that such actions are caused by neurons of the primary cortex, which in turn depend on medial frontal areas, and finally a combination of prefrontal cortical connections and subcortical drive from basal ganglia loops. One traditional marker of voluntary action is the EEG readiness potential (RP), recorded over the frontal cortex prior to voluntary actions. However, the interpretation of this signal remains controversial, and very few experimental studies have attempted to link the RP to the thought process that lead to voluntary action. In this talk, I will report new studies that show learning an internal model about the optimum delay at which to act influences the amplitude of the RP. More generally, a scientific understanding of voluntariness and autonomy will require new neurocognitive paradigms connecting thought and action.

SeminarNeuroscienceRecording

The consequences and constraints of functional organization on behavior

Dwight Kravitz
George Washington University
Aug 11, 2020

In many ways, cognitive neuroscience is the attempt to use physiological observation to clarify the mechanisms that shape behavior. Over the past 25 years, fMRI has provided a system-wide and yet somewhat spatially precise view of the response in human cortex evoked by a wide variety of stimuli and task contexts. The current talk focuses on the other direction of inference; the implications of this observed functional organization for behavior. To begin, we must interrogate the methodological and empirical frameworks underlying our derivation of this organization, partially by exploring its relationship to and predictability from gross neuroanatomy. Next, across a series of studies, the implications of two properties of functional organization for behavior will be explored: 1) the co-localization of visual working memory and perceptual processing and 2) implicit learning in the context of distributed responses. In sum, these results highlight the limitations of our current approach and hint at a new general mechanism for explaining observed behavior in context with the neural substrate.