← Back

Cortical Activity

Topic spotlight
TopicWorld Wide

cortical activity

Discover seminars, jobs, and research tagged with cortical activity across World Wide.
24 curated items12 ePosters11 Seminars1 Position
Updated 1 day ago
24 items · cortical activity
24 results
SeminarNeuroscienceRecording

Interacting spiral wave patterns underlie complex brain dynamics and are related to cognitive processing

Pulin Gong
The University of Sydney
Aug 10, 2023

The large-scale activity of the human brain exhibits rich and complex patterns, but the spatiotemporal dynamics of these patterns and their functional roles in cognition remain unclear. Here by characterizing moment-by-moment fluctuations of human cortical functional magnetic resonance imaging signals, we show that spiral-like, rotational wave patterns (brain spirals) are widespread during both resting and cognitive task states. These brain spirals propagate across the cortex while rotating around their phase singularity centres, giving rise to spatiotemporal activity dynamics with non-stationary features. The properties of these brain spirals, such as their rotational directions and locations, are task relevant and can be used to classify different cognitive tasks. We also demonstrate that multiple, interacting brain spirals are involved in coordinating the correlated activations and de-activations of distributed functional regions; this mechanism enables flexible reconfiguration of task-driven activity flow between bottom-up and top-down directions during cognitive processing. Our findings suggest that brain spirals organize complex spatiotemporal dynamics of the human brain and have functional correlates to cognitive processing.

SeminarNeuroscience

State-dependent cortical circuits

Jess Cardin
Yale School of Medicine
May 13, 2021

Spontaneous and sensory-evoked cortical activity is highly state-dependent, promoting the functional flexibility of cortical circuits underlying perception and cognition. Using neural recordings in combination with behavioral state monitoring, we find that arousal and motor activity have complementary roles in regulating local cortical operations, providing dynamic control of sensory encoding. These changes in encoding are linked to altered performance on perceptual tasks. Neuromodulators, such as acetylcholine, may regulate this state-dependent flexibility of cortical network function. We therefore recently developed an approach for dual mesoscopic imaging of acetylcholine release and neural activity across the entire cortical mantle in behaving mice. We find spatiotemporally heterogeneous patterns of cholinergic signaling across the cortex. Transitions between distinct behavioral states reorganize the structure of large-scale cortico-cortical networks and differentially regulate the relationship between cholinergic signals and neural activity. Together, our findings suggest dynamic state-dependent regulation of cortical network operations at the levels of both local and large-scale circuits. Zoom Meeting ID: 964 8138 3003 Contact host if you cannot connect.

SeminarNeuroscienceRecording

Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples

Javad Karimi Abadchi
Mohajerani & McNaughton lab, Uni of Lethbridge Canada
Apr 20, 2021

Neocortical-hippocampal interactions during off-line periods such as slow-wave sleep are implicated in memory processing. In particular, recent memory traces are replayed in hippocampus during some sharp-wave ripple (SWR) events, and these replay events are positively correlated with neocortical memory trace reactivation. A prevalent model is that SWR arise ‘spontaneously’ in CA3 and propagate recent memory ‘indices’ outward to the neocortex to enable memory consolidation there; however, the spatiotemporal distribution of neocortical activation relative to SWR is incompletely understood. We used wide-field optical imaging to study voltage and glutamate release transients in dorsal neocortex in relation to CA1 multiunit activity (MUA) and SWR of sleeping and urethane anesthetized mice. Modulation of voltage and glutamate release signals in relation to SWRs varied across superficial neocortical regions, and it was largest in posteromedial regions surrounding retrosplenial cortex (RSC), which receives strong hippocampal output connections. Activity tended to spread sequentially from more medial towards more lateral regions. Contrary to the unidirectional hypothesis, activation exhibited a continuum of timing relative to SWRs, varying from neocortex leading to neocortex lagging the SWRs (± ~250 msec). The timing continuum was correlated with the skewness of peri-SWR hippocampal MUA and with a tendency for some SWR to occur in clusters. Thus, contrary to the model in which SWRs arise spontaneously in hippocampus, neocortical activation often precedes SWRs and may thus constitute a trigger event in which neocortical information seeds associative reactivation of hippocampal ‘indices’.

SeminarNeuroscienceRecording

The emergence and modulation of time in neural circuits and behavior

Luca Mazzucato
University of Oregon
Jan 21, 2021

Spontaneous behavior in animals and humans shows a striking amount of variability both in the spatial domain (which actions to choose) and temporal domain (when to act). Concatenating actions into sequences and behavioral plans reveals the existence of a hierarchy of timescales ranging from hundreds of milliseconds to minutes. How do multiple timescales emerge from neural circuit dynamics? How do circuits modulate temporal responses to flexibly adapt to changing demands? In this talk, we will present recent results from experiments and theory suggesting a new computational mechanism generating the temporal variability underlying naturalistic behavior and cortical activity. We will show how neural activity from premotor areas unfolds through temporal sequences of attractors, which predict the intention to act. These sequences naturally emerge from recurrent cortical networks, where correlated neural variability plays a crucial role in explaining the observed variability in action timing. We will then discuss how reaction times can be accelerated or slowed down via gain modulation, flexibly induced by neuromodulation or perturbations; and how gain modulation may control response timing in the visual cortex. Finally, we will present a new biologically plausible way to generate a reservoir of multiple timescales in cortical circuits.

SeminarNeuroscience

State-dependent cortical circuits

Jessica Cardin
Yale School of Medicine
Jan 17, 2021

Spontaneous and sensory-evoked cortical activity is highly state-dependent, promoting the functional flexibility of cortical circuits underlying perception and cognition. Using neural recordings in combination with behavioral state monitoring, we find that arousal and motor activity have complementary roles in regulating local cortical operations, providing dynamic control of sensory encoding. These changes in encoding are linked to altered performance on perceptual tasks. Neuromodulators, such as acetylcholine, may regulate this state-dependent flexibility of cortical network function. We therefore recently developed an approach for dual mesoscopic imaging of acetylcholine release and neural activity across the entire cortical mantle in behaving mice. We find spatiotemporally heterogeneous patterns of cholinergic signaling across the cortex. Transitions between distinct behavioral states reorganize the structure of large-scale cortico-cortical networks and differentially regulate the relationship between cholinergic signals and neural activity. Together, our findings suggest dynamic state-dependent regulation of cortical network operations at the levels of both local and large-scale circuits.

SeminarNeuroscienceRecording

Linking dimensionality to computation in neural networks

Stefano Recanatesi
University of Washington
Dec 22, 2020

The link between behavior, learning and the underlying connectome is a fundamental open problem in neuroscience. In my talk I will show how it is possible to develop a theory that bridges across these three levels (animal behavior, learning and network connectivity) based on the geometrical properties of neural activity. The central tool in my approach is the dimensionality of neural activity. I will link animal complex behavior to the geometry of neural representations, specifically their dimensionality; I will then show how learning shapes changes in such geometrical properties and how local connectivity properties can further regulate them. As a result, I will explain how the complexity of neural representations emerges from both behavioral demands (top-down approach) and learning or connectivity features (bottom-up approach). I will build these results regarding neural dynamics and representations starting from the analysis of neural recordings, by means of theoretical and computational tools that blend dynamical systems, artificial intelligence and statistical physics approaches.

SeminarNeuroscienceRecording

State-dependent regulation of cortical circuits

Jessica Cardin
Yale School of Medicine
Nov 10, 2020

Spontaneous and sensory-evoked cortical activity is highly state-dependent, promoting the functional flexibility of cortical circuits underlying perception and cognition. Using neural recordings in combination with behavioral state monitoring, we find that arousal and motor activity have complementary roles in regulating local cortical operations, providing dynamic control of sensory encoding. These changes in encoding are linked to altered performance on perceptual tasks. Neuromodulators, such as acetylcholine, may regulate this state-dependent flexibility of cortical network function. We therefore recently developed an approach for dual mesoscopic imaging of acetylcholine release and neural activity across the entire cortical mantle in behaving mice. We find spatiotemporally heterogeneous patterns of cholinergic signaling across the cortex. Transitions between distinct behavioral states reorganize the structure of large-scale cortico-cortical networks and differentially regulate the relationship between cholinergic signals and neural activity. Together, our findings suggest dynamic state-dependent regulation of cortical network operations at the levels of both local and large-scale circuits.

SeminarNeuroscience

Rapid State Changes Account for Apparent Brain and Behavior Variability

David McCormick
University of Oregon
Sep 16, 2020

Neural and behavioral responses to sensory stimuli are notoriously variable from trial to trial. Does this mean the brain is inherently noisy or that we don’t completely understand the nature of the brain and behavior? Here we monitor the state of activity of the animal through videography of the face, including pupil and whisker movements, as well as walking, while also monitoring the ability of the animal to perform a difficult auditory or visual task. We find that the state of the animal is continuously changing and is never stable. The animal is constantly becoming more or less activated (aroused) on a second and subsecond scale. These changes in state are reflected in all of the neural systems we have measured, including cortical, thalamic, and neuromodulatory activity. Rapid changes in cortical activity are highly correlated with changes in neural responses to sensory stimuli and the ability of the animal to perform auditory or visual detection tasks. On the intracellular level, these changes in forebrain activity are associated with large changes in neuronal membrane potential and the nature of network activity (e.g. from slow rhythm generation to sustained activation and depolarization). Monitoring cholinergic and noradrenergic axonal activity reveals widespread correlations across the cortex. However, we suggest that a significant component of these rapid state changes arise from glutamatergic pathways (e.g. corticocortical or thalamocortical), owing to their rapidity. Understanding the neural mechanisms of state-dependent variations in brain and behavior promises to significantly “denoise” our understanding of the brain.

ePoster

State-dependent Reward Encoding in Cortical Activity During Dynamic Foraging

COSYNE 2022

ePoster

State-dependent Reward Encoding in Cortical Activity During Dynamic Foraging

COSYNE 2022

ePoster

Anatomically resolved oscillatory bursts orchestrate visual thalamocortical activity during naturalistic stimulus viewing

Lukas Meyerolbersleben, Anton Sirota, Laura Busse

COSYNE 2025

ePoster

Striatal pathways oppositely shift cortical activity along the decision axis

Scott Bolkan, Jounhong Ryan Cho, Yousuf El-Jayyousi, Benjamin Midler, Timothy Eilers, Bichan Wu, Lindsey Brown, Robert Fetcho, Christopher Zimmerman, Alejandro Pan-Vazquez, Manuel Schottdorf, Adrian Bondy, Juan Lopez Luna, Alvaro Luna, Ilana Witten

COSYNE 2025

ePoster

Effect of lesions of the cerebellar nucleus fastigii on attention and frontal cortical activity in rats

Franziska Decker, Jonas Jelinek, Katharina Korb, Franck Fogaing Kamgaing, Mesbah Alam, Joachim Kurt Krauss, Elvis J. Hermann, Kerstin Schwabe

FENS Forum 2024

ePoster

Local neuronal silencing and its effects on cortical activity and developmental cell death

Elena Nigi, Davide Warm, Heiko J. Luhmann, Anne Sinning

FENS Forum 2024

ePoster

Low-frequency cortical activity changes generated by continuous wave infrared neuromodulation recorded with an intracortical optrode during anesthesia

Ágnes Szabó, Richárd Fiáth, Ágoston Csaba Horváth, Péter Barthó, Zoltán Fekete

FENS Forum 2024

ePoster

Mesoscale dynamics of cell resolution cortical activity across brain areas in naturalistic goal-directed behavior

Tal Chamilevsky, Arseny Finkelstein

FENS Forum 2024

ePoster

Neuronal identity and numbers in the development of neocortical activity

Ioana Genescu, Laura Mòdol-Vidal, Yannick Bollmann, Stéphane Bugeon, Yan to Ling, Zhiyao Zhou, Fursham Hamid, Kenneth Harris, Oscar Marín

FENS Forum 2024

ePoster

Uncovering the implicit dynamics of the spontaneous cortical activity transition to epilepsy using phase space reconstruction (PSR)

Alexia Karantana, Kostas Andrikos, Nikos Vasilopoulos, Michael Vinos, Irini Skaliora

FENS Forum 2024

ePoster

In vivo two-photon calcium imaging of cortical activity during a hibernation-like state in mice

Ching Pu Chang, Ming-Liang Lee, Tomomi Nemoto, Ryosuke Enoki

FENS Forum 2024

ePoster

In vivo widefield calcium imaging of cortical activity during reach-to-grasp movements in a mouse stroke model

Matteo Panzeri, Fritjof Helmchen, Anna Sophia Wahl

FENS Forum 2024