← Back

Cortical Dynamics

Topic spotlight
TopicWorld Wide

cortical dynamics

Discover seminars, jobs, and research tagged with cortical dynamics across World Wide.
29 curated items14 Seminars12 ePosters3 Positions
Updated 1 day ago
29 items · cortical dynamics
29 results
Position

N/A

Group for Neural Theory and LNC2, Ecole Normale Superieure
Paris
Dec 5, 2025

A post-doctoral position in theoretical neuroscience is open to explore the impact of cardiac inputs on cortical dynamics. Understanding the role of internal states in human cognition has become a hot topic, with a wealth of experimental results but limited attempts at analyzing the computations that underlie the link between bodily organs and brain. Our particular focus is on elucidating how the different mechanisms for heart-to-cortex coupling (e.g., phase-resetting, gating, phasic arousal,..) can account for human behavioral and neural data, from somatosensory detection to more high-level concepts such as self-relevance, using data-based dynamical models.

SeminarNeuroscience

Relating circuit dynamics to computation: robustness and dimension-specific computation in cortical dynamics

Shaul Druckmann
Stanford department of Neurobiology and department of Psychiatry and Behavioral Sciences
Apr 22, 2025

Neural dynamics represent the hard-to-interpret substrate of circuit computations. Advances in large-scale recordings have highlighted the sheer spatiotemporal complexity of circuit dynamics within and across circuits, portraying in detail the difficulty of interpreting such dynamics and relating it to computation. Indeed, even in extremely simplified experimental conditions, one observes high-dimensional temporal dynamics in the relevant circuits. This complexity can be potentially addressed by the notion that not all changes in population activity have equal meaning, i.e., a small change in the evolution of activity along a particular dimension may have a bigger effect on a given computation than a large change in another. We term such conditions dimension-specific computation. Considering motor preparatory activity in a delayed response task we utilized neural recordings performed simultaneously with optogenetic perturbations to probe circuit dynamics. First, we revealed a remarkable robustness in the detailed evolution of certain dimensions of the population activity, beyond what was thought to be the case experimentally and theoretically. Second, the robust dimension in activity space carries nearly all of the decodable behavioral information whereas other non-robust dimensions contained nearly no decodable information, as if the circuit was setup to make informative dimensions stiff, i.e., resistive to perturbations, leaving uninformative dimensions sloppy, i.e., sensitive to perturbations. Third, we show that this robustness can be achieved by a modular organization of circuitry, whereby modules whose dynamics normally evolve independently can correct each other’s dynamics when an individual module is perturbed, a common design feature in robust systems engineering. Finally, we will recent work extending this framework to understanding the neural dynamics underlying preparation of speech.

SeminarNeuroscienceRecording

Cell-type-specific plasticity shapes neocortical dynamics for motor learning

Shouvik Majumder
Max Planck Florida Institute of Neuroscience, USA
Apr 17, 2024

How do cortical circuits acquire new dynamics that drive learned movements? This webinar will focus on mouse premotor cortex in relation to learned lick-timing and explore high-density electrophysiology using our silicon neural probes alongside region and cell-type-specific acute genetic manipulations of proteins required for synaptic plasticity.

SeminarNeuroscience

Cerebellar control of attention and its cortical dynamics

Assaf Breska
Mar 9, 2023
SeminarNeuroscienceRecording

The balance of excitation and inhibition and a canonical cortical computation

Yashar Ahmadian
Cambridge, UK
Apr 26, 2022

Excitatory and inhibitory (E & I) inputs to cortical neurons remain balanced across different conditions. The balanced network model provides a self-consistent account of this observation: population rates dynamically adjust to yield a state in which all neurons are active at biological levels, with their E & I inputs tightly balanced. But global tight E/I balance predicts population responses with linear stimulus-dependence and does not account for systematic cortical response nonlinearities such as divisive normalization, a canonical brain computation. However, when necessary connectivity conditions for global balance fail, states arise in which only a localized subset of neurons are active and have balanced inputs. We analytically show that in networks of neurons with different stimulus selectivities, the emergence of such localized balance states robustly leads to normalization, including sublinear integration and winner-take-all behavior. An alternative model that exhibits normalization is the Stabilized Supralinear Network (SSN), which predicts a regime of loose, rather than tight, E/I balance. However, an understanding of the causal relationship between E/I balance and normalization in SSN and conditions under which SSN yields significant sublinear integration are lacking. For weak inputs, SSN integrates inputs supralinearly, while for very strong inputs it approaches a regime of tight balance. We show that when this latter regime is globally balanced, SSN cannot exhibit strong normalization for any input strength; thus, in SSN too, significant normalization requires localized balance. In summary, we causally and quantitatively connect a fundamental feature of cortical dynamics with a canonical brain computation. Time allowing I will also cover our work extending a normative theoretical account of normalization which explains it as an example of efficient coding of natural stimuli. We show that when biological noise is accounted for, this theory makes the same prediction as the SSN: a transition to supralinear integration for weak stimuli.

SeminarNeuroscienceRecording

Flexible motor sequence generation by thalamic control of cortical dynamics through low-rank connectivity perturbations

Laureline Logiaco
Center for Theoretical Neuroscience, Columbia University
Mar 8, 2022

One of the fundamental functions of the brain is to flexibly plan and control movement production at different timescales to efficiently shape structured behaviors. I will present a model that clarifies how these complex computations could be performed in the mammalian brain, with an emphasis on the learning of an extendable library of autonomous motor motifs and the flexible stringing of these motifs in motor sequences. To build this model, we took advantage of the fact that the anatomy of the circuits involved is well known. Our results show how these architectural constraints lead to a principled understanding of how strategically positioned plastic connections located within motif-specific thalamocortical loops can interact with cortical dynamics that are shared across motifs to create an efficient form of modularity. This occurs because the cortical dynamics can be controlled by the activation of as few as one thalamic unit, which induces a low-rank perturbation of the cortical connectivity, and significantly expands the range of outputs that the network can produce. Finally, our results show that transitions between any motifs can be facilitated by a specific thalamic population that participates in preparing cortex for the execution of the next motif. Taken together, our model sheds light on the neural network mechanisms that can generate flexible sequencing of varied motor motifs.

SeminarNeuroscienceRecording

NMC4 Short Talk: An optogenetic theory of stimulation near criticality

Brandon Benson
Stanford University
Dec 1, 2021

Recent advances in optogenetics allow for stimulation of neurons with sub-millisecond spike jitter and single neuron selectivity. Already this precision has revealed new levels of cortical sensitivity: stimulating tens of neurons can yield changes in the mean firing rate of thousands of similarly tuned neurons. This extreme sensitivity suggests that cortical dynamics are near criticality. Criticality is often studied in neural systems as a non-equilibrium thermodynamic process in which scale-free patterns of activity, called avalanches, emerge between distinct states of spontaneous activity. While criticality is well studied, it is still unclear what these distinct states of spontaneous activity are and what responses we expect from stimulation of this activity. By answering these questions, optogenetic stimulation will become a new avenue for approaching criticality and understanding cortical dynamics. Here, for the first time, we study the effects of optogenetic-like stimulation on a model near criticality. We study a model of Inhibitory/Excitatory (I/E) Leaky Integrate and Fire (LIF) spiking neurons which display a region of high sensitivity as seen in experiments. We find that this region of sensitivity is, indeed, near criticality. We derive the Dynamic Mean Field Theory of this model and find that the distinct states of activity are asynchrony and synchrony. We use our theory to characterize response to various types and strengths of optogenetic stimulation. Our model and theory predict that asynchronous, near-critical dynamics can have two qualitatively different responses to stimulation: one characterized by high sensitivity, discrete event responses, and high trial-to-trial variability, and another characterized by low sensitivity, continuous responses with characteristic frequencies, and low trial-to-trial variability. While both response types may be considered near-critical in model space, networks which are closest to criticality show a hybrid of these response effects.

SeminarNeuroscience

Global AND Scale-Free? Spontaneous cortical dynamics between functional networks and cortico-hippocampal communication

Federico Stella
Battaglia lab, Donders Institute
Jan 26, 2021

Recent advancements in anatomical and functional imaging emphasize the presence of whole-brain networks organized according to functional and connectivity gradients, but how such structure shapes activity propagation and memory processes still lacks asatisfactory model. We analyse the fine-grained spatiotemporal dynamics of spontaneous activity in the entire dorsal cortex. through simultaneous recordings of wide-field voltage sensitive dye transients (VS), cortical ECoG, and hippocampal LFP in anesthetized mice. Both VS and ECoG show cortical avalanches. When measuring avalanches from the VS signal, we find a major deviation of the size scaling from the power-law distribution predicted by the criticality hypothesis and well approximated by the results from the ECoG. Breaking from scale-invariance, avalanches can thus be grouped in two regimes. Small avalanches consists of a limited number of co-activation modes involving a sub-set of cortical networks (related to the Default Mode Network), while larger avalanches involve a substantial portion of the cortical surface and can be clustered into two families: one immediately preceded by Retrosplenial Cortex activation and mostly involving medial-posterior networks, the other initiated by Somatosensory Cortex and extending preferentially along the lateral-anterior region. Rather than only differing in terms of size, these two set of events appear to be associated with markedly different brain-wide dynamical states: they are accompaniedby a shift in the hippocampal LFP, from the ripple band (smaller) to the gamma band (larger avalanches), and correspond to opposite directionality in the cortex-to-hippocampus causal relationship. These results provide a concrete description of global cortical dynamics, and shows how cortex in its entirety is involved in bi-directional communication in the hippocampus even in sleep-like states.

SeminarNeuroscience

Cortical plasticity

Mriganka Sur
MIT Department of Brain and Cognitive Sciences
May 20, 2020

Plasticity shapes the brain during development, and mechanisms of plasticity continue into adulthood to enable learning and memory. Nearly all brain functions are influenced by past events, reinforcing the view that the confluence of plasticity and computation in the same circuit elements is a core component of biological intelligence. My laboratory studies plasticity in the cerebral cortex during development, and plasticity during behaviour that is manifest as cortical dynamics. I will describe how cortical plasticity is implemented by learning rules that involve not only Hebbian changes and synaptic scaling but also dendritic renormalization. By using advanced techniques such as optical measurements of single-synapse function and structure in identified neurons in awake behaving mice, we have recently demonstrated locally coordinated plasticity in dendrites whereby specific synapses are strengthened and adjacent synapses with complementary features are weakened. Together, these changes cooperatively implement functional plasticity in neurons. Such plasticity relies on the dynamics of activity-dependent molecules within and between synapses. Alongside, it is increasingly clear that risk genes associated with neurodevelopmental disorders disproportionately target molecules of plasticity. Deficits in renormalization contribute fundamentally to dysfunctional neuronal circuits and computations, and may be a unifying mechanistic feature of these disorders.

ePoster

Is the cortical dynamics ergodic? A numerical study in partially-symmetric networks of spiking neurons

Ferdinand Tixidre, Gianluigi Mongillo, Alessandro Torcini

Bernstein Conference 2024

ePoster

Gradient and network~structure of lagged correlations\\in band-limited cortical dynamics

Paul Hege, Markus Siegel

Bernstein Conference 2024

ePoster

Cerebellum learns to drive cortical dynamics: a computational lesson

COSYNE 2022

ePoster

Subcortical modulation of cortical dynamics for motor planning: a computational framework

COSYNE 2022

ePoster

Subcortical modulation of cortical dynamics for motor planning: a computational framework

COSYNE 2022

ePoster

Criticality facilitates tunable, multiscale cortical dynamics

Sam Sooter, Antonio Fontenele, Cheng Ly, Andrea Barreiro, Woodrow Shew

COSYNE 2025

ePoster

Frontal and sensory cortical dynamics during flexible auditory behavior

Tiange Hou, Blake Sidleck, Danyall Saeed, Guoning Yu, Michele Insanally

COSYNE 2025

ePoster

Hormone-mediated multi-day reorganization of cortical dynamics during female social choice

Meenakshi Asokan, Lucy Sirrs, Stefan Oline, Annegret Falkner

COSYNE 2025

ePoster

Large-scale geometry of cortical dynamics underlying evidence accumulation and short-term memory

Renan Costa, Peter Salvino, Jiaqi Luo, Shawna Ibarra, Lucas Pinto

COSYNE 2025

ePoster

Motor cortical dynamics during reaching connect posture-specific attractors

Mehrdad Kashefi, Jonathan Michaels, Jorn Diedrichsen, Andrew Pruszynski

COSYNE 2025

ePoster

Disentangling cortical dynamics using Gaussian mixture variational autoencoders

Paul Hege, Markus Siegel

FENS Forum 2024

ePoster

Maturation of sharp wave ripples subtypes and subsequent cortical dynamics during developmental sleep

Brijesh Modi, Solomiia Korchynska, Charlotte Boccara

FENS Forum 2024