← Back

Diversity

Topic spotlight
TopicWorld Wide

diversity

Discover seminars, jobs, and research tagged with diversity across World Wide.
94 curated items60 Seminars22 ePosters12 Positions
Updated 1 day ago
94 items · diversity
94 results
Position

N/A

Center for Brain Science (CBS), Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University
Harvard University
Dec 5, 2025

The Center for Brain Science (CBS) and Kempner Institute for the Study of Natural and Artificial Intelligence at Harvard University seek a tenure-track faculty member to lead an innovative research program working across the fields of Computational Neuroscience and Machine Learning to discover how brain computation can benefit artificial systems and how principles of computation and learning in artificial systems can be used to understand the brain. Current faculty use a variety of approaches to learn how brains compute and govern cognition and behavior. The successful candidate will be appointed an Institute Investigator within the Kempner Institute and will hold an academic appointment in an appropriate department in the life or physical sciences in the Faculty of Arts and Sciences at Harvard University.

PositionComputer Science

Nathalie Japkowicz

American University
American University
Dec 5, 2025

The Department of Computer Science in the College of Arts and Sciences at American University invites applications for a full-time, open-rank, tenure-line position beginning August 1, 2024. Applicants should have a PhD or an anticipated PhD completion by August 2024 in Computer Science or related fields. Depending on experience and qualification, the appointee to this position may be recommended for tenure at the time of hiring. Candidates can apply at the assistant, associate, or full professor level and we welcome applications from both academic and nonacademic organizations. We are looking for candidates who are excited at the prospect of joining a growing department where they will be able to make their mark. Preference will be given to candidates with a record of high-quality scholarship. For candidates applying at the associate or full professor level, a record of external funding is also expected. The committee will consider candidates engaged in high-quality research in any area of Computer Science related to Artificial Intelligence (E.g., Natural Language Processing, Machine Learning, Network Analysis, Information Visualization), Theoretical Computer Science (Computational Theory, Graph Theory, Algorithms), Cybersecurity, and other traditional areas of Computer Science (E.g., Software Engineering, Database Systems, Graphics, etc.). The University has areas of strategic focus for research in Data Science and Analytics, Health, Security, Social Equity, and Sustainability. Applicants from historically underrepresented minority and identity groups are strongly encouraged to apply. In addition to scholarship and teaching, responsibilities will include participation in department, school, and university service activities. Attention to Diversity, Equity and Inclusion (DEI) in all activities within the academic environment are expected.

PositionComputer Science

Nathalie Japkowicz

American University
American University
Dec 5, 2025

The Department of Computer Science in the College of Arts and Sciences at American University invites applications for a full-time, open-rank, tenure-line position beginning August 1, 2024. Applicants should have a PhD or an anticipated PhD completion by August 2024 in Computer Science or related fields. Depending on experience and qualification, the appointee to this position may be recommended for tenure at the time of hiring. Candidates can apply at the assistant, associate, or full professor level and we welcome applications from both academic and nonacademic organizations. We are looking for candidates who are excited at the prospect of joining a growing department where they will be able to make their mark. Preference will be given to candidates with a record of high-quality scholarship. For candidates applying at the associate or full professor level, a record of external funding is also expected. The committee will consider candidates engaged in high-quality research in any area of Computer Science related to Artificial Intelligence (E.g., Natural Language Processing, Machine Learning, Network Analysis, Information Visualization), Theoretical Computer Science (Computational Theory, Graph Theory, Algorithms), Cybersecurity, and other traditional areas of Computer Science (E.g., Software Engineering, Database Systems, Graphics, etc.). The University has areas of strategic focus for research in Data Science and Analytics, Health, Security, Social Equity, and Sustainability. Applicants from historically underrepresented minority and identity groups are strongly encouraged to apply. In addition to scholarship and teaching, responsibilities will include participation in department, school, and university service activities. Attention to Diversity, Equity and Inclusion (DEI) in all activities within the academic environment are expected.

PositionPsychology

Timothy F. Brady

Department of Psychology, University of California, San Diego
University of California, San Diego
Dec 5, 2025

The Department of Psychology at UC San Diego invites applications for a tenure-track Assistant Professor position focused on computational and theoretical mechanisms of behavior and/or its neural bases. The selected candidate will be responsible for establishing a rigorous, high-quality research program that complements existing departmental strengths in Behavioral Neuroscience, Cognitive Psychology, Developmental Psychology, and/or Social Psychology. Additional responsibilities include teaching graduate and undergraduate level courses and mentoring students within the Department of Psychology, as well as participating in department and university service.

Position

Zoran Tiganj

Indiana University Bloomington
Indiana University Bloomington
Dec 5, 2025

The College of Arts and Sciences and the Luddy School of Informatics, Computing, and Engineering at Indiana University Bloomington invite applications for three tenured Associate Professor positions in one or more of the following areas: human intelligence, artificial intelligence, and machine learning to begin in Fall 2024 or after. Appointments will be in one or more departments, including Cognitive Science, Computer Science, Informatics, and Psychological and Brain Sciences. The positions are part of a new initiative that aims to transform our understanding of human and artificial intelligence, centered around the new Mind Brain Machine Quadrangle and the Luddy Artificial Intelligence Center. IU has long been an international leader in research on cognition across humans, animals, and artificial systems, and how intelligence manifests in embodied cognition. These hires build on existing strengths to position IU at the forefront of new research innovations in our understanding of human and animal cognition, the development of intelligent computing technologies, and the use of machine learning applied to a wide range of phenomena.

Position

Alona Fyshe

Department of Psychology, University of Alberta, Alberta Machine Intelligence Institute (Amii)
Edmonton, University of Alberta
Dec 5, 2025

The Department of Psychology, University of Alberta, invites applications for a tenure-track position at the rank of Assistant Professor in Artificial Intelligence and Biological Cognition to commence with a start date as early as July 1, 2024. Exceptional candidates might be considered for hiring at the rank of Associate Professor. The position is part of a cluster hire in the intersection of AI/ML and other areas of research excellence within the University of Alberta that include Health, Energy, and Indigenous Initiatives in health and humanities, among others. The successful candidate will become an Amii Fellow, joining a highly collegial institute of world-class Artificial Intelligence and Machine Learning researchers, and will have access to Amii internal funding resources, administrative support, and a highly collaborative environment. The successful candidate will be nominated for a Canada CIFAR Artificial Intelligence (CCAI) Chair, by the Amii, which includes research funding for at least five years.

Position

Geoffrey J Goodhill

Washington University School of Medicine
660 S. Euclid Avenue, St. Louis, MO 63110
Dec 5, 2025

The Center for Theoretical and Computational Neuroscience (CTCN) at Washington University in St Louis invites applications from outstanding Postdoctoral Fellows to work at the interface between theoretical and experimental labs at WashU. The CTCN is a joint initiative between the Schools of Medicine, Engineering, and Arts and Sciences, and provides a hub for neuroscientists to collaborate with mathematicians, physicists and engineers to find creative solutions to some of the most difficult problems currently facing neuroscience and artificial intelligence. Each CTCN Postdoctoral Fellow is based in at least two labs, but also has the opportunity to seek out new collaborations which help build new connections within the WashU community.

Position

Michael J Frank, PhD

Department of Cognitive and Psychological Sciences (CoPsy), Brown University
Brown University
Dec 5, 2025

The Department of Cognitive and Psychological Sciences (CoPsy) at Brown University invites applications for a tenure-track Assistant or tenured Associate Professor beginning July 1, 2025. We anticipate hiring up to two candidates with the area open. However, candidates' research must focus on one of the following research themes: (1) the interface between artificial intelligence and cognition, (2) collective cognition and behavior, and/or (3) mechanisms of mental and brain health. In addition to building an externally funded nationally recognized research program, a successful candidate will provide effective instruction and advising to a diverse group of graduate and undergraduate students, and be willing to interact with colleagues from a wide range of disciplines and academic backgrounds. The CoPsy department is committed to creating a welcoming and supportive environment that values diversity. The department strongly encourages qualified candidates who can contribute to equity, diversity, and inclusion through their teaching, mentoring, service and research. Successful candidates are expected to have (1) a track record of excellence in research, (2) a well-specified research plan that is likely to lead to research funding, and (3) a readiness to contribute to teaching and mentoring at both the undergraduate and graduate level. The CoPsy department has a highly interdisciplinary research environment in the study of mind, brain, and behavior, offering curricular programs in Psychology, Cognitive Science, Cognitive Neuroscience, and Behavioral Decision Sciences. The Department is located in the heart of campus, and is associated with many Centers and Initiatives at the University, including the Carney Institute for Brain Science, Watson Institute for International and Public Affairs, Data Science Initiative, Center for the Study of Race and Ethnicity in America.

Position

Brad Wyble

The Pennsylvania State University
University Park, PA
Dec 5, 2025

The Department of Psychology at The Pennsylvania State University, University Park, PA, invites applications for a full-time Assistant or Associate Professor of Cognitive Psychology with anticipated start date of August, 2025. Areas of specialization within cognitive psychology are open and may include (but are not limited to) such topics as cognitive control, creativity, computational approaches and modelling, motor control, language science, memory, attention, perception, and decision making. A record of collaboration is desirable for both ranks. Substantial collaboration opportunities exist within the department that align with the department’s cross-cutting research themes and across campus. Current faculty in the cognitive area are active in units including the Center for Language Sciences, the Social Life and Engineering Sciences Imaging Center, the Center for Healthy Aging, the Center for Brain, Behavior, and Cognition and the Applied Research Lab. Responsibilities of the Assistant or Associate Professor of Cognitive Psychology include maintaining a strong record of publications in top outlets. This position will include resident instruction at the undergraduate and graduate level and normal university service, based on the candidate’s qualifications. A Ph.D. in Psychology or related field is required by the appointment date for both ranks. Candidates for the tenure-track Assistant Professor of Cognitive Psychology position must have demonstrated ability as a researcher, scholar, and teacher in a relevant field and have evidence of growth in scholarly achievement. Duties will involve a combination of teaching, research, and service, based on the candidate’s qualifications. Candidates for the tenure-track Associate Professor of Cognitive Psychology position must have demonstrated excellence as a researcher, scholar, and teacher in a relevant field and have an established reputation in scholarly achievement. Duties will involve a combination of teaching, research, and service, based on the candidate’s qualifications. The ideal candidate will have a strong record of publications in top outlets and have a history of or potential for external funding. In addition, successful candidates must either have demonstrated a commitment to building an inclusive, equitable, and diverse campus community, or describe one or more ways they would envision doing so, given the opportunity. Review of applications will begin immediately and will continue until the position is filled. Interested candidates should submit an online application at Penn State’s Job Posting Board, and should upload the following application materials electronically: (1) a Cover letter of application, (2) Concise statements of research and teaching interests, (3) a CV and (4) three selected (re)prints. System limitations allow for a total of 5 documents (5mb per document) as part of your application. Please combine materials to meet the 5-document limit. In addition, please arrange to have three letters of recommendation sent electronically to PsychApplications@psu.edu with the subject line: “Cognitive Psychology” Questions regarding the application process can be emailed to PsychApplications@psu.edu and questions regarding the position can be sent to the search chair: cogsearch@psu.edu. The Pennsylvania State University is committed to and accountable for advancing diversity, equity, and inclusion in all of its forms. We embrace individual uniqueness, foster a culture of inclusion that supports both broad and specific diversity initiatives, leverage the educational and institutional benefits of diversity, and engage all individuals to help them thrive. We value inclusion as a core strength and an essential element of our public service mission. Penn State offers competitive benefits to full-time employees, including medical, dental, vision, and retirement plans, in addition to 75% tuition discounts (including for a spouse and dependent children up to the age of 26) and paid holidays.

SeminarNeuroscience

Hippocampal Ripple Diversity and Neural Plasticity: Insights into Semantic Memory Formation

Lisa Genzel
Radboud University, Nijmegen
Dec 11, 2024
SeminarNeuroscience

Light-gated membrane channels: Discovery and creation of diversity, principles from protein structure, and cell-function access to biology

Karl Deisseroth
Stanford University
Jul 3, 2024
SeminarNeuroscienceRecording

Retinal Photoreceptor Diversity Across Mammals

Leo Peichl
Goethe University Frankfurt
Jun 2, 2024
SeminarNeuroscience

Modeling human brain development and disease: the role of primary cilia

Kyrousi Christina
Medical School, National and Kapodistrian University of Athens, Athens, Greece
Apr 23, 2024

Neurodevelopmental disorders (NDDs) impose a global burden, affecting an increasing number of individuals. While some causative genes have been identified, understanding the human-specific mechanisms involved in these disorders remains limited. Traditional gene-driven approaches for modeling brain diseases have failed to capture the diverse and convergent mechanisms at play. Centrosomes and cilia act as intermediaries between environmental and intrinsic signals, regulating cellular behavior. Mutations or dosage variations disrupting their function have been linked to brain formation deficits, highlighting their importance, yet their precise contributions remain largely unknown. Hence, we aim to investigate whether the centrosome/cilia axis is crucial for brain development and serves as a hub for human-specific mechanisms disrupted in NDDs. Towards this direction, we first demonstrated species-specific and cell-type-specific differences in the cilia-genes expression during mouse and human corticogenesis. Then, to dissect their role, we provoked their ectopic overexpression or silencing in the developing mouse cortex or in human brain organoids. Our findings suggest that cilia genes manipulation alters both the numbers and the position of NPCs and neurons in the developing cortex. Interestingly, primary cilium morphology is disrupted, as we find changes in their length, orientation and number that lead to disruption of the apical belt and altered delamination profiles during development. Our results give insight into the role of primary cilia in human cortical development and address fundamental questions regarding the diversity and convergence of gene function in development and disease manifestation. It has the potential to uncover novel pharmacological targets, facilitate personalized medicine, and improve the lives of individuals affected by NDDs through targeted cilia-based therapies.

SeminarNeuroscience

Mitochondrial diversity in the mouse and human brain

Martin Picard
Columbia University, New York, USA
Apr 16, 2024

The basis of the mind, of mental states, and complex behaviors is the flow of energy through microscopic and macroscopic brain structures. Energy flow through brain circuits is powered by thousands of mitochondria populating the inside of every neuron, glial, and other nucleated cell across the brain-body unit. This seminar will cover emerging approaches to study the mind-mitochondria connection and present early attempts to map the distribution and diversity of mitochondria across brain tissue. In rodents, I will present convergent multimodal evidence anchored in enzyme activities, gene expression, and animal behavior that distinct behaviorally-relevant mitochondrial phenotypes exist across large-scale mouse brain networks. Extending these findings to the human brain, I will present a developing systematic biochemical and molecular map of mitochondrial variation across cortical and subcortical brain structures, representing a foundation to understand the origin of complex energy patterns that give rise to the human mind.

SeminarNeuroscience

Preserving microbial diversity as a keystone of human and planetary health

Nicholas Bokulich
Institute of Food, Nutrition, and Health, ETH Zürich, Switzerland
Apr 14, 2024
SeminarNeuroscienceRecording

Currents of Hope: how noninvasive brain stimulation is reshaping modern psychiatric care; Adapting to diversity: Integrating variability in brain structure and function into personalized / closed-loop non-invasive brain stimulation for substance use disorders

Colleen Hanlon, PhD & Ghazaleh Soleimani, PhD
Brainsway / University of Minnesota
Mar 27, 2024

In March we will focus on TMS and host Ghazaleh Soleimani and Colleen Hanlon. The talks will talk place on Thursday, March 28th at noon ET – please be aware that this means 5PM CET since Boston already switched to summer time! Ghazaleh Soleimani, PhD, is a postdoctoral fellow in Dr Hamed Ekhtiari’s lab at the University of Minnesota. She is also the executive director of the International Network of tES/TMS for Addiction Medicine (INTAM). She will discuss “Adapting to diversity: Integrating variability in brain structure and function into personalized / closed-loop non-invasive brain stimulation for substance use disorders”. Colleen Hanlon, PhD, currently serves as a Vice President of Medical Affairs for BrainsWay, a company specializing in medical devices for mental health, including TMS. Colleen previously worked at the Medical University of South Carolina and Wake Forest School of Medicine. She received the International Brain Stimulation Early Career Award in 2023. She will discuss “Currents of Hope: how noninvasive brain stimulation is reshaping modern psychiatric care”. As always, we will also get a glimpse at the “Person behind the science”. Please register va talks.stimulatingbrains.org to receive the (free) Zoom link, subscribe to our newsletter, or follow us on Twitter/X for further updates!

SeminarNeuroscience

Using Adversarial Collaboration to Harness Collective Intelligence

Lucia Melloni
Max Planck Institute for Empirical Aesthetics
Jan 24, 2024

There are many mysteries in the universe. One of the most significant, often considered the final frontier in science, is understanding how our subjective experience, or consciousness, emerges from the collective action of neurons in biological systems. While substantial progress has been made over the past decades, a unified and widely accepted explanation of the neural mechanisms underpinning consciousness remains elusive. The field is rife with theories that frequently provide contradictory explanations of the phenomenon. To accelerate progress, we have adopted a new model of science: adversarial collaboration in team science. Our goal is to test theories of consciousness in an adversarial setting. Adversarial collaboration offers a unique way to bolster creativity and rigor in scientific research by merging the expertise of teams with diverse viewpoints. Ideally, we aim to harness collective intelligence, embracing various perspectives, to expedite the uncovering of scientific truths. In this talk, I will highlight the effectiveness (and challenges) of this approach using selected case studies, showcasing its potential to counter biases, challenge traditional viewpoints, and foster innovative thought. Through the joint design of experiments, teams incorporate a competitive aspect, ensuring comprehensive exploration of problems. This method underscores the importance of structured conflict and diversity in propelling scientific advancement and innovation.

SeminarNeuroscienceRecording

Cellular and genetic mechanisms of cerebral cortex folding

Víctor Borrell
Instituto de Neurociencias, Alicante
Jan 16, 2024

One of the most prominent features of the human brain is the fabulous size of the cerebral cortex and its intricate folding, both of which emerge during development. Over the last few years, work from my lab has shown that specific cellular and genetic mechanisms play central roles in cortex folding, particularly linked to neural stem and progenitor cells. Key mechanisms include high rates of neurogenesis, high abundance of basal Radial Glia Cells (bRGCs), and neuron migration, all of which are intertwined during development. We have also shown that primary cortical folds follow highly stereotyped patterns, defined by a spatial-temporal protomap of gene expression within germinal layers of the developing cortex. I will present recent findings from my laboratory revealing novel cellular and genetic mechanisms that regulate cortex expansion and folding. We have uncovered the contribution of epigenetic regulation to the establishment of the cortex folding protomap, modulating the expression levels of key transcription factors that control progenitor cell proliferation and cortex folding. At the single cell level, we have identified an unprecedented diversity of cortical progenitor cell classes in the ferret and human embryonic cortex. These are differentially enriched in gyrus versus sulcus regions and establish parallel cell lineages, not observed in mouse. Our findings show that genetic and epigenetic mechanisms in gyrencephalic species diversify cortical progenitor cell types and implement parallel cell linages, driving the expansion of neurogenesis and patterning cerebral cortex folds.

SeminarNeuroscience

Trends in NeuroAI - Meta's MEG-to-image reconstruction

Reese Kneeland
Jan 4, 2024

Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). Title: Brain-optimized inference improves reconstructions of fMRI brain activity Abstract: The release of large datasets and developments in AI have led to dramatic improvements in decoding methods that reconstruct seen images from human brain activity. We evaluate the prospect of further improving recent decoding methods by optimizing for consistency between reconstructions and brain activity during inference. We sample seed reconstructions from a base decoding method, then iteratively refine these reconstructions using a brain-optimized encoding model that maps images to brain activity. At each iteration, we sample a small library of images from an image distribution (a diffusion model) conditioned on a seed reconstruction from the previous iteration. We select those that best approximate the measured brain activity when passed through our encoding model, and use these images for structural guidance during the generation of the small library in the next iteration. We reduce the stochasticity of the image distribution at each iteration, and stop when a criterion on the "width" of the image distribution is met. We show that when this process is applied to recent decoding methods, it outperforms the base decoding method as measured by human raters, a variety of image feature metrics, and alignment to brain activity. These results demonstrate that reconstruction quality can be significantly improved by explicitly aligning decoding distributions to brain activity distributions, even when the seed reconstruction is output from a state-of-the-art decoding algorithm. Interestingly, the rate of refinement varies systematically across visual cortex, with earlier visual areas generally converging more slowly and preferring narrower image distributions, relative to higher-level brain areas. Brain-optimized inference thus offers a succinct and novel method for improving reconstructions and exploring the diversity of representations across visual brain areas. Speaker: Reese Kneeland is a Ph.D. student at the University of Minnesota working in the Naselaris lab. Paper link: https://arxiv.org/abs/2312.07705

SeminarNeuroscienceRecording

ALBA webinar series - Breaking down the ivory tower: Ep. 4 Maria José Diógenes

Maria José Diógenes
iMM - ULisboa, PT
Dec 3, 2023

With this webinar series, the ALBA Disability & Accessibility Working Group aims to bring down the ivory tower of ableism among the brain research community, one extraordinary neuroscientist at a time. These webinars give a platform to scientists with disabilities across the globe and neuroscience disciplines, while reflecting on how to promote inclusive working environments and accessibility to research. For this 4th episode, Dr. Maria José Diógenes (iMM - ULisboa, PT) will talk about how her personal story changed her professional life: from the pharmacy to the laboratory bench and from ageing to Rett Syndrome.

SeminarNeuroscienceRecording

Mechanisms of visual diversity: from evolutionary processes to instantaneous responses

Erica L. Westerman
University of Arkansas
Nov 20, 2023
SeminarPsychology

Wildlife, Warriors and Women: Large Carnivore Conservation in Tanzania and Beyond

Amy Dickman
University of Oxford
Nov 19, 2023

Professor Amy Dickman established is the joint CEO of Lion Landscapes, which works to help conserve wildlife in some of the most important biodiversity areas of Africa. These areas include some of the most important areas in the world for big cats, but also have an extremely high level of lion killing, as lions and other carnivores impose high costs on poverty-stricken local people. Amy and her team are working with local communities to reduce carnivore attacks, providing villagers with real benefits from carnivore presence, engaging warriors in conservation and training the next generation of local conservation leaders. It has been a challenging endeavour, given the remote location and secretive and hostile nature of the tribe responsible for most lion-killing. In her talk, Amy will discuss the significance of this project, the difficulties of working in an area where witchcraft and mythology abound, and the conservation successes that are already emerging from this important work.

SeminarNeuroscienceRecording

The melanopsin mosaic: exploring the diversity of non-image forming retinal ganglion cells

Ben Sivyer
OHSU, Casey Eye Institute
Oct 29, 2023

In this talk, I will focus on recent work that has uncovered the diversity of intrinsically photosensitive retinal ganglion cells (ipRGCs). These are a unique type of retinal ganglion cell that contains the photopigment melanopsin. ipRGCs are the retinal neurons responsible for driving non-imaging forming behaviors and reflexes, such as circadian entrainment and pupil constriction, amongst many others. My lab has recently focused on uncovering the diversity of ipRGCs, their distribution throughout the mammalian retina, and their axon projections in the brain.

SeminarNeuroscienceRecording

ALBA webinar series - Breaking down the ivory tower: Ep. 3 Donna Rose Addis

Donna Rose Addis
Rotman Research Institute, Baycrest & University of Toronto, Canada
Oct 22, 2023

With this webinar series, the ALBA Disability & Accessibility Working Group aims to bring down the ivory tower of ableism among the brain research community, one extraordinary neuroscientist at a time. These webinars give a platform to scientists with disabilities across the globe and neuroscience disciplines, while reflecting on how to promote inclusive working environments and accessibility to research. For this 3rd episode, Dr. Donna Rose Addis (Rotman Research Institute, Baycrest & University of Toronto, Canada) will talk about her research and experience.

SeminarNeuroscienceRecording

Diffuse coupling in the brain - A temperature dial for computation

Eli Müller
The University of Sydney
Oct 5, 2023

The neurobiological mechanisms of arousal and anesthesia remain poorly understood. Recent evidence highlights the key role of interactions between the cerebral cortex and the diffusely projecting matrix thalamic nuclei. Here, we interrogate these processes in a whole-brain corticothalamic neural mass model endowed with targeted and diffusely projecting thalamocortical nuclei inferred from empirical data. This model captures key features seen in propofol anesthesia, including diminished network integration, lowered state diversity, impaired susceptibility to perturbation, and decreased corticocortical coherence. Collectively, these signatures reflect a suppression of information transfer across the cerebral cortex. We recover these signatures of conscious arousal by selectively stimulating the matrix thalamus, recapitulating empirical results in macaque, as well as wake-like information processing states that reflect the thalamic modulation of largescale cortical attractor dynamics. Our results highlight the role of matrix thalamocortical projections in shaping many features of complex cortical dynamics to facilitate the unique communication states supporting conscious awareness.

SeminarNeuroscienceRecording

ALBA mentoring fireside chats: identifying mentorship needs

Dr. Angeline Dukes, Dr Florencia Fernández Chiappe
Sep 4, 2023

This is the first session in a series of three online fireside chats organised by the ALBA Network with the aims of understanding what’s not working in existing mentoring programmes in (neuro)science and identify the challenges and unmet mentorship needs of the next generation of scientists across the globe. The feedback from these sessions will be used to develop a tailored ALBA mentoring programme.

SeminarNeuroscienceRecording

Workplace Experiences of LGBTQIA+ Academics in Psychology, Psychiatry, and Neuroscience

ALBA Network
Jun 29, 2023

In this webinar, Dr David Pagliaccio discusses the findings of his recent pre-print on workplace bias and discrimination faced by LGBTQIA+ brain scientists in the US.

SeminarNeuroscienceRecording

Walk the talk: concrete actions to promote diversity in neuroscience in Latin America

ALBA Network & IBRO
Jun 6, 2023

Building upon the webinar "What are the main barriers to succeed in brain sciences in Latin America?" (February 2021) and the paper "Addressing the opportunity gap in the Latin American neuroscience community" (Silva, A., Iyer, K., Cirulli, F. et al. Nat Neurosci August 2022), this ALBA-IBRO Webinar is the next chapter in our journey towards fostering inclusivity and diversity in neuroscience in Latin America. The webinar is designed to go beyond theoretical discussions and provide tangible solutions. We will showcase 3-4 best practice case studies, shining a spotlight on real-life actions and campaigns implemented at the institutional level, be it within government bodies, universities, or other organisations. Our goal is to empower neuroscientists across Latin America by equipping them with practical knowledge they can apply in their own institutions and countries.

SeminarNeuroscienceRecording

ALBA webinar series - Breaking down the ivory tower: Ep. 2 Philip Haydon

ALBA Network
Mar 22, 2023

With this webinar series, the ALBA Disability & Accessibility Working Group aims to bring down the ivory tower of ableism among the brain research community, one extraordinary neuroscientist at a time. These webinars give a platform to scientists with disabilities across the globe and neuroscience disciplines, while reflecting on how to promote inclusive working environments and accessibility to research. For this 2nd episode, Prof. Philip Haydon (Tufts University School of Medicine, Boston, USA) will talk about his research and experience.  Prof. Philip runs an active laboratory researching a multitude of neurological disorders (including epilepsy). He is also President of Sail For Epilepsy. His mission is to inspire people with epilepsy, raise funds to support research for a cure, promote awareness of epilepsy and educate the public.

SeminarNeuroscienceRecording

A Toolkit to Succeed in Neuroscience in Africa - an IBRO-ALBA-WWN-SANS Webinar

ALBA Network & World Women in Neuroscience & SANS & IBRO
Feb 28, 2023

Following up on last year's webinar - What it takes to succeed as a neuroscientist in Africa, this panel discussion aims at creating a guide to the skill set needed to be a neuroscientist in the African continent. Chairs and panelists will illustrate different areas of expertise as part of the "Toolkit" by matching them to real life experience and solutions that they had to find while building their career as scientists.

SeminarNeuroscienceRecording

Immune regulation by fungal strain diversity in inflammatory bowel disease

Xin Li
UT Southwestern Medical Center
Feb 22, 2023
SeminarNeuroscienceRecording

Programmed axon death: from animal models into human disease

Michael Coleman
Department of Clinical Neurosciences, University of Cambridge
Jan 30, 2023

Programmed axon death is a widespread and completely preventable mechanism in injury and disease. Mouse and Drosophila studies define a molecular pathway involving activation of SARM1 NA Dase and its prevention by NAD synthesising enzyme NMNAT2 . Loss of axonal NMNAT2 causes its substrate, NMN , to accumulate and activate SARM1 , driving loss of NAD and changes in ATP , ROS and calcium. Animal models caused by genetic mutation, toxins, viruses or metabolic defects can be alleviated by blocking programmed axon death, for example models of CMT1B , chemotherapy-induced peripheral neuropathy (CIPN), rabies and diabetic peripheral neuropathy (DPN). The perinatal lethality of NMNAT2 null mice is completely rescued, restoring a normal, healthy lifespan. Animal models lack the genetic and environmental diversity present in human populations and this is problematic for modelling gene-environment combinations, for example in CIPN and DPN , and identifying rare, pathogenic mutations. Instead, by testing human gene variants in WGS datasets for loss- and gain-of-function, we identified enrichment of rare SARM1 gain-of-function variants in sporadic ALS , despite previous negative findings in SOD1 transgenic mice. We have shown in mice that heterozygous SARM1 loss-of-function is protective from a range of axonal stresses and that naturally-occurring SARM1 loss-of-function alleles are present in human populations. This enables new approaches to identify disorders where blocking SARM1 may be therapeutically useful, and the existence of two dominant negative human variants in healthy adults is some of the best evidence available that drugs blocking SARM1 are likely to be safe. Further loss- and gain-of-function variants in SARM1 and NMNAT2 are being identified and used to extend and strengthen the evidence of association with neurological disorders. We aim to identify diseases, and specific patients, in whom SARM1 -blocking drugs are most likely to be effective.

SeminarNeuroscienceRecording

Behavioral Timescale Synaptic Plasticity (BTSP) for biologically plausible credit assignment across multiple layers via top-down gating of dendritic plasticity

A. Galloni
Rutgers
Nov 8, 2022

A central problem in biological learning is how information about the outcome of a decision or behavior can be used to reliably guide learning across distributed neural circuits while obeying biological constraints. This “credit assignment” problem is commonly solved in artificial neural networks through supervised gradient descent and the backpropagation algorithm. In contrast, biological learning is typically modelled using unsupervised Hebbian learning rules. While these rules only use local information to update synaptic weights, and are sometimes combined with weight constraints to reflect a diversity of excitatory (only positive weights) and inhibitory (only negative weights) cell types, they do not prescribe a clear mechanism for how to coordinate learning across multiple layers and propagate error information accurately across the network. In recent years, several groups have drawn inspiration from the known dendritic non-linearities of pyramidal neurons to propose new learning rules and network architectures that enable biologically plausible multi-layer learning by processing error information in segregated dendrites. Meanwhile, recent experimental results from the hippocampus have revealed a new form of plasticity—Behavioral Timescale Synaptic Plasticity (BTSP)—in which large dendritic depolarizations rapidly reshape synaptic weights and stimulus selectivity with as little as a single stimulus presentation (“one-shot learning”). Here we explore the implications of this new learning rule through a biologically plausible implementation in a rate neuron network. We demonstrate that regulation of dendritic spiking and BTSP by top-down feedback signals can effectively coordinate plasticity across multiple network layers in a simple pattern recognition task. By analyzing hidden feature representations and weight trajectories during learning, we show the differences between networks trained with standard backpropagation, Hebbian learning rules, and BTSP.

SeminarNeuroscience

Radiopharmaceutical evaluation of novel bifunctional chelators and bioconjugates for tumour imaging and therapy

Manja Kubeil
Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden- Rossendorf (HDZR), Germany
Oct 11, 2022

Bispidines (3,7-diazabicyclo[3.3.1]nonane) and their derivatives act as bifunctional chelators (BFC), combining the advantages of multidentate macrocyclic and acyclic ligands e.g. high kinetic inertness, rapid radiolabelling under mild conditions. This bicyclic chelator system shows a great diversity in terms of its denticity and type of functional groups, yielding a wide range of multidentate ligands that can bind a variety of different metal ions. In addition, they allow a facile functionalisation of targeting molecules such as peptides, peptidomimetics, and bispeci􀄀c antibodies. Herein, examples of various bispidine complexes labelled with [64Cu]Cu2+, [111In]In3+, [ 177Lu]Lu3+ or [ 225Ac]Ac3+ will be presented which provide a picture of how different substituents in􀄁uence the coordination mode. Target-speci􀄀c radiolabelled bispidine-based conjugates (e.g. peptides, antibody fragments, antibodies) investigated in vivo by positron emission or single-photon emission computed tomography will be presented and discussed in terms of their suitability for nuclear medicine applications.

SeminarNeuroscience

Investigating activity-dependent processes in cerebral cortex development and disease

Simona Lodato
Humanitas University
Jul 19, 2022

The cerebral cortex contains an extraordinary diversity of excitatory projection neuron (PN) and inhibitory interneurons (IN), wired together to form complex circuits. Spatiotemporally coordinated execution of intrinsic molecular programs by PNs and INs and activity-dependent processes, contribute to cortical development and cortical microcircuits formation. Alterations of these delicate processes have often been associated to neurological/neurodevelopmental disorders. However, despite the groundbreaking discovery that spontaneous activity in the embryonic brain can shape regional identities of distinct cortical territories, it is still unclear whether this early activity contributes to define subtype-specific neuronal fate as well as circuit assembly. In this study, we combined in utero genetic perturbations via CRISPR/Cas9 system and pharmacological inhibition of selected ion channels with RNA-sequencing and live imaging technologies to identify the activity-regulated processes controlling the development of different cortical PN classes, their wiring and the acquisition of subtype specific features. Moreover, we generated human induced pluripotent stem cells (iPSCs) form patients affected by a severe, rare and untreatable form of developmental epileptic encephalopathy. By differentiating cortical organoids form patient-derived iPSCs we create human models of early electrical alterations for studying molecular, structural and functional consequences of the genetic mutations during cortical development. Our ultimate goal is to define the activity-conditioned processes that physiologically occur during the development of cortical circuits, to identify novel therapeutical paths to address the pathological consequences of neonatal epilepsies.

SeminarNeuroscienceRecording

How communication networks promote cross-cultural similarities: The case of category formation

Douglas Guilbeault
University of California, Berkeley
Jun 1, 2022

Individuals vary widely in how they categorize novel phenomena. This individual variation has led canonical theories in cognitive and social science to suggest that communication in large social networks leads populations to construct divergent category systems. Yet, anthropological data indicates that large, independent societies consistently arrive at similar categories across a range of topics. How is it possible for diverse populations, consisting of individuals with significant variation in how they view the world, to independently construct similar categories? Through a series of online experiments, I show how large communication networks within cultures can promote the formation of similar categories across cultures. For this investigation, I designed an online “Grouping Game” to observe how people construct categories in both small and large populations when tasked with grouping together the same novel and ambiguous images. I replicated this design for English-speaking subjects in the U.S. and Mandarin-speaking subjects in China. In both cultures, solitary individuals and small social groups produced highly divergent category systems. Yet, large social groups separately and consistently arrived at highly similar categories both within and across cultures. These findings are accurately predicted by a simple mathematical model of critical mass dynamics. Altogether, I show how large communication networks can filter lexical diversity among individuals to produce replicable society-level patterns, yielding unexpected implications for cultural evolution. In particular, I discuss how participants in both cultures readily harnessed analogies when categorizing novel stimuli, and I examine the role of communication networks in promoting cross-cultural similarities in analogy-making as the key engine of category formation.

SeminarNeuroscienceRecording

A draft connectome for ganglion cell types of the mouse retina

David Berson
Brown University
May 15, 2022

The visual system of the brain is highly parallel in its architecture. This is clearly evident in the outputs of the retina, which arise from neurons called ganglion cells. Work in our lab has shown that mammalian retinas contain more than a dozen distinct types of ganglion cells. Each type appears to filter the retinal image in a unique way and to relay this processed signal to a specific set of targets in the brain. My students and I are working to understand the meaning of this parallel organization through electrophysiological and anatomical studies. We record from light-responsive ganglion cells in vitro using the whole-cell patch method. This allows us to correlate directly the visual response properties, intrinsic electrical behavior, synaptic pharmacology, dendritic morphology and axonal projections of single neurons. Other methods used in the lab include neuroanatomical tracing techniques, single-unit recording and immunohistochemistry. We seek to specify the total number of ganglion cell types, the distinguishing characteristics of each type, and the intraretinal mechanisms (structural, electrical, and synaptic) that shape their stimulus selectivities. Recent work in the lab has identified a bizarre new ganglion cell type that is also a photoreceptor, capable of responding to light even when it is synaptically uncoupled from conventional (rod and cone) photoreceptors. These ganglion cells appear to play a key role in resetting the biological clock. It is just this sort of link, between a specific cell type and a well-defined behavioral or perceptual function, that we seek to establish for the full range of ganglion cell types. My research concerns the structural and functional organization of retinal ganglion cells, the output cells of the retina whose axons make up the optic nerve. Ganglion cells exhibit great diversity both in their morphology and in their responses to light stimuli. On this basis, they are divisible into a large number of types (>15). Each ganglion-cell type appears to send its outputs to a specific set of central visual nuclei. This suggests that ganglion cell heterogeneity has evolved to provide each visual center in the brain with pre-processed representations of the visual scene tailored to its specific functional requirements. Though the outline of this story has been appreciated for some time, it has received little systematic exploration. My laboratory is addressing in parallel three sets of related questions: 1) How many types of ganglion cells are there in a typical mammalian retina and what are their structural and functional characteristics? 2) What combination of synaptic networks and intrinsic membrane properties are responsible for the characteristic light responses of individual types? 3) What do the functional specializations of individual classes contribute to perceptual function or to visually mediated behavior? To pursue these questions, we label retinal ganglion cells by retrograde transport from the brain; analyze in vitro their light responses, intrinsic membrane properties and synaptic pharmacology using the whole-cell patch clamp method; and reveal their morphology with intracellular dyes. Recently, we have discovered a novel ganglion cell in rat retina that is intrinsically photosensitive. These ganglion cells exhibit robust light responses even when all influences from classical photoreceptors (rods and cones) are blocked, either by applying pharmacological agents or by dissociating the ganglion cell from the retina. These photosensitive ganglion cells seem likely to serve as photoreceptors for the photic synchronization of circadian rhythms, the mechanism that allows us to overcome jet lag. They project to the circadian pacemaker of the brain, the suprachiasmatic nucleus of the hypothalamus. Their temporal kinetics, threshold, dynamic range, and spectral tuning all match known properties of the synchronization or "entrainment" mechanism. These photosensitive ganglion cells innervate various other brain targets, such as the midbrain pupillary control center, and apparently contribute to a host of behavioral responses to ambient lighting conditions. These findings help to explain why circadian and pupillary light responses persist in mammals, including humans, with profound disruption of rod and cone function. Ongoing experiments are designed to elucidate the phototransduction mechanism, including the identity of the photopigment and the nature of downstream signaling pathways. In other studies, we seek to provide a more detailed characterization of the photic responsiveness and both morphological and functional evidence concerning possible interactions with conventional rod- and cone-driven retinal circuits. These studies are of potential value in understanding and designing appropriate therapies for jet lag, the negative consequences of shift work, and seasonal affective disorder.

SeminarNeuroscienceRecording

Why do some animals have more than two eyes?

Lauren Sumner-Rooney
Leibniz Institute for Research on Evolution and Biodiversity
May 8, 2022

The evolution of vision revolutionised animal biology, and eyes have evolved in a stunning array of diverse forms over the past half a billion years. Among these are curious duplicated visual systems, where eyes can be spread across the body and specialised for different tasks. Although it sounds radical, duplicated vision is found in most major groups across the animal kingdom, but remains poorly understood. We will explore how and why animals collect information about their environment in this unusual way, looking at examples from tropical forests to the sea floor, and from ancient arthropods to living jellyfish. Have we been short-changed with just two eyes? Dr Lauren Sumner-Rooney is a Research Fellow at the OUMNH studying the function and evolution of animal visual systems. Lauren completed her undergraduate degree at Oxford in 2012, and her PhD at Queen’s University Belfast in 2015. She worked as a research technician and science communicator at the Royal Veterinary College (2015-2016) and held a postdoctoral research fellowship at the Museum für Naturkunde, Berlin (2016-2017) before arriving at the Museum in 2017.

SeminarNeuroscience

The Synaptome Architecture of the Brain: Lifespan, disease, evolution and behavior

Seth Grant
Professor of Molecular Neuroscience, Centre for Clinical Brain Sciences, University of Edinburgh, UK
May 1, 2022

The overall aim of my research is to understand how the organisation of the synapse, with particular reference to the postsynaptic proteome (PSP) of excitatory synapses in the brain, informs the fundamental mechanisms of learning, memory and behaviour and how these mechanisms go awry in neurological dysfunction. The PSP indeed bears a remarkable burden of disease, with components being disrupted in disorders (synaptopathies) including schizophrenia, depression, autism and intellectual disability. Our work has been fundamental in revealing and then characterising the unprecedented complexity (>1000 highly conserved proteins) of the PSP in terms of the subsynaptic architecture of postsynaptic proteins such as PSD95 and how these proteins assemble into complexes and supercomplexes in different neurons and regions of the brain. Characterising the PSPs in multiple species, including human and mouse, has revealed differences in key sets of functionally important proteins, correlates with brain imaging and connectome data, and a differential distribution of disease-relevant proteins and pathways. Such studies have also provided important insight into synapse evolution, establishing that vertebrate behavioural complexity is a product of the evolutionary expansion in synapse proteomes that occurred ~500 million years ago. My lab has identified many mutations causing cognitive impairments in mice before they were found to cause human disorders. Our proteomic studies revealed that >130 brain diseases are caused by mutations affecting postsynaptic proteins. We uncovered mechanisms that explain the polygenic basis and age of onset of schizophrenia, with postsynaptic proteins, including PSD95 supercomplexes, carrying much of the polygenic burden. We discovered the “Genetic Lifespan Calendar”, a genomic programme controlling when genes are regulated. We showed that this could explain how schizophrenia susceptibility genes are timed to exert their effects in young adults. The Genes to Cognition programme is the largest genetic study so far undertaken into the synaptic molecular mechanisms underlying behaviour and physiology. We made important conceptual advances that inform how the repertoire of both innate and learned behaviours is built from unique combinations of postsynaptic proteins that either amplify or attenuate the behavioural response. This constitutes a key advance in understanding how the brain decodes information inherent in patterns of nerve impulses, and provides insight into why the PSP has evolved to be so complex, and consequently why the phenotypes of synaptopathies are so diverse. Our most recent work has opened a new phase, and scale, in understanding synapses with the first synaptome maps of the brain. We have developed next-generation methods (SYNMAP) that enable single-synapse resolution molecular mapping across the whole mouse brain and extensive regions of the human brain, revealing the molecular and morphological features of a billion synapses. This has already uncovered unprecedented spatiotemporal synapse diversity organised into an architecture that correlates with the structural and functional connectomes, and shown how mutations that cause cognitive disorders reorganise these synaptome maps; for example, by detecting vulnerable synapse subtypes and synapse loss in Alzheimer’s disease. This innovative synaptome mapping technology has huge potential to help characterise how the brain changes during normal development, including in specific cell types, and with degeneration, facilitating novel pathways to diagnosis and therapy.

SeminarNeuroscienceRecording

The evolution and development of visual complexity: insights from stomatopod visual anatomy, physiology, behavior, and molecules

Megan Porter
University of Hawaii
May 1, 2022

Bioluminescence, which is rare on land, is extremely common in the deep sea, being found in 80% of the animals living between 200 and 1000 m. These animals rely on bioluminescence for communication, feeding, and/or defense, so the generation and detection of light is essential to their survival. Our present knowledge of this phenomenon has been limited due to the difficulty in bringing up live deep-sea animals to the surface, and the lack of proper techniques needed to study this complex system. However, new genomic techniques are now available, and a team with extensive experience in deep-sea biology, vision, and genomics has been assembled to lead this project. This project is aimed to study three questions 1) What are the evolutionary patterns of different types of bioluminescence in deep-sea shrimp? 2) How are deep-sea organisms’ eyes adapted to detect bioluminescence? 3) Can bioluminescent organs (called photophores) detect light in addition to emitting light? Findings from this study will provide valuable insight into a complex system vital to communication, defense, camouflage, and species recognition. This study will bring monumental contributions to the fields of deep sea and evolutionary biology, and immediately improve our understanding of bioluminescence and light detection in the marine environment. In addition to scientific advancement, this project will reach K-college aged students through the development and dissemination of educational tools, a series of molecular and organismal-based workshops, museum exhibits, public seminars, and biodiversity initiatives.

SeminarNeuroscienceRecording

A transcriptomic axis predicts state modulation of cortical interneurons

Stephane Bugeon
Harris & Carandini's lab, UCL
Apr 26, 2022

Transcriptomics has revealed that cortical inhibitory neurons exhibit a great diversity of fine molecular subtypes, but it is not known whether these subtypes have correspondingly diverse activity patterns in the living brain. We show that inhibitory subtypes in primary visual cortex (V1) have diverse correlates with brain state, but that this diversity is organized by a single factor: position along their main axis of transcriptomic variation. We combined in vivo 2-photon calcium imaging of mouse V1 with a novel transcriptomic method to identify mRNAs for 72 selected genes in ex vivo slices. We classified inhibitory neurons imaged in layers 1-3 into a three-level hierarchy of 5 Subclasses, 11 Types, and 35 Subtypes using previously-defined transcriptomic clusters. Responses to visual stimuli differed significantly only across Subclasses, suppressing cells in the Sncg Subclass while driving cells in the other Subclasses. Modulation by brain state differed at all hierarchical levels but could be largely predicted from the first transcriptomic principal component, which also predicted correlations with simultaneously recorded cells. Inhibitory Subtypes that fired more in resting, oscillatory brain states have less axon in layer 1, narrower spikes, lower input resistance and weaker adaptation as determined in vitro and express more inhibitory cholinergic receptors. Subtypes firing more during arousal had the opposite properties. Thus, a simple principle may largely explain how diverse inhibitory V1 Subtypes shape state-dependent cortical processing.

SeminarNeuroscienceRecording

Artificial Intelligence and Racism – What are the implications for scientific research?

ALBA Network
Mar 6, 2022

As questions of race and justice have risen to the fore across the sciences, the ALBA Network has invited Dr Shakir Mohamed (Senior Research Scientist at DeepMind, UK) to provide a keynote speech on Artificial Intelligence and racism, and the implications for scientific research, that will be followed by a discussion chaired by Dr Konrad Kording (Department of Neuroscience at University of Pennsylvania, US - neuromatch co-founder)

SeminarNeuroscienceRecording

ALBA-WWN Webinar: What it takes to succeed as a neuroscientist in Africa

ALBA Network & World Women in Neuroscience
Feb 1, 2022

In this webinar, the ALBA Network & World Women in Neuroscience partner to address equity, inclusion & diversity issues across the Sub-Saharan African neuroscience community. The panel discussion will explore the challenges and biases faced by African neuroscientists while establishing their careers - focusing on a lack of mentoring and networking but also on the difficulties to raise funding - as well as display the strengths present in the region, which can be exploited to find solutions. Registration is free but required: https://www.alba.network/alba-wwn-webinar-africa

SeminarPhysics of LifeRecording

Towards a Theory of Microbial Ecosystems

Pankaj Mehta
Boston University
Dec 9, 2021

A major unresolved question in microbiome research is whether the complex ecological patterns observed in surveys of natural communities can be explained and predicted by fundamental, quantitative principles. Bridging theory and experiment is hampered by the multiplicity of ecological processes that simultaneously affect community assembly and a lack of theoretical tools for modeling diverse ecosystems. Here, I will present a simple ecological model of microbial communities that reproduces large-scale ecological patterns observed across multiple natural and experimental settings including compositional gradients, clustering by environment, diversity/harshness correlations, and nestedness. Surprisingly, our model works despite having a “random metabolisms” and “random consumer preferences”. This raises the natural of question of why random ecosystems can describe real-world experimental data. In the second, more theoretical part of the talk, I will answer this question by showing that when a community becomes diverse enough, it will always self-organize into a stable state whose properties are well captured by a “typical random ecosystems”.

SeminarNeuroscienceRecording

Challenges and opportunities for neuroscientists in the MENA region

ALBA Network
Dec 2, 2021

As part of its webinar series on region-specific diversity issues, the ALBA Network is organizing a panel discussion to explore the challenges and biases faced by neuroscientists while establishing their research groups and careers in the MENA region, from an academic and cultural perspective. This will be followed by highlights of success stories, unique region-specific opportunities for research collaborations and recommendations to improve representation of MENA neuroscientists in the global stage.

SeminarNeuroscienceRecording

NMC4 Short Talk: Multiscale and extended retrieval of associative memory structures in a cortical model of local-global inhibition balance

Tom Burns (he/him)
Okinawa Institute of Science and Technology
Dec 2, 2021

Inhibitory neurons take on many forms and functions. How this diversity contributes to memory function is not completely known. Previous formal studies indicate inhibition differentiated by local and global connectivity in associative memory networks functions to rescale the level of retrieval of excitatory assemblies. However, such studies lack biological details such as a distinction between types of neurons (excitatory and inhibitory), unrealistic connection schemas, and non-sparse assemblies. In this study, we present a rate-based cortical model where neurons are distinguished (as excitatory, local inhibitory, or global inhibitory), connected more realistically, and where memory items correspond to sparse excitatory assemblies. We use this model to study how local-global inhibition balance can alter memory retrieval in associative memory structures, including naturalistic and artificial structures. Experimental studies have reported inhibitory neurons and their sub-types uniquely respond to specific stimuli and can form sophisticated, joint excitatory-inhibitory assemblies. Our model suggests such joint assemblies, as well as a distribution and rebalancing of overall inhibition between two inhibitory sub-populations – one connected to excitatory assemblies locally and the other connected globally – can quadruple the range of retrieval across related memories. We identify a possible functional role for local-global inhibitory balance to, in the context of choice or preference of relationships, permit and maintain a broader range of memory items when local inhibition is dominant and conversely consolidate and strengthen a smaller range of memory items when global inhibition is dominant. This model therefore highlights a biologically-plausible and behaviourally-useful function of inhibitory diversity in memory.

SeminarNeuroscience

Neuronal diversity and expansion of the non-coding genome

Hynek Wichterle
Columbia University Irving Medical Center
Dec 1, 2021
SeminarNeuroscienceRecording

NMC4 Short Talk: Resilience through diversity: Loss of neuronal heterogeneity in epileptogenic human tissue impairs network resilience to sudden changes in synchrony

Scott Rich
Kremibl Brain Institute
Nov 30, 2021

A myriad of pathological changes associated with epilepsy, including the loss of specific cell types, improper expression of individual ion channels, and synaptic sprouting, can be recast as decreases in cell and circuit heterogeneity. In recent experimental work, we demonstrated that biophysical diversity is a key characteristic of human cortical pyramidal cells, and past theoretical work has shown that neuronal heterogeneity improves a neural circuit’s ability to encode information. Viewed alongside the fact that seizure is an information-poor brain state, these findings motivate the hypothesis that epileptogenesis can be recontextualized as a process where reduction in cellular heterogeneity renders neural circuits less resilient to seizure onset. By comparing whole-cell patch clamp recordings from layer 5 (L5) human cortical pyramidal neurons from epileptogenic and non-epileptogenic tissue, we present the first direct experimental evidence that a significant reduction in neural heterogeneity accompanies epilepsy. We directly implement experimentally-obtained heterogeneity levels in cortical excitatory-inhibitory (E-I) stochastic spiking network models. Low heterogeneity networks display unique dynamics typified by a sudden transition into a hyper-active and synchronous state paralleling ictogenesis. Mean-field analysis reveals a distinct mathematical structure in these networks distinguished by multi-stability. Furthermore, the mathematically characterized linearizing effect of heterogeneity on input-output response functions explains the counter-intuitive experimentally observed reduction in single-cell excitability in epileptogenic neurons. This joint experimental, computational, and mathematical study showcases that decreased neuronal heterogeneity exists in epileptogenic human cortical tissue, that this difference yields dynamical changes in neural networks paralleling ictogenesis, and that there is a fundamental explanation for these dynamics based in mathematically characterized effects of heterogeneity. These interdisciplinary results provide convincing evidence that biophysical diversity imbues neural circuits with resilience to seizure and a new lens through which to view epilepsy, the most common serious neurological disorder in the world, that could reveal new targets for clinical treatment.

SeminarNeuroscience

NeurotechEU Summit

Ms Vanessa Debiais Sainton, Prof. Staffan Holmin, Dr Mohsen Kaboli and Prof. Peter Hagoort
European Commission, Karolinska Institutet, BMW Group, Max Planck Institute for Psycholinguistics and Donders Institute
Nov 21, 2021

Our first NeurotechEU Summit will be fully digital and will take place on November 22th from 09:00 to 17:00 (CET). The final programme can be downloaded here. Hosted by the Karolinska Institutet, the summit will provide you an overview of our actions and achievements from the last year and introduce the priorities for the next year. You will also have the opportunity to attend the finals of the 3 minute thesis competition (3MT) organized by the Synapses Student Society, the student charter of NeurotechEU. Good luck to all the finalists: Lynn Le, Robin Noordhof, Adriana Gea González, Juan Carranza Valencia, Lea van Husen, Guoming (Tony) Man, Lilly Pitshaporn Leelaarporn, Cemre Su, Kaya Keleş, Ramazan Tarık Türksoy, Cristiana Tisca, Sara Bandiera, Irina Maria Vlad, Iulia Vadan, Borbála László, and David Papp! Don’t miss our keynote lecture, success stories and interactive discussions with Ms Vanessa Debiais Sainton (Head of Higher Education Unit, European Commission), Prof. Staffan Holmin (Karolinska Institutet), Dr Mohsen Kaboli (BMW Group, member of the NeurotechEU Associates Advisory Committee), and Prof. Peter Hagoort (Max Planck Institute for Psycholinguistics, Donders Institute). Would you like to use this opportunity to network? Please join our informal breakout sessions on Wonder.me at 11:40 CET. You will be able to move from one discussion group to another within 3 sessions: NeurotechEU ecosystem - The Associates Advisory Committee: Synergies in cross-sectoral initiatives Education next: Trans-European education and the European Universities Initiatives - Lessons learned thus far. Equality, diversity and inclusion at NeurotechEU: removing access barriers to education and developing a working, learning, and social environment where everyone is respected and valued. You can register for this free event at www.crowdcast.io/e/neurotecheu-summit

SeminarNeuroscienceRecording

Becoming what you smell: adaptive sensing in the olfactory system

Vijay Balasubramanian
University of Pennsylvania
Nov 2, 2021

I will argue that the circuit architecture of the early olfactory system provides an adaptive, efficient mechanism for compressing the vast space of odor mixtures into the responses of a small number of sensors. In this view, the olfactory sensory repertoire employs a disordered code to compress a high dimensional olfactory space into a low dimensional receptor response space while preserving distance relations between odors. The resulting representation is dynamically adapted to efficiently encode the changing environment of volatile molecules. I will show that this adaptive combinatorial code can be efficiently decoded by systematically eliminating candidate odorants that bind to silent receptors. The resulting algorithm for 'estimation by elimination' can be implemented by a neural network that is remarkably similar to the early olfactory pathway in the brain. Finally, I will discuss how diffuse feedback from the central brain to the bulb, followed by unstructured projections back to the cortex, can produce the convergence and divergence of the cortical representation of odors presented in shared or different contexts. Our theory predicts a relation between the diversity of olfactory receptors and the sparsity of their responses that matches animals from flies to humans. It also predicts specific deficits in olfactory behavior that should result from optogenetic manipulation of the olfactory bulb and cortex, and in some disease states.

SeminarNeuroscienceRecording

Predator-prey interactions: the avian visual sensory perspective

Esteban Fernandez
Purdue University
Oct 3, 2021

My research interests are centered on animal ecology, and more specifically include the following areas: visual ecology, behavioral ecology, and conservation biology, as well as the interactions between them. My research is question-driven. I answer my questions in a comprehensive manner, using a combination of empirical, theoretical, and comparative approaches. My model species are usually birds, but I have also worked with fish, mammals, amphibians, and insects. ​I was fortunate to enrich my education by attending Universities in different parts of the world. I did my undergraduate, specialized in ecology and biodiversity, at the "Universidad Nacional de Cordoba", Argentina. My Ph.D. was in animal ecology and conservation biology at the "Universidad Complutense de Madrid", Spain. My two post-docs were focused on behavioral ecology; the first one at University of Oxford (United Kingdom), and the second one at University of Minnesota (USA). I was an Assistant Professor at California State University Long Beach for almost six years. I am now a Full Professor of Biological Sciences at Purdue University.

SeminarNeuroscience

Themes and Variations: Circuit mechanisms of behavioral evolution

Vanessa Ruta
The Rockefeller University, New York, USA
Sep 28, 2021

Animals exhibit extraordinary variation in their behavior, yet little is known about the neural mechanisms that generate this diversity. My lab has been taking advantage of the rapid diversification of male courtship behaviors in Drosophila to glean insight into how evolution shapes the nervous system to generate species-specific behaviors. By translating neurogenetic tools from D. melanogaster to closely related Drosophila species, we have begun to directly compare the homologous neural circuits and pinpoint sites of adaptive change. Across species, P1 neurons serve as a conserved node in regulating male courtship: these neurons are selectively activated by the sensory cues indicative of an appropriate mate and their activation triggers enduring courtship displays. We have been examining how different sensory pathways converge onto P1 neurons to regulate a male’s state of arousal, honing his pursuit of a prospective partner. Moreover, by performing cross-species comparison of these circuits, we have begun to gain insight into how reweighting of sensory inputs to P1 neurons underlies species-specific mate recognition. Our results suggest how variation at flexible nodes within the nervous system can serve as a substrate for behavioral evolution, shedding light on the types of changes that are possible and preferable within brain circuits.

SeminarNeuroscienceRecording

Navigating academia as an LGBTQIA+ neuroscientist

ALBA Network
Aug 25, 2021

The ALBA Network is organizing a webinar on LGBTQIA+ inclusion and visibility. This special event will feature a panel of established scientists in brain research who identify as LGBTQIA+. Speaker will discuss their goals, challenges and successes while navigating academia as part of the LGBTQIA+ community. Registration is free but mandatory.

SeminarNeuroscienceRecording

Using opsin genes to see through the eyes of a fish

Karen Carleton
University of Maryland
Jul 25, 2021

Many animals are highly visual. They view their world through photoreceptors sensitive to different wavelengths of light. Animal survival and optimal behavioral performance may select for varying photoreceptor sensitivities depending on animal habitat or visual tasks. Our goal is to understand what drives visual diversity from both an evolutionary and molecular perspective. The group of more than 2000 cichlid fish species are an ideal system for examining such diversity. Cichlid are a colorful group of fresh water fishes. They have undergone adaptive radiation throughout Africa and the new world and occur in rivers and lakes that vary in water clarity. They are also behaviorally complex, having diverse behaviors for foraging, mate choice and even parental care. As a result, cichlids have highly diverse visual systems with cone sensitivities shifting by 30-90 nm between species. Although this group has seven cone opsin genes, individual species differ in which subset of the cone opsins they express. Some species show developmental shifts in opsin expression, switching from shorter to longer wavelength opsins through ontogeny. Other species modify that developmental program to express just one of the sets, causing the large sensitivity differences. Cichlids are therefore natural mutants for opsin expression. We have used cichlid diversity to explore the relationship between visual sensitivities and ecology. We have also exploited the genomic power of the cichlid system to identify genes and mutations that cause opsin expression shifts. Ultimately, our goal is to learn how different cichlid species see the world and whether differences matter. Behavioral experiments suggest they do indeed use color vision to survive and thrive. Cichlids therefore are a unique model for exploring how visual systems evolve in a changing world.

SeminarNeuroscienceRecording

How inclusive and diverse is non-invasive brain stimulation in the treatment of psychiatric disorders?

Indira Tendolkar
Radboud Univeristy
Jul 13, 2021

How inclusive and diverse is non-invasive brain stimulation in the treatment of psychiatric disorders?Indira Tendolkar, Donders Institute for Brain, Cognition and Behavior, Department of Psychiatry. Mental illness is associated with a huge socioeconomic burden worldwide, with annual costs only in the Netherlands of €22 billion. Over two decades of cognitive and affective neuroscience research with modern tools of neuroimaging and neurophysiology in humans have given us a wealth of information about neural circuits underlying the main symptom domains of psychiatric disorders and their remediation. Neuromodulation entails the alteration of these neural circuits through invasive (e.g., DBS) or non-invasive (e.g., TMS) techniques with the aim of improving symptoms and/or functions and enhancing neuroplasticity. In my talk, I will focus on neuromodulation studies using repetitive transcranial magnetic stimulation (rTMS) as a relatively safe, noninvasive method, which can be performed simultaneously with neurocognitive interventions. Using the examples of two chronifying mental illnesses, namely obsessive compulsive disorders and major depressive disorder (MDD), I will review the concept of "state dependent" effects of rTMS and highlight how simultaneous or sequential cognitive interventions could help optimize rTMS therapy by providing further control of ongoing neural activity in targeted neural networks. Hardly any attention has been paid to diversity aspects in the studies. By including studies from low- and middle income countries, I will discuss the potential of non-invasive brain stimulation from a transcultural perspective.

SeminarNeuroscience

Understanding Perceptual Priors with Massive Online Experiments

Nori Jacoby
Max Planck for empirical Aesthetics
Jul 13, 2021

One of the most important questions in psychology and neuroscience is understanding how the outside world maps to internal representations. Classical psychophysics approaches to this problem have a number of limitations: they mostly study low dimensional perpetual spaces, and are constrained in the number and diversity of participants and experiments. As ecologically valid perception is rich, high dimensional, contextual, and culturally dependent, these impediments severely bias our understanding of perceptual representations. Recent technological advances—the emergence of so-called “Virtual Labs”— can significantly contribute toward overcoming these barriers. Here I present a number of specific strategies that my group has developed in order to probe representations across a number of dimensions. 1) Massive online experiments can increase significantly the amount of participants and experiments that can be carried out in a single study, while also significantly diversifying the participant pool. We have developed a platform, PsyNet, that enables “experiments as code,” whereby the orchestration of computer servers, recruiting, compensation of participants, and data management is fully automated and every experiment can be fully replicated with one command line. I will demonstrate how PsyNet allows us to recruit thousands of participants for each study with a large number of control experimental conditions, significantly increasing our understanding of auditory perception. 2) Virtual lab methods also enable us to run experiments that are nearly impossible in a traditional lab setting. I will demonstrate our development of adaptive sampling, a set of behavioural methods that combine machine learning sampling techniques (Monte Carlo Markov Chains) with human interactions and allow us to create high-dimensional maps of perceptual representations with unprecedented resolution. 3) Finally, I will demonstrate how the aforementioned methods can be applied to the study of perceptual priors in both audition and vision, with a focus on our work in cross-cultural research, which studies how perceptual priors are influenced by experience and culture in diverse samples of participants from around the world.

SeminarNeuroscience

Understanding neural dynamics in high dimensions across multiple timescales: from perception to motor control and learning

Surya Ganguli
Neural Dynamics & Computation Lab, Stanford University
Jun 16, 2021

Remarkable advances in experimental neuroscience now enable us to simultaneously observe the activity of many neurons, thereby providing an opportunity to understand how the moment by moment collective dynamics of the brain instantiates learning and cognition. However, efficiently extracting such a conceptual understanding from large, high dimensional neural datasets requires concomitant advances in theoretically driven experimental design, data analysis, and neural circuit modeling. We will discuss how the modern frameworks of high dimensional statistics and deep learning can aid us in this process. In particular we will discuss: (1) how unsupervised tensor component analysis and time warping can extract unbiased and interpretable descriptions of how rapid single trial circuit dynamics change slowly over many trials to mediate learning; (2) how to tradeoff very different experimental resources, like numbers of recorded neurons and trials to accurately discover the structure of collective dynamics and information in the brain, even without spike sorting; (3) deep learning models that accurately capture the retina’s response to natural scenes as well as its internal structure and function; (4) algorithmic approaches for simplifying deep network models of perception; (5) optimality approaches to explain cell-type diversity in the first steps of vision in the retina.

SeminarNeuroscienceRecording

A fresh look at the bird retina

Karin Dedek
University of Oldenburg
May 30, 2021

I am working on the vertebrate retina, with a main focus on the mouse and bird retina. Currently my work is focused on three major topics: Functional and molecular analysis of electrical synapses in the retina Circuitry and functional role of retinal interneurons: horizontal cells Circuitry for light-dependent magnetoreception in the bird retina Electrical synapses Electrical synapses (gap junctions) permit fast transmission of electrical signals and passage of metabolites by means of channels, which directly connect the cytoplasm of adjoining cells. A functional gap junction channel consists of two hemichannels (one provided by each of the cells), each comprised of a set of six protein subunits, termed connexins. These building blocks exist in a variety of different subtypes, and the connexin composition determines permeability and gating properties of a gap junction channel, thereby enabling electrical synapses to meet a diversity of physiological requirements. In the retina, various connexins are expressed in different cell types. We study the cellular distribution of different connexins as well as the modulation induced by transmitter action or change of ambient light levels, which leads to altered electrical coupling properties. We are also interested in exploiting them as therapeutic avenue for retinal degeneration diseases. Horizontal cells Horizontal cells receive excitatory input from photoreceptors and provide feedback inhibition to photoreceptors and feedforward inhibition to bipolar cells. Because of strong electrical coupling horizontal cells integrate the photoreceptor input over a wide area and are thought to contribute to the antagonistic organization of bipolar cell and ganglion cell receptive fields and to tune the photoreceptor–bipolar cell synapse with respect to the ambient light conditions. However, the extent to which this influence shapes retinal output is unclear, and we aim to elucidate the functional importance of horizontal cells for retinal signal processing by studying various transgenic mouse models. Retinal circuitry for light-dependent magnetoreception in the bird We are studying which neuronal cell types and pathways in the bird retina are involved in the processing of magnetic signals. Likely, magnetic information is detected in cryptochrome-expressing photoreceptors and leaves the retina through ganglion cell axons that project via the thalamofugal pathway to Cluster N, a part of the visual wulst essential for the avian magnetic compass. Thus, we aim to elucidate the synaptic connections and retinal signaling pathways from putatively magnetosensitive photoreceptors to thalamus-projecting ganglion cells in migratory birds using neuroanatomical and electrophysiological techniques.

SeminarNeuroscience

The neuroecological context of group living

Sean O'Donnell
Drexel University
May 3, 2021

Dr. Sean O'Donnell is a Professor of Biodiversity Earth & Environmental Science at Drexel University, USA. His neuroscience research focuses on how brain structure plasticity & evolution are affected by social behavior, mainly using insects as models. He is also interested in tropical ecology & thermal physiology. He conducts field research & teaches field courses in Central & South America, as well as in the Negev Desert in Israel.

SeminarNeuroscienceRecording

Donders Inclusion Seminar: Dr. Silvy Collin

Silvy Collin
Tilburg University
Apr 20, 2021

With the Donders Inclusion Seminars, we celebrate diversity. Please join us on Apr. 21st 2021 at 15.00 (CET) as we next welcome Dr. Silvy Collin of Tilburg University on Crowdcast. Her seminar is entitled "Schemas and schema-mediated memory". To read the abstract and register for the event visit: https://www.crowdcast.io/e/donders-inclusion-3

SeminarNeuroscienceRecording

The Blurry Beginnings: What nature’s strangest eyes tell us about the evolution of vision

Michael Bok
Lund University
Apr 11, 2021

Our study reveals the most elaborate opsin expression patterns ever described in any animal eye. In mantis shrimp, a pugnacious crustacean renowned for its visual sophistication, we found unexpected retinal expression patterns highlighting the potential for cryptic photoreceptor functional diversity, including single photoreceptors that coexpress opsins from different spectral clades and a single opsin with a putative nonvisual function important in color vision. This study demonstrates the evolutionary potential for increasing visual system functional diversity through opsin gene duplication and diversification, as well as changes in patterns of gene coexpression among photoreceptors and retinula cells. These results have significant implications for the function of other visual systems, particularly in arthropods where large numbers of retinally expressed opsins have been documented.

ePoster

A family of synaptic plasticity rules based on spike times produces a diversity of triplet motifs in recurrent networks

Claudia Cusseddu, Dylan Festa, Christoph Miehl, Julijana Gjorgjieva

Bernstein Conference 2024

ePoster

Novelty modulates neural coding and reveals functional diversity within excitatory and inhibitory populations in the visual cortex

COSYNE 2022

ePoster

Novelty modulates neural coding and reveals functional diversity within excitatory and inhibitory populations in the visual cortex

COSYNE 2022

ePoster

Synaptic diversity naturally arises from neural decoding of heterogeneous populations

COSYNE 2022

ePoster

Synaptic diversity naturally arises from neural decoding of heterogeneous populations

COSYNE 2022

ePoster

Anatomo-functional diversity of medullary V2a neurons for limb and cranial nerve-mediated movements

Alexis d'Humières, Mathilde Gonin, Guillaume Le Goc, Giovanni Usseglio, Edwin Gatier, Julien Bouvier

FENS Forum 2024

ePoster

Astrocyte diversity across mammals: A comparative analysis on distribution and single-cell morphology

Caterina Ciani, Giulio Pistorio, Marika Mearelli, Laura Pinfildi, Simone Cauzzo, Ester Bruno, Sun Zhenyang, Fabio Anzà, Julio Hechavarria, Jean-Marie Graic, Maurizio De Pittà, Chiara Magliaro, Carmen Falcone

FENS Forum 2024

ePoster

Automatic classification of the hippocampal neuronal diversity from large-scale extracellular recordings

Pablo Abad Pérez, Raquel Garcia Hernandez, Andrea Gallardo, Marta Picco, Robert Machold, Jorge Brotons-Mas, Bernardo Rudy, György Buzsáki, Manuel Valero

FENS Forum 2024

ePoster

Beyond academic kindness: A multi-stakeholder approach to advance equity, diversity, and inclusion in neuroscience

Karin Grasenick, Željka Krsnik

FENS Forum 2024

ePoster

Brazilian Neurobiodiversity Network – Cetacean Brain Collection Initiative for Morphological Research

Kamilla Souza, Heitor Mynssen, Vera M.F da Silva, Vanessa Lanes Ribeiro, Miriam Marmontel, Gabriel Melo-Santos, Vitor Luz Carvalho, Khallil Taverna Chaim, Milton Marcondes, Flávio Lima, Haydée Andrade-Cunha, Nina Patzke, Bruno Mota

FENS Forum 2024

ePoster

Cellular and circuit diversity within spiny projection neuron populations in the postnatal striatum arises from distinct embryonic progenitor pools

Jack Gordon, Yana van de Poll, Tommas Jan Ellender

FENS Forum 2024

ePoster

Diversity and connectivity of principal neurons in the lateral and basal nuclei of the mouse amygdala

Zsófia Reéb, Dániel Magyar, Filippo Weisz, Zsuzsanna Fekete, Kinga Müller, Attila Vikór, Zoltán Péterfi, Tibor Andrási, Judit M. Veres, Norbert Hájos

FENS Forum 2024

ePoster

Diversity of cortical spindles in rodents: A role for experience encoding?

Annie Durand-Marandi, Yuqi Li, Ole Paulsen, Audrey Hay

FENS Forum 2024

ePoster

The diversity of tanycytes: Brain-wide connectivity analysis from neurons to tanycytes

Vanessa Neve, Helge Müller-Fielitz, Martin K. Schwarz, Markus Schwaninger

FENS Forum 2024

ePoster

Does volized mouse become more romantic? Transcriptional lability of brain oxytocin receptor (Oxtr) generates diversity in brain Oxtr distribution and social behaviors

Qi Zhang

FENS Forum 2024

ePoster

Exploring axon-carrying dendrite diversity in mouse and human hippocampal interneurons

Maximilian Achilles, Tobias Herbinger, Maren Engelhardt, Christian Thome

FENS Forum 2024

ePoster

Lipid composition diversity of the human brain white matter tracts

Marina Zavolskova, Olga Efimova, Gleb Vladimirov, Elena Stekolshchikova, Philipp Khaitovich

FENS Forum 2024

ePoster

Microglia morphophysiological diversity and its implications for the CNS after peripheral nerve injury

Andres Vidal-Itriago, Rowan A Radford, Pradeep Manuneedhi Cholan, Cindy Maurel, Albert Lee, Roger S Chung, Manuel B Graeber, Marco Morsch

FENS Forum 2024

ePoster

Neuronal diversity in the anteroventral cochlear nucleus of Mongolian gerbil

Sabina Nowakowska, Jana Henseler, Antoine Huet

FENS Forum 2024

ePoster

Short-term plasticity profiles diversity of excitatory inputs on cerebellar nuclei neurons

Anthime Perrot, Onesanu Alice, Philippe Isope, Frederic Doussau, Antoine Valera

FENS Forum 2024

ePoster

A single cell atlas to unveil the diversity of mouse cerebellar astrocytes: Insights into their molecular identities, development, and functions

Annalisa Buffo, Annalisa Cerrato, Giacomo Turrini, Ludovic Telley

FENS Forum 2024

ePoster

Unravelling the functional diversity of granule cells in the cerebellar cortex

Christopher Small, Theo Rossi, Jerome Wandhammer, Alice Basile, Fred Doussau, Philippe Isope

FENS Forum 2024