Connectome
connectome
Netta Cohen
Research Fellow position: This project explores individuality of neural circuits and neural activity in C. elegans brain, based on whole-brain-activity data and information about the C. elegans connectome (neural circuit wiring data). The project combines data driven approaches from AI on the one hand, and whole-brain computational modelling on the other. PhD opening: How do worms move in 3D? To address this question, we have built a 3D imaging system and have collected hours of footage. Prior work has focused on developing machine vision methods to reconstruct postures and trajectories; characterising postures and locomotion behaviours; and characterising and modelling locomotion strategies and foraging behaviours. This PhD can build on these foundations to perform exciting innovative experiments, and/or to build computational models of worm locomotion.
Neurobiological constraints on learning: bug or feature?
Understanding how brains learn requires bridging evidence across scales—from behaviour and neural circuits to cells, synapses, and molecules. In our work, we use computational modelling and data analysis to explore how the physical properties of neurons and neural circuits constrain learning. These include limits imposed by brain wiring, energy availability, molecular noise, and the 3D structure of dendritic spines. In this talk I will describe one such project testing if wiring motifs from fly brain connectomes can improve performance of reservoir computers, a type of recurrent neural network. The hope is that these insights into brain learning will lead to improved learning algorithms for artificial systems.
Neural Signal Propagation Atlas of C. elegans
In the age of connectomics, it is increasingly important to understand how the nodes and edges of a brain's anatomical network, or "connectome," gives rise to neural signaling and neural function. I will present the first comprehensive brain-wide cell-resolved causal measurements of how neurons signal to one another in response to stimulation in the nematode C. elegans. I will compare this signal propagation atlas to the worm's known connectome to address fundamental questions of structure and function in the brain.
Neural mechanisms of rhythmic motor control in Drosophila
All animal locomotion is rhythmic,whether it is achieved through undulatory movement of the whole body or the coordination of articulated limbs. Neurobiologists have long studied locomotor circuits that produce rhythmic activity with non-rhythmic input, also called central pattern generators (CPGs). However, the cellular and microcircuit implementation of a walking CPG has not been described for any limbed animal. New comprehensive connectomes of the fruit fly ventral nerve cord (VNC) provide an opportunity to study rhythmogenic walking circuits at a synaptic scale.We use a data-driven network modeling approach to identify and characterize a putative walking CPG in the Drosophila leg motor system.
Predicting traveling waves: a new mathematical technique to link the structure of a network to the specific patterns of neural activity
Learning and Memory
This webinar on learning and memory features three experts—Nicolas Brunel, Ashok Litwin-Kumar, and Julijana Gjorgieva—who present theoretical and computational approaches to understanding how neural circuits acquire and store information across different scales. Brunel discusses calcium-based plasticity and how standard “Hebbian-like” plasticity rules inferred from in vitro or in vivo datasets constrain synaptic dynamics, aligning with classical observations (e.g., STDP) and explaining how synaptic connectivity shapes memory. Litwin-Kumar explores insights from the fruit fly connectome, emphasizing how the mushroom body—a key site for associative learning—implements a high-dimensional, random representation of sensory features. Convergent dopaminergic inputs gate plasticity, reflecting a high-dimensional “critic” that refines behavior. Feedback loops within the mushroom body further reveal sophisticated interactions between learning signals and action selection. Gjorgieva examines how activity-dependent plasticity rules shape circuitry from the subcellular (e.g., synaptic clustering on dendrites) to the cortical network level. She demonstrates how spontaneous activity during development, Hebbian competition, and inhibitory-excitatory balance collectively establish connectivity motifs responsible for key computations such as response normalization.
Sensory cognition
This webinar features presentations from SueYeon Chung (New York University) and Srinivas Turaga (HHMI Janelia Research Campus) on theoretical and computational approaches to sensory cognition. Chung introduced a “neural manifold” framework to capture how high-dimensional neural activity is structured into meaningful manifolds reflecting object representations. She demonstrated that manifold geometry—shaped by radius, dimensionality, and correlations—directly governs a population’s capacity for classifying or separating stimuli under nuisance variations. Applying these ideas as a data analysis tool, she showed how measuring object-manifold geometry can explain transformations along the ventral visual stream and suggested that manifold principles also yield better self-supervised neural network models resembling mammalian visual cortex. Turaga described simulating the entire fruit fly visual pathway using its connectome, modeling 64 key cell types in the optic lobe. His team’s systematic approach—combining sparse connectivity from electron microscopy with simple dynamical parameters—recapitulated known motion-selective responses and produced novel testable predictions. Together, these studies underscore the power of combining connectomic detail, task objectives, and geometric theories to unravel neural computations bridging from stimuli to cognitive functions.
The quest for brain identification
In the 17th century, physician Marcello Malpighi observed the existence of distinctive patterns of ridges and sweat glands on fingertips. This was a major breakthrough, and originated a long and continuing quest for ways to uniquely identify individuals based on fingerprints, a technique massively used until today. It is only in the past few years that technologies and methodologies have achieved high-quality measures of an individual’s brain to the extent that personality traits and behavior can be characterized. The concept of “fingerprints of the brain” is very novel and has been boosted thanks to a seminal publication by Finn et al. in 2015. They were among the firsts to show that an individual’s functional brain connectivity profile is both unique and reliable, similarly to a fingerprint, and that it is possible to identify an individual among a large group of subjects solely on the basis of her or his connectivity profile. Yet, the discovery of brain fingerprints opened up a plethora of new questions. In particular, what exactly is the information encoded in brain connectivity patterns that ultimately leads to correctly differentiating someone’s connectome from anybody else’s? In other words, what makes our brains unique? In this talk I am going to partially address these open questions while keeping a personal viewpoint on the subject. I will outline the main findings, discuss potential issues, and propose future directions in the quest for identifiability of human brain networks.
Closed-loop deep brain stimulation as a neuroprosthetic of dopaminergic circuits – Current evidence and future opportunities; Spatial filtering to enhance signal processing in invasive neurophysiology
On Thursday February 15th, we will host Victoria Peterson and Julian Neumann. Victoria will tell us about “Spatial filtering to enhance signal processing in invasive neurophysiology”. Besides his scientific presentation on “Closed-loop deep brain stimulation as a neuroprosthetic of dopaminergic circuits – Current evidence and future opportunities”, Julian will give us a glimpse at the person behind the science. The talks will be followed by a shared discussion. Note: The talks will exceptionally be held at 10 ET / 4PM CET. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Imaging the subcortex; Microstructural and connectivity correlates of outcome variability in functional neurosurgery for movement disorders
We are very much looking forward to host Francisca Ferreira and Birte Forstmann on December 14th, 2023, at noon ET / 6PM CET. Francisca Ferreira is a PhD student and Neurosurgery trainee at the University College of London Queen Square Institute of Neurology and a Royal College of Surgeons “Emerging Leaders” program laureate. Her presentation title will be: “Microstructural and connectivity correlates of outcome variability in functional neurosurgery for movement disorders”. Birte Forstmann, PhD, is the Director of the Amsterdam Brain and Cognition Center, a Professor of Cognitive Neuroscience at the University of Amsterdam, and a Professor by Special Appointment of Neuroscientific Testing of Psychological Models at the University of Leiden. Besides her scientific presentation (“Imaging the human subcortex”), she will give us a glimpse at the “Person behind the science”. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Connectome-based models of neurodegenerative disease
Neurodegenerative diseases involve accumulation of aberrant proteins in the brain, leading to brain damage and progressive cognitive and behavioral dysfunction. Many gaps exist in our understanding of how these diseases initiate and how they progress through the brain. However, evidence has accumulated supporting the hypothesis that aberrant proteins can be transported using the brain’s intrinsic network architecture — in other words, using the brain’s natural communication pathways. This theory forms the basis of connectome-based computational models, which combine real human data and theoretical disease mechanisms to simulate the progression of neurodegenerative diseases through the brain. In this talk, I will first review work leading to the development of connectome-based models, and work from my lab and others that have used these models to test hypothetical modes of disease progression. Second, I will discuss the future and potential of connectome-based models to achieve clinically useful individual-level predictions, as well as to generate novel biological insights into disease progression. Along the way, I will highlight recent work by my lab and others that is already moving the needle toward these lofty goals.
Trends in NeuroAI - SwiFT: Swin 4D fMRI Transformer
Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). Title: SwiFT: Swin 4D fMRI Transformer Abstract: Modeling spatiotemporal brain dynamics from high-dimensional data, such as functional Magnetic Resonance Imaging (fMRI), is a formidable task in neuroscience. Existing approaches for fMRI analysis utilize hand-crafted features, but the process of feature extraction risks losing essential information in fMRI scans. To address this challenge, we present SwiFT (Swin 4D fMRI Transformer), a Swin Transformer architecture that can learn brain dynamics directly from fMRI volumes in a memory and computation-efficient manner. SwiFT achieves this by implementing a 4D window multi-head self-attention mechanism and absolute positional embeddings. We evaluate SwiFT using multiple large-scale resting-state fMRI datasets, including the Human Connectome Project (HCP), Adolescent Brain Cognitive Development (ABCD), and UK Biobank (UKB) datasets, to predict sex, age, and cognitive intelligence. Our experimental outcomes reveal that SwiFT consistently outperforms recent state-of-the-art models. Furthermore, by leveraging its end-to-end learning capability, we show that contrastive loss-based self-supervised pre-training of SwiFT can enhance performance on downstream tasks. Additionally, we employ an explainable AI method to identify the brain regions associated with sex classification. To our knowledge, SwiFT is the first Swin Transformer architecture to process dimensional spatiotemporal brain functional data in an end-to-end fashion. Our work holds substantial potential in facilitating scalable learning of functional brain imaging in neuroscience research by reducing the hurdles associated with applying Transformer models to high-dimensional fMRI. Speaker: Junbeom Kwon is a research associate working in Prof. Jiook Cha’s lab at Seoul National University. Paper link: https://arxiv.org/abs/2307.05916
From primate anatomy to human neuroimaging: insights into the circuits underlying psychiatric disease and neuromodulation; Large-scale imaging of neural circuits: towards a microscopic human connectome
On Thursday, October 26th, we will host Anastasia Yendiki and Suzanne Haber. Anastasia Yendiki, PhD, is an Associate Professor in Radiology at the Harvard Medical School and an Associate Investigator at the Massachusetts General Hospital and Athinoula A. Martinos Center. Suzanne Haber, PhD, is a Professor at the University of Rochester and runs a lab at McLean hospital at Harvard Medical School in Boston. She has received numerous awards for her work on neuroanatomy. Beside her scientific presentation, she will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Quality of life after DBS; Non-motor effects of DBS and quality of life
It’s our pleasure to announce that we will host Haidar Dafsari and Günther Deuschl on September 28th at noon ET / 6PM CET. Haidar Dafsari, MD, is a researcher and lecturer at the University Hospital Cologne. Günther Deuschl, MD, PhD, is a professor at Kiel University. He was president of the International Movement Disorders Society (MDS) from 2011-2013, Editor in Chief of the journal Movement Disorders and has been awarded numerous high-class awards. Beside his scientific presentation, he will give us a glimpse at the “Person behind the science”.The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Brain network communication: concepts, models and applications
Understanding communication and information processing in nervous systems is a central goal of neuroscience. Over the past two decades, advances in connectomics and network neuroscience have opened new avenues for investigating polysynaptic communication in complex brain networks. Recent work has brought into question the mainstay assumption that connectome signalling occurs exclusively via shortest paths, resulting in a sprawling constellation of alternative network communication models. This Review surveys the latest developments in models of brain network communication. We begin by drawing a conceptual link between the mathematics of graph theory and biological aspects of neural signalling such as transmission delays and metabolic cost. We organize key network communication models and measures into a taxonomy, aimed at helping researchers navigate the growing number of concepts and methods in the literature. The taxonomy highlights the pros, cons and interpretations of different conceptualizations of connectome signalling. We showcase the utility of network communication models as a flexible, interpretable and tractable framework to study brain function by reviewing prominent applications in basic, cognitive and clinical neurosciences. Finally, we provide recommendations to guide the future development, application and validation of network communication models.
Auditory input to the basal ganglia; Deep brain stimulation and action-stopping: A cognitive neuroscience perspective on the contributions of fronto-basal ganglia circuits to inhibitory control
On Thursday, May 25th we will host Darcy Diesburg and Mark Richardson. Darcy Diesburg, PhD, is a post-doctoral research fellow at Brown University. She will tell us about “Deep brain stimulation and action-stopping: A cognitive neuroscience perspective on the contributions of fronto-basal ganglia circuits to inhibitory control”. Mark Richardson, MD, PhD, is the Director of Functional Neurosurgery at the Massachusetts General Hospital, Charles Pappas Associate Professor of Neurosciences at Harvard Medical School and Visiting Associate Professor of Brain and Cognitive Sciences at MIT. Beside his scientific presentation on “Auditory input to the basal ganglia”, he will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
My evolution in invasive human neurophysiology: From basal ganglia single units to chronic electrocorticography; Therapies orchestrated by patients' own rhythms
On Thursday, April 27th, we will host Hayriye Cagnan and Philip A. Starr. Hayriye Cagnan, PhD, is an associate professor at the MRC Brain Network Dynamics Unit and University of Oxford. She will tell us about “Therapies orchestrated by patients’ own rhythms”. Philip A. Starr, MD, PhD, is a neurosurgeon and professor of Neurological Surgery at the University of California San Francisco. Besides his scientific presentation on “My evolution in invasive human neurophysiology: from basal ganglia single units to chronic electrocorticography”, he will give us a glimpse at the person behind the science. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Assigning credit through the "other” connectome
Learning in neural networks requires assigning the right values to thousands to trillions or more of individual connections, so that the network as a whole produces the desired behavior. Neuroscientists have gained insights into this “credit assignment” problem through decades of experimental, modeling, and theoretical studies. This has suggested key roles for synaptic eligibility traces and top-down feedback signals, among other factors. Here we study the potential contribution of another type of signaling that is being revealed in greater and greater fidelity by ongoing molecular and genomics studies. This is the set of modulatory pathways local to a given circuit, which form an intriguing second type of connectome overlayed on top of synaptic connectivity. We will share ongoing modeling and theoretical work that explores the possible roles of this local modulatory connectome in network learning.
Causal Symptom Network Mapping Based on Lesions and Brain Stimulation; Converging Evidence about a Depression Circuit Using Causal Sources of Information
It’s our pleasure to announce that we will host Shan Siddiqi and Michael D. Fox on Thursday, March 30th at noon ET / 6PM CET. Shan Siddiqi, MD, is an Assistant Professor of Psychiatry at Harvard Medical School and the director of Psychiatric Neuromodulation Research at the Brigham and Women’s Hospital. Michael D. Fox, MD, PhD, is an Associate Professor of Neurology at Harvard Medical School and the founding director of the Center for Brain Circuit Therapeutics at the Brigham and Women’s Hospital. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Asymmetric signaling across the hierarchy of cytoarchitecture within the human connectome
Cortical variations in cytoarchitecture form a sensory-fugal axis that shapes regional profiles of extrinsic connectivity and is thought to guide signal propagation and integration across the cortical hierarchy. While neuroimaging work has shown that this axis constrains local properties of the human connectome, it remains unclear whether it also shapes the asymmetric signaling that arises from higher-order topology. Here, we used network control theory to examine the amount of energy required to propagate dynamics across the sensory-fugal axis. Our results revealed an asymmetry in this energy, indicating that bottom-up transitions were easier to complete compared to top-down. Supporting analyses demonstrated that asymmetries were underpinned by a connectome topology that is wired to support efficient bottom-up signaling. Lastly, we found that asymmetries correlated with differences in communicability and intrinsic neuronal time scales and lessened throughout youth. Our results show that cortical variation in cytoarchitecture may guide the formation of macroscopic connectome topology.
Spatially-embedded recurrent neural networks reveal widespread links between structural and functional neuroscience findings
Brain networks exist within the confines of resource limitations. As a result, a brain network must overcome metabolic costs of growing and sustaining the network within its physical space, while simultaneously implementing its required information processing. To observe the effect of these processes, we introduce the spatially-embedded recurrent neural network (seRNN). seRNNs learn basic task-related inferences while existing within a 3D Euclidean space, where the communication of constituent neurons is constrained by a sparse connectome. We find that seRNNs, similar to primate cerebral cortices, naturally converge on solving inferences using modular small-world networks, in which functionally similar units spatially configure themselves to utilize an energetically-efficient mixed-selective code. As all these features emerge in unison, seRNNs reveal how many common structural and functional brain motifs are strongly intertwined and can be attributed to basic biological optimization processes. seRNNs can serve as model systems to bridge between structural and functional research communities to move neuroscientific understanding forward.
A parsimonious description of global functional brain organization in three spatiotemporal patterns
Resting-state functional magnetic resonance imaging (MRI) has yielded seemingly disparate insights into large-scale organization of the human brain. The brain’s large-scale organization can be divided into two broad categories: zero-lag representations of functional connectivity structure and time-lag representations of traveling wave or propagation structure. In this study, we sought to unify observed phenomena across these two categories in the form of three low-frequency spatiotemporal patterns composed of a mixture of standing and traveling wave dynamics. We showed that a range of empirical phenomena, including functional connectivity gradients, the task-positive/task-negative anti-correlation pattern, the global signal, time-lag propagation patterns, the quasiperiodic pattern and the functional connectome network structure, are manifestations of these three spatiotemporal patterns. These patterns account for much of the global spatial structure that underlies functional connectivity analyses and unifies phenomena in resting-state functional MRI previously thought distinct.
The Secret Bayesian Life of Ring Attractor Networks
Efficient navigation requires animals to track their position, velocity and heading direction (HD). Some animals’ behavior suggests that they also track uncertainties about these navigational variables, and make strategic use of these uncertainties, in line with a Bayesian computation. Ring-attractor networks have been proposed to estimate and track these navigational variables, for instance in the HD system of the fruit fly Drosophila. However, such networks are not designed to incorporate a notion of uncertainty, and therefore seem unsuited to implement dynamic Bayesian inference. Here, we close this gap by showing that specifically tuned ring-attractor networks can track both a HD estimate and its associated uncertainty, thereby approximating a circular Kalman filter. We identified the network motifs required to integrate angular velocity observations, e.g., through self-initiated turns, and absolute HD observations, e.g., visual landmark inputs, according to their respective reliabilities, and show that these network motifs are present in the connectome of the Drosophila HD system. Specifically, our network encodes uncertainty in the amplitude of a localized bump of neural activity, thereby generalizing standard ring attractor models. In contrast to such standard attractors, however, proper Bayesian inference requires the network dynamics to operate in a regime away from the attractor state. More generally, we show that near-Bayesian integration is inherent in generic ring attractor networks, and that their amplitude dynamics can account for close-to-optimal reliability weighting of external evidence for a wide range of network parameters. This only holds, however, if their connection strengths allow the network to sufficiently deviate from the attractor state. Overall, our work offers a novel interpretation of ring attractor networks as implementing dynamic Bayesian integrators. We further provide a principled theoretical foundation for the suggestion that the Drosophila HD system may implement Bayesian HD tracking via ring attractor dynamics.
A Game Theoretical Framework for Quantifying Causes in Neural Networks
Which nodes in a brain network causally influence one another, and how do such interactions utilize the underlying structural connectivity? One of the fundamental goals of neuroscience is to pinpoint such causal relations. Conventionally, these relationships are established by manipulating a node while tracking changes in another node. A causal role is then assigned to the first node if this intervention led to a significant change in the state of the tracked node. In this presentation, I use a series of intuitive thought experiments to demonstrate the methodological shortcomings of the current ‘causation via manipulation’ framework. Namely, a node might causally influence another node, but how much and through which mechanistic interactions? Therefore, establishing a causal relationship, however reliable, does not provide the proper causal understanding of the system, because there often exists a wide range of causal influences that require to be adequately decomposed. To do so, I introduce a game-theoretical framework called Multi-perturbation Shapley value Analysis (MSA). Then, I present our work in which we employed MSA on an Echo State Network (ESN), quantified how much its nodes were influencing each other, and compared these measures with the underlying synaptic strength. We found that: 1. Even though the network itself was sparse, every node could causally influence other nodes. In this case, a mere elucidation of causal relationships did not provide any useful information. 2. Additionally, the full knowledge of the structural connectome did not provide a complete causal picture of the system either, since nodes frequently influenced each other indirectly, that is, via other intermediate nodes. Our results show that just elucidating causal contributions in complex networks such as the brain is not sufficient to draw mechanistic conclusions. Moreover, quantifying causal interactions requires a systematic and extensive manipulation framework. The framework put forward here benefits from employing neural network models, and in turn, provides explainability for them.
Imperial Neurotechnology 2022 - Annual Research Symposium
A diverse mix of neurotechnology talks and posters from researchers at Imperial and beyond. Visit our event page to find out more. The event is in-person but talk sessions will be broadcast via Teams.
Transcriptional controls over projection neuron fate diversity
The cerebral cortex is the most evolved structure of the brain and the site for higher cognitive functions. It consists of 6 layers, each composed of specific types of neurons. Interconnectivity between cortical areas is critical for sensory integration and sensorimotor transformation. Inter-areal cortical projection neurons are located in all cortical layers and form a heterogeneous population, which send their axon across cortical areas, both within and across hemispheres. How this diversity emerges during development remains largely unknown. Here, we address this question by linking the connectome and transcriptome of developing cortical projection neurons and show distinct maturation paces in neurons with distinct projections, which correlates with the sequential development of sensory and motor functions during postnatal period.
Drifting assemblies for persistent memory: Neuron transitions and unsupervised compensation
Change is ubiquitous in living beings. In particular, the connectome and neural representations can change. Nevertheless behaviors and memories often persist over long times. In a standard model, associative memories are represented by assemblies of strongly interconnected neurons. For faithful storage these assemblies are assumed to consist of the same neurons over time. We propose a contrasting memory model with complete temporal remodeling of assemblies, based on experimentally observed changes of synapses and neural representations. The assemblies drift freely as noisy autonomous network activity or spontaneous synaptic turnover induce neuron exchange. The exchange can be described analytically by reduced, random walk models derived from spiking neural network dynamics or from first principles. The gradual exchange allows activity-dependent and homeostatic plasticity to conserve the representational structure and keep inputs, outputs and assemblies consistent. This leads to persistent memory. Our findings explain recent experimental results on temporal evolution of fear memory representations and suggest that memory systems need to be understood in their completeness as individual parts may constantly change.
A draft connectome for ganglion cell types of the mouse retina
The visual system of the brain is highly parallel in its architecture. This is clearly evident in the outputs of the retina, which arise from neurons called ganglion cells. Work in our lab has shown that mammalian retinas contain more than a dozen distinct types of ganglion cells. Each type appears to filter the retinal image in a unique way and to relay this processed signal to a specific set of targets in the brain. My students and I are working to understand the meaning of this parallel organization through electrophysiological and anatomical studies. We record from light-responsive ganglion cells in vitro using the whole-cell patch method. This allows us to correlate directly the visual response properties, intrinsic electrical behavior, synaptic pharmacology, dendritic morphology and axonal projections of single neurons. Other methods used in the lab include neuroanatomical tracing techniques, single-unit recording and immunohistochemistry. We seek to specify the total number of ganglion cell types, the distinguishing characteristics of each type, and the intraretinal mechanisms (structural, electrical, and synaptic) that shape their stimulus selectivities. Recent work in the lab has identified a bizarre new ganglion cell type that is also a photoreceptor, capable of responding to light even when it is synaptically uncoupled from conventional (rod and cone) photoreceptors. These ganglion cells appear to play a key role in resetting the biological clock. It is just this sort of link, between a specific cell type and a well-defined behavioral or perceptual function, that we seek to establish for the full range of ganglion cell types. My research concerns the structural and functional organization of retinal ganglion cells, the output cells of the retina whose axons make up the optic nerve. Ganglion cells exhibit great diversity both in their morphology and in their responses to light stimuli. On this basis, they are divisible into a large number of types (>15). Each ganglion-cell type appears to send its outputs to a specific set of central visual nuclei. This suggests that ganglion cell heterogeneity has evolved to provide each visual center in the brain with pre-processed representations of the visual scene tailored to its specific functional requirements. Though the outline of this story has been appreciated for some time, it has received little systematic exploration. My laboratory is addressing in parallel three sets of related questions: 1) How many types of ganglion cells are there in a typical mammalian retina and what are their structural and functional characteristics? 2) What combination of synaptic networks and intrinsic membrane properties are responsible for the characteristic light responses of individual types? 3) What do the functional specializations of individual classes contribute to perceptual function or to visually mediated behavior? To pursue these questions, we label retinal ganglion cells by retrograde transport from the brain; analyze in vitro their light responses, intrinsic membrane properties and synaptic pharmacology using the whole-cell patch clamp method; and reveal their morphology with intracellular dyes. Recently, we have discovered a novel ganglion cell in rat retina that is intrinsically photosensitive. These ganglion cells exhibit robust light responses even when all influences from classical photoreceptors (rods and cones) are blocked, either by applying pharmacological agents or by dissociating the ganglion cell from the retina. These photosensitive ganglion cells seem likely to serve as photoreceptors for the photic synchronization of circadian rhythms, the mechanism that allows us to overcome jet lag. They project to the circadian pacemaker of the brain, the suprachiasmatic nucleus of the hypothalamus. Their temporal kinetics, threshold, dynamic range, and spectral tuning all match known properties of the synchronization or "entrainment" mechanism. These photosensitive ganglion cells innervate various other brain targets, such as the midbrain pupillary control center, and apparently contribute to a host of behavioral responses to ambient lighting conditions. These findings help to explain why circadian and pupillary light responses persist in mammals, including humans, with profound disruption of rod and cone function. Ongoing experiments are designed to elucidate the phototransduction mechanism, including the identity of the photopigment and the nature of downstream signaling pathways. In other studies, we seek to provide a more detailed characterization of the photic responsiveness and both morphological and functional evidence concerning possible interactions with conventional rod- and cone-driven retinal circuits. These studies are of potential value in understanding and designing appropriate therapies for jet lag, the negative consequences of shift work, and seasonal affective disorder.
The Synaptome Architecture of the Brain: Lifespan, disease, evolution and behavior
The overall aim of my research is to understand how the organisation of the synapse, with particular reference to the postsynaptic proteome (PSP) of excitatory synapses in the brain, informs the fundamental mechanisms of learning, memory and behaviour and how these mechanisms go awry in neurological dysfunction. The PSP indeed bears a remarkable burden of disease, with components being disrupted in disorders (synaptopathies) including schizophrenia, depression, autism and intellectual disability. Our work has been fundamental in revealing and then characterising the unprecedented complexity (>1000 highly conserved proteins) of the PSP in terms of the subsynaptic architecture of postsynaptic proteins such as PSD95 and how these proteins assemble into complexes and supercomplexes in different neurons and regions of the brain. Characterising the PSPs in multiple species, including human and mouse, has revealed differences in key sets of functionally important proteins, correlates with brain imaging and connectome data, and a differential distribution of disease-relevant proteins and pathways. Such studies have also provided important insight into synapse evolution, establishing that vertebrate behavioural complexity is a product of the evolutionary expansion in synapse proteomes that occurred ~500 million years ago. My lab has identified many mutations causing cognitive impairments in mice before they were found to cause human disorders. Our proteomic studies revealed that >130 brain diseases are caused by mutations affecting postsynaptic proteins. We uncovered mechanisms that explain the polygenic basis and age of onset of schizophrenia, with postsynaptic proteins, including PSD95 supercomplexes, carrying much of the polygenic burden. We discovered the “Genetic Lifespan Calendar”, a genomic programme controlling when genes are regulated. We showed that this could explain how schizophrenia susceptibility genes are timed to exert their effects in young adults. The Genes to Cognition programme is the largest genetic study so far undertaken into the synaptic molecular mechanisms underlying behaviour and physiology. We made important conceptual advances that inform how the repertoire of both innate and learned behaviours is built from unique combinations of postsynaptic proteins that either amplify or attenuate the behavioural response. This constitutes a key advance in understanding how the brain decodes information inherent in patterns of nerve impulses, and provides insight into why the PSP has evolved to be so complex, and consequently why the phenotypes of synaptopathies are so diverse. Our most recent work has opened a new phase, and scale, in understanding synapses with the first synaptome maps of the brain. We have developed next-generation methods (SYNMAP) that enable single-synapse resolution molecular mapping across the whole mouse brain and extensive regions of the human brain, revealing the molecular and morphological features of a billion synapses. This has already uncovered unprecedented spatiotemporal synapse diversity organised into an architecture that correlates with the structural and functional connectomes, and shown how mutations that cause cognitive disorders reorganise these synaptome maps; for example, by detecting vulnerable synapse subtypes and synapse loss in Alzheimer’s disease. This innovative synaptome mapping technology has huge potential to help characterise how the brain changes during normal development, including in specific cell types, and with degeneration, facilitating novel pathways to diagnosis and therapy.
CNStalk: The emergence of High order Hubs in the Human Connectome
The functional connectome across temporal scales
The view of human brain function has drastically shifted over the last decade, owing to the observation that the majority of brain activity is intrinsic rather than driven by external stimuli or cognitive demands. Specifically, all brain regions continuously communicate in spatiotemporally organized patterns that constitute the functional connectome, with consequences for cognition and behavior. In this talk, I will argue that another shift is underway, driven by new insights from synergistic interrogation of the functional connectome using different acquisition methods. The human functional connectome is typically investigated with functional magnetic resonance imaging (fMRI) that relies on the indirect hemodynamic signal, thereby emphasizing very slow connectivity across brain regions. Conversely, more recent methodological advances demonstrate that fast connectivity within the whole-brain connectome can be studied with real-time methods such as electroencephalography (EEG). Our findings show that combining fMRI with scalp or intracranial EEG in humans, especially when recorded concurrently, paints a rich picture of neural communication across the connectome. Specifically, the connectome comprises both fast, oscillation-based connectivity observable with EEG, as well as extremely slow processes best captured by fMRI. While the fast and slow processes share an important degree of spatial organization, these processes unfold in a temporally independent manner. Our observations suggest that fMRI and EEG may be envisaged as capturing distinct aspects of functional connectivity, rather than intermodal measurements of the same phenomenon. Infraslow fluctuation-based and rapid oscillation-based connectivity of various frequency bands constitute multiple dynamic trajectories through a shared state space of discrete connectome configurations. The multitude of flexible trajectories may concurrently enable functional connectivity across multiple independent sets of distributed brain regions.
NMC4 Short Talk: The complete connectome of an insect brain
Brains must integrate complex sensory information and compare to past events to generate appropriate behavioral responses. The neural circuit basis of these computations is unclear and the underlying structure unknown. Here, we mapped the comprehensive synaptic wiring diagram of the fruit fly larva brain, which contains 3,013 neurons and 544K synaptic sites. It is the most complete insect connectome to date: 1) Both brain hemispheres are reconstructed, allowing investigation of neural pathways that include contralateral axons, which we found in 37% of brain neurons. 2) All sensory neurons and descending neurons are reconstructed, allowing one to follow signals in an uninterrupted chain—from the sensory periphery, through the brain, to motor neurons in the nerve cord. We developed novel computational tools, allowing us to cluster the brain and investigate how information flows through it. We discovered that feedforward pathways from sensory to descending neurons are multilayered and highly multimodal. Robust feedback was observed at almost all levels of the brain, including descending neurons. We investigated how the brain hemispheres communicate with each other and the nerve cord, leading to identification of novel circuit motifs. This work provides the complete blueprint of a brain and a strong foundation to study the structure-function relationship of neural circuits.
NMC4 Short Talk: Maggot brain, mirror image? A statistical analysis of bilateral symmetry in an insect brain connectome
Neuroscientists have many questions about connectomes that revolve around the ability to compare networks. For example, comparing connectomes could help explain how neural wiring is related to individual differences, genetics, disease, development, or learning. One such question is that of bilateral symmetry: are the left and right sides of a connectome the same? Here, we investigate the bilateral symmetry of a recently presented connectome of an insect brain, the Drosophila larva. We approach this question from the perspective of two-sample testing for networks. First, we show how this question of “sameness” can be framed as a variety of different statistical hypotheses, each with different assumptions. Then, we describe test procedures for each of these hypotheses. We show how these different test procedures perform on both the observed connectome as well as a suite of synthetic perturbations to the connectome. We also point out that these tests require careful attention to parameter alignment and differences in network density in order to provide biologically meaningful results. Taken together, these results provide the first statistical characterization of bilateral symmetry for an entire brain at the single-neuron level, while also giving practical recommendations for future comparisons of connectome networks.
NMC4 Short Talk: Synchronization in the Connectome: Metastable oscillatory modes emerge from interactions in the brain spacetime network
The brain exhibits a rich repertoire of oscillatory patterns organized in space, time and frequency. However, despite ever more-detailed characterizations of spectrally-resolved network patterns, the principles governing oscillatory activity at the system-level remain unclear. Here, we propose that the transient emergence of spatially organized brain rhythms are signatures of weakly stable synchronization between subsets of brain areas, naturally occurring at reduced collective frequencies due to the presence of time delays. To test this mechanism, we build a reduced network model representing interactions between local neuronal populations (with damped oscillatory response at 40Hz) coupled in the human neuroanatomical network. Following theoretical predictions, weakly stable cluster synchronization drives a rich repertoire of short-lived (or metastable) oscillatory modes, whose frequency inversely depends on the number of units, the strength of coupling and the propagation times. Despite the significant degree of reduction, we find a range of model parameters where the frequencies of collective oscillations fall in the range of typical brain rhythms, leading to an optimal fit of the power spectra of magnetoencephalographic signals from 89 heathy individuals. These findings provide a mechanistic scenario for the spontaneous emergence of frequency-specific long-range phase-coupling observed in magneto- and electroencephalographic signals as signatures of resonant modes emerging in the space-time structure of the Connectome, reinforcing the importance of incorporating realistic time delays in network models of oscillatory brain activity.
NMC4 Keynote: A network perspective on cognitive effort
Cognitive effort has long been an important explanatory factor in the study of human behavior in health and disease. Yet, the biophysical nature of cognitive effort remains far from understood. In this talk, I will offer a network perspective on cognitive effort. I will begin by canvassing a recent perspective that casts cognitive effort in the framework of network control theory, developed and frequently used in systems engineering. The theory describes how much energy is required to move the brain from one activity state to another, when activity is constrained to pass along physical pathways in a connectome. I will then turn to empirical studies that link this theoretical notion of energy with cognitive effort in a behaviorally demanding task, and with a metabolic notion of energy as accessible to FDG-PET imaging. Finally, I will ask how this structurally-constrained activity flow can provide us with insights about the brain’s non-equilibrium nature. Using a general tool for quantifying entropy production in macroscopic systems, I will provide evidence to suggest that states of marked cognitive effort are also states of greater entropy production. Collectively, the work I discuss offers a complementary view of cognitive effort as a dynamical process occurring atop a complex network.
A transdiagnostic data-driven study of children’s behaviour and the functional connectome
Behavioural difficulties are seen as hallmarks of many neurodevelopmental conditions. Differences in functional brain organisation have been observed in these conditions, but little is known about how they are related to a child’s profile of behavioural difficulties. We investigated whether behavioural difficulties are associated with how the brain is functionally organised in an intentionally heterogeneous and transdiagnostic sample of 957 children aged 5-15. We used consensus community detection to derive data-driven profiles of behavioural difficulties and constructed functional connectomes from a subset of 238 children with resting-state functional Magnetic Resonance Imaging (fMRI) data. We identified three distinct profiles of behaviour that were characterised by principal difficulties with hot executive function, cool executive function, and learning. Global organisation of the functional connectome did not differ between the groups, but multivariate patterns of connectivity at the level of Intrinsic Connectivity Networks (ICNs), nodes, and hubs significantly predicted group membership in held-out data. Fronto-parietal connector hubs were under-connected in all groups relative to a comparison sample, and children with hot vs cool executive function difficulties were distinguished by connectivity in ICNs associated with cognitive control, emotion processing, and social cognition. This demonstrates both general and specific neurodevelopmental risk factors in the functional connectome. (https://www.medrxiv.org/content/10.1101/2021.09.15.21262637v1)
Transdiagnostic approaches to understanding neurodevelopment
Macroscopic brain organisation emerges early in life, even prenatally, and continues to develop through adolescence and into early adulthood. The emergence and continual refinement of large-scale brain networks, connecting neuronal populations across anatomical distance, allows for increasing functional integration and specialisation. This process is thought crucial for the emergence of complex cognitive processes. But how and why is this process so diverse? We used structural neuroimaging collected from a large diverse cohort, to explore how different features of macroscopic brain organisation are associated with diverse cognitive trajectories. We used diffusion-weighted imaging (DWI) to construct whole-brain white-matter connectomes. A simulated attack on each child's connectome revealed that some brain networks were strongly organized around highly connected 'hubs'. The more children's brains were critically dependent on hubs, the better their cognitive skills. Conversely, having poorly integrated hubs was a very strong risk factor for cognitive and learning difficulties across the sample. We subsequently developed a computational framework, using generative network modelling (GNM), to model the emergence of this kind of connectome organisation. Relatively subtle changes within the wiring rules of this computational framework give rise to differential developmental trajectories, because of small biases in the preferential wiring properties of different nodes within the network. Finally, we were able to use this GNM to implicate the molecular and cellular processes that govern these different growth patterns.
Bidirectionally connected cores in a mouse connectome: Towards extracting the brain subnetworks essential for consciousness
Where in the brain consciousness resides remains unclear. It has been suggested that the subnetworks supporting consciousness should be bidirectionally (recurrently) connected because both feed-forward and feedback processing are necessary for conscious experience. Accordingly, evaluating which subnetworks are bidirectionally connected and the strength of these connections would likely aid the identification of regions essential to consciousness. Here, we propose a method for hierarchically decomposing a network into cores with different strengths of bidirectional connection, as a means of revealing the structure of the complex brain network. We applied the method to a whole-brain mouse connectome. We found that cores with strong bidirectional connections consisted of regions presumably essential to consciousness (e.g., the isocortical and thalamic regions, and claustrum) and did not include regions presumably irrelevant to consciousness (e.g., cerebellum). Contrarily, we could not find such correspondence between cores and consciousness when we applied other simple methods which ignored bidirectionality. These findings suggest that our method provides a novel insight into the relation between bidirectional brain network structures and consciousness. Our recent preprint on this work is here: https://doi.org/10.1101/2021.07.12.452022.
Learning to aggress – Behavioral and circuit mechanisms of aggression reward
Aggression is an ethologically complex behavior with equally complex underlying mechanisms. Here, I present data on one form of aggression, appetitive or rewarding aggression, and the behavioral, cellular and system-level mechanisms guiding this behavior. First, I will present one way in which appetitive aggression is modeled in mice, and extend aggression motivation to the concept of compulsive aggression seeking and relapse. I will then briefly highlight recent advances in computer vision and machine learning for automated scoring of aggressive behavior, the role of specific cell-types in controlling aggression reward, and close with preliminary data on the whole brain aggression reward functional connectome using light sheet fluorescent microscopy (LSFM).
Spatio-temporal large-scale organization of the trimodal connectome derived from concurrent EEG-fMRI and diffusion MRI
While time-averaged dynamics of brain functional connectivity are known to reflect the underlying structural connections, the exact relationship between large-scale function and structure remains an unsolved issue in network neuroscience. Large-scale networks are traditionally observed by correlation of fMRI timecourses, and connectivity of source-reconstructed electrophysiological measures are less prominent. Accessing the brain by using multimodal recordings combining EEG, fMRI and diffusion MRI (dMRI) can help to refine the understanding of the spatio-temporal organization of both static and dynamic brain connectivity. In this talk I will discuss our prior findings that whole-brain connectivity derived from source-reconstructed resting-state (rs) EEG is both linked to the rs-fMRI and dMRI connectome. The EEG connectome provides complimentary information to link function to structure as compared to an fMRI-only perspective. I will present an approach extending the multimodal data integration of concurrent rs-EEG-fMRI to the temporal domain by combining dynamic functional connectivity of both modalities to better understand the neural basis of functional connectivity dynamics. The close relationship between time-varying changes in EEG and fMRI whole-brain connectivity patterns provide evidence for spontaneous reconfigurations of the brain’s functional processing architecture. Finally, I will talk about data quality of connectivity derived from concurrent EEG-fMRI recordings and how the presented multimodal framework could be applied to better understand focal epilepsy. In summary this talk will give an overview of how to integrate large-scale EEG networks with MRI-derived brain structure and function. In conclusion EEG-based connectivity measures not only are closely linked to MRI-based measures of brain structure and function over different time-scales, but also provides complimentary information on the function of underlying brain organization.
Generative models of the human connectome
The human brain is a complex network of neuronal connections. The precise arrangement of these connections, otherwise known as the topology of the network, is crucial to its functioning. Recent efforts to understand how the complex topology of the brain has emerged have used generative mathematical models, which grow synthetic networks according to specific wiring rules. Evidence suggests that a wiring rule which emulates a trade-off between connection costs and functional benefits can produce networks that capture essential topological properties of brain networks. In this webinar, Professor Alex Fornito and Dr Stuart Oldham will discuss these previous findings, as well as their own efforts in creating more physiologically constrained generative models. Professor Alex Fornito is Head of the Brain Mapping and Modelling Research Program at the Turner Institute for Brain and Mental Health. His research focuses on developing new imaging techniques for mapping human brain connectivity and applying these methods to shed light on brain function in health and disease. Dr Stuart Oldham is a Research Fellow at the Turner Institute for Brain and Mental Health and a Research Officer at the Murdoch Children’s Research Institute. He is interested in characterising the organisation of human brain networks, with particular focus on how this organisation develops, using neuroimaging and computational tools.
Fragility of the human connectome across the lifespan
The human brain network architecture can reveal crucial aspects of brain function and dysfunction. The topology of this network (known as the connectome) is shaped by a trade-off between wiring cost and network efficiency, and it has highly connected hub regions playing a prominent role in many brain disorders. By studying a landscape of plausible brain networks that preserve the wiring cost, fragile and resilient hubs can be identified. In this webinar, Dr Leonardo Gollo and Dr James Pang from Monash University will discuss this approach across the lifespan and some of its implications for neurodevelopmental and neurodegenerative diseases. Dr Leonardo Gollo is a Senior Research Fellow at the Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University. He holds an ARC Future Fellowship and his research interests include brain modelling, systems neuroscience, and connectomics. Dr James Pang is a Research Fellow at the Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University. His research interests are on combining neuroimaging and biophysical modelling to better understand the mechanisms of brain function in health and disease.
A macaque connectome for simulating large-scale network dynamics in The VirtualBrain
TheVirtualBrain (TVB; thevirtualbrain.org) is a software platform for simulating whole-brain network dynamics. TVB models link biophysical parameters at the cellular level with systems-level functional neuroimaging signals. Data available from animal models can provide vital constraints for the linkage across spatial and temporal scales. I will describe the construction of a macaque cortical connectome as an initial step towards a comprehensive multi-scale macaque TVB model. I will also describe our process of validating the connectome and show an example simulation of macaque resting-state dynamics using TVB. This connectome opens the opportunity for the addition of other available data from the macaque, such as electrophysiological recordings and receptor distributions, to inform multi-scale models of brain dynamics. Future work will include extensions to neurological conditions and other nonhuman primate species.
Mapping the brain’s remaining terra incognita
In this webinar, Dr Ye Tian and A/Prof Andrew Zalesky will present new research on mapping the functional architecture of the human subcortex. They used 3T and 7T functional MRI from more than 1000 people to map one of the most detailed functional atlases of the human subcortex to date. Comprising four hierarchical scales, the new atlas reveals the complex topographic organisation of the subcortex, which dynamically adapts to changing cognitive demands. The atlas enables whole-brain mapping of connectomes and has been used to optimise targeting of deep brain stimulation. This joint work with Professors Michael Breakspear and Daniel Margulies was recently published in Nature Neuroscience. In the second part of the webinar, Dr Ye Tian will present her current research on the biological ageing of different body systems, including the human brain, in health and degenerative conditions. Conducted in more than 30,000 individuals, this research reveals associations between the biological ageing of different body systems. She will show the impact of lifestyle factors on ageing and how advanced ageing can predict the risk of mortality. Associate Professor Andrew Zalesky is a Principal Researcher with a joint appointment between the Faculties of Engineering and Medicine at The University of Melbourne. He currently holds a NHMRC Senior Research Fellowship and serves as Associate Editor for Brain Topography, Neuroimage Clinical and Network Neuroscience. Dr Zalesky is recognised for the novel tools that he has developed to analyse brain networks and their application to the study of neuropsychiatric disorders. Dr Ye Tian is a postdoctoral researcher at the Department of Psychiatry, University of Melbourne. She received her PhD from the University of Melbourne in 2020, during which she established the Melbourne Subcortex Atlas. Dr Tian is interested in understanding brain organisation and using brain imaging techniques to unveil neuropathology underpinning neuropsychiatric disorders.
Precision and Temporal Stability of Directionality Inferences from Group Iterative Multiple Model Estimation (GIMME) Brain Network Models
The Group Iterative Multiple Model Estimation (GIMME) framework has emerged as a promising method for characterizing connections between brain regions in functional neuroimaging data. Two of the most appealing features of this framework are its ability to estimate the directionality of connections between network nodes and its ability to determine whether those connections apply to everyone in a sample (group-level) or just to one person (individual-level). However, there are outstanding questions about the validity and stability of these estimates, including: 1) how recovery of connection directionality is affected by features of data sets such as scan length and autoregressive effects, which may be strong in some imaging modalities (resting state fMRI, fNIRS) but weaker in others (task fMRI); and 2) whether inferences about directionality at the group and individual levels are stable across time. This talk will provide an overview of the GIMME framework and describe relevant results from a large-scale simulation study that assesses directionality recovery under various conditions and a separate project that investigates the temporal stability of GIMME’s inferences in the Human Connectome Project data set. Analyses from these projects demonstrate that estimates of directionality are most precise when autoregressive and cross-lagged relations in the data are relatively strong, and that inferences about the directionality of group-level connections, specifically, appear to be stable across time. Implications of these findings for the interpretation of directional connectivity estimates in different types of neuroimaging data will be discussed.
Brain Awareness Week @ IITGN
Traumatic injury in the nervous system leads to devastating consequences such as paralysis. The regenerative capacity of the nervous system is limited in adulthood. In this talk, Dr. Anindya would be sharing how the simple nematode C. elegans with its known connectome can inform us about the biology of nervous system repair.
Linking dimensionality to computation in neural networks
The link between behavior, learning and the underlying connectome is a fundamental open problem in neuroscience. In my talk I will show how it is possible to develop a theory that bridges across these three levels (animal behavior, learning and network connectivity) based on the geometrical properties of neural activity. The central tool in my approach is the dimensionality of neural activity. I will link animal complex behavior to the geometry of neural representations, specifically their dimensionality; I will then show how learning shapes changes in such geometrical properties and how local connectivity properties can further regulate them. As a result, I will explain how the complexity of neural representations emerges from both behavioral demands (top-down approach) and learning or connectivity features (bottom-up approach). I will build these results regarding neural dynamics and representations starting from the analysis of neural recordings, by means of theoretical and computational tools that blend dynamical systems, artificial intelligence and statistical physics approaches.
A journey through connectomics: from manual tracing to the first fully automated basal ganglia connectomes
The "mind of the worm", the first electron microscopy-based connectome of C. elegans, was an early sign of where connectomics is headed, followed by a long time of little progress in a field held back by the immense manual effort required for data acquisition and analysis. This changed over the last few years with several technological breakthroughs, which allowed increases in data set sizes by several orders of magnitude. Brain tissue can now be imaged in 3D up to a millimeter in size at nanometer resolution, revealing tissue features from synapses to the mitochondria of all contained cells. These breakthroughs in acquisition technology were paralleled by a revolution in deep-learning segmentation techniques, that equally reduced manual analysis times by several orders of magnitude, to the point where fully automated reconstructions are becoming useful. Taken together, this gives neuroscientists now access to the first wiring diagrams of thousands of automatically reconstructed neurons connected by millions of synapses, just one line of program code away. In this talk, I will cover these developments by describing the past few years' technological breakthroughs and discuss remaining challenges. Finally, I will show the potential of automated connectomics for neuroscience by demonstrating how hypotheses in reinforcement learning can now be tackled through virtual experiments in synaptic wiring diagrams of the songbird basal ganglia.
Connectomes across development reveal principles of brain maturation in C. elegans
The brain map of a worm: A multiscale connectome derived from whole-brain volumetric reconstructions
Cerebral Cortex Connectomics
Densely mapping neuronal circuits at synaptic resolution is providing unprecedented insight into the formation and structure of the cerebral cortex. I’ll present recent advances and discuss what we can learn about precision, plasticity and possible patterns in mammalian neuronal circuits.
The butterfly strikes back: neurons doing 'network' computation
We live in the age of the network: Internet social neural ecosystems. This has become one of the main metaphors for how we think about complex systems. This view also dominates the account of brain function. The role of neuronsdescribed by Cajal as the "butterflies of the soul" has become diminished to leaky integrate-and-fire point objects in many models of neural network computation. It is perhaps not surprising that networkexplanations of neural phenomena use neurons as elementary particles andascribe all their wonderful capabilities to their interactions in a network. In the network view the Connectome defines the brain and the butterflies have no role. In this talk I'd like to reclaim some key computations from the networkand return them to their rightful place at the cellular and subcellular level. I'll start with a provocative look at potential computational capacity ofdifferent kinds of brain computation: network vs. subcellular. I'll then consider different levels of pattern and sequence computationwith a glimpse of the efficiency of the subcellular solutions. Finally I propose that there is a suggestive mapping between entire nodesof deep networks to individual neurons. This in my view is how we can walk around with 1.3 litres and 20 watts of installed computational capacity still doing far more than giant AI server farms.
A connectome manipulation framework for the systematic and reproducible study of structure-function relationships through simulations
Bernstein Conference 2024
Connectome and task predict neural activity across the fly visual system
Bernstein Conference 2024
Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes
Bernstein Conference 2024
Homeostatic regulation of synaptic connectivity across connectomes
Bernstein Conference 2024
Integrating activity measurements into connectome-constrained and task-optimized models
Bernstein Conference 2024
Investigating the role of recurrent connectivity in connectome-constrained and task-optimized models of the fruit fly’s motion pathway
Bernstein Conference 2024
Modularity of the human connectome enables dual attentional modes by frustrating synchronization
Bernstein Conference 2024
Task choice influences single-neuron tuning predictions in connectome-constrained modeling
Bernstein Conference 2024
Microcircuits and the compressibility of neural connectomes
COSYNE 2022
Microcircuits and the compressibility of neural connectomes
COSYNE 2022
Weighted clustering motifs and small-worldness in connectomes
COSYNE 2022
Weighted clustering motifs and small-worldness in connectomes
COSYNE 2022
Characterizing network properties of the whole-brain Drosophila connectome
COSYNE 2023
Connectome-constrained cortical circuits optimized for visual function and working memory tasks
COSYNE 2023
Efficient connectome analyses for identifying bottleneck neurons in behaviorally-relevant pathways
COSYNE 2023
Hierarchical Modular Structure of the Drosophila Connectome
COSYNE 2023
Connectome Interpreter: a toolkit for efficient connectome exploration and hypothesis generation
COSYNE 2025
Connectome simulations reveal a putative central pattern generator microcircuit for fly walking
COSYNE 2025
Predicting neural activity in connectome-constrained recurrent networks
COSYNE 2025
Recurrent connectivity supports motion detection in connectome-constrained models of fly vision
COSYNE 2025
Signal propagation dynamics across the Drosophila hemi-brain connectome reveal parallel-hierarchical sensory-cognitive-motor architecture.
COSYNE 2025
Sparse neural engagement in connectome-based reservoir computing networks
COSYNE 2025
c-Fos brain connectome in mouse with chronic corneal pain
FENS Forum 2024
A connectome-based fMRI study of spatial reasoning in stroke
FENS Forum 2024
A connectome manipulation framework for the systematic and reproducible study of structure-function relationships through simulations
FENS Forum 2024
Connectome of the non-human primate claustrum reveals a hub function for orchestrating inter-areal processing
FENS Forum 2024
Connectome of somatotopically organized mechanosensory neurons that elicit grooming of the head
FENS Forum 2024
Development of the whole-brain functional connectome explored via graph theory analysis
FENS Forum 2024
Fibration symmetries reveal neuronal synchronizations in the C. elegans connectome
FENS Forum 2024
The impact of the retinotopic subdivisions of area V1 on shaping the macaque connectome
FENS Forum 2024
Mapping the sensorimotor connectome underlying protein-specific appetites in Drosophila melanogaster
FENS Forum 2024
Neuromodulation robustly tunes rhythmic patterns in a fixed connectome: Application to gait control
FENS Forum 2024
Structure and interactions of glial cells and neurons in a basal ganglia connectome
FENS Forum 2024
Bisected graph matching improves automated pairing of bilaterally homologous neurons from connectomes
Neuromatch 5