Evidence
evidence accumulation
A neural mechanism for terminating decisions
The brain makes decisions by accumulating evidence until there is enough to stop and choose. Neural mechanisms of evidence accumulation are well established in association cortex, but the site and mechanism of termination is unknown. Here, we elucidate a mechanism for termination by neurons in the primate superior colliculus. We recorded simultaneously from neurons in lateral intraparietal cortex (LIP) and the superior colliculus (SC) while monkeys made perceptual decisions, reported by eye-movements. Single-trial analyses revealed distinct dynamics: LIP tracked the accumulation of evidence on each decision, and SC generated one burst at the end of the decision, occasionally preceded by smaller bursts. We hypothesized that the bursts manifest a threshold mechanism applied to LIP activity to terminate the decision. Focal inactivation of SC produced behavioral effects diagnostic of an impaired threshold sensor, requiring a stronger LIP signal to terminate a decision. The results reveal the transformation from deliberation to commitment.
From Computation to Large-scale Neural Circuitry in Human Belief Updating
Many decisions under uncertainty entail dynamic belief updating: multiple pieces of evidence informing about the state of the environment are accumulated across time to infer the environmental state, and choose a corresponding action. Traditionally, this process has been conceptualized as a linear and perfect (i.e., without loss) integration of sensory information along purely feedforward sensory-motor pathways. Yet, natural environments can undergo hidden changes in their state, which requires a non-linear accumulation of decision evidence that strikes a tradeoff between stability and flexibility in response to change. How this adaptive computation is implemented in the brain has remained unknown. In this talk, I will present an approach that my laboratory has developed to identify evidence accumulation signatures in human behavior and neural population activity (measured with magnetoencephalography, MEG), across a large number of cortical areas. Applying this approach to data recorded during visual evidence accumulation tasks with change-points, we find that behavior and neural activity in frontal and parietal regions involved in motor planning exhibit hallmarks signatures of adaptive evidence accumulation. The same signatures of adaptive behavior and neural activity emerge naturally from simulations of a biophysically detailed model of a recurrent cortical microcircuit. The MEG data further show that decision dynamics in parietal and frontal cortex are mirrored by a selective modulation of the state of early visual cortex. This state modulation is (i) specifically expressed in the alpha frequency-band, (ii) consistent with feedback of evolving belief states from frontal cortex, (iii) dependent on the environmental volatility, and (iv) amplified by pupil-linked arousal responses during evidence accumulation. Together, our findings link normative decision computations to recurrent cortical circuit dynamics and highlight the adaptive nature of decision-related long-range feedback processing in the brain.
Neural circuits for novel choices and for choice speed and accuracy changes in macaques
While most experimental tasks aim at isolating simple cognitive processes to study their neural bases, naturalistic behaviour is often complex and multidimensional. I will present two studies revealing previously uncharacterised neural circuits for decision-making in macaques. This was possible thanks to innovative experimental tasks eliciting sophisticated behaviour, bridging the human and non-human primate research traditions. Firstly, I will describe a specialised medial frontal circuit for novel choice in macaques. Traditionally, monkeys receive extensive training before neural data can be acquired, while a hallmark of human cognition is the ability to act in novel situations. I will show how this medial frontal circuit can combine the values of multiple attributes for each available novel item on-the-fly to enable efficient novel choices. This integration process is associated with a hexagonal symmetry pattern in the BOLD response, consistent with a grid-like representation of the space of all available options. We prove the causal role played by this circuit by showing that focussed transcranial ultrasound neuromodulation impairs optimal choice based on attribute integration and forces the subjects to default to a simpler heuristic decision strategy. Secondly, I will present an ongoing project addressing the neural mechanisms driving behaviour shifts during an evidence accumulation task that requires subjects to trade speed for accuracy. While perceptual decision-making in general has been thoroughly studied, both cognitively and neurally, the reasons why speed and/or accuracy are adjusted, and the associated neural mechanisms, have received little attention. We describe two orthogonal dimensions in which behaviour can vary (traditional speed-accuracy trade-off and efficiency) and we uncover independent neural circuits concerned with changes in strategy and fluctuations in the engagement level. The former involves the frontopolar cortex, while the latter is associated with the insula and a network of subcortical structures including the habenula.
Functional ultrasound imaging during behavior
The dream of a systems neuroscientist is to be able to unravel neural mechanisms that give rise to behavior. It is increasingly appreciated that behavior involves the concerted distributed activity of multiple brain regions so the focus on single or few brain areas might hinder our understanding. There have been quite a few technological advancements in this domain. Functional ultrasound imaging (fUSi) is an emerging technique that allows us to measure neural activity from medial frontal regions down to subcortical structures up to a depth of 20 mm. It is a method for imaging transient changes in cerebral blood volume (CBV), which are proportional to neural activity changes. It has excellent spatial resolution (~100 μm X 100 μm X 400 μm); its temporal resolution can go down to 100 milliseconds. In this talk, I will present its use in two model systems: marmoset monkeys and rats. In marmoset monkeys, we used it to delineate a social – vocal network involved in vocal communication while in rats, we used it to gain insights into brain wide networks involved in evidence accumulation based decision making. fUSi has the potential to provide an unprecedented access to brain wide dynamics in freely moving animals performing complex behavioral tasks.
NMC4 Short Talk: Transient neuronal suppression for exploitation of new sensory evidence
Decision-making in noisy environments with constant sensory evidence involves integrating sequentially-sampled evidence, a strategy formalized by diffusion models which is supported by decades behavioral and neural findings. By contrast, it is unknown whether this strategy is also used during decision-making when the underlying sensory evidence is expected to change. Here, we trained monkeys to identify the dominant color of a dynamically refreshed checkerboard pattern that doesn't become informative until after a variable delay. Animals' behavioral responses were briefly suppressed after an abrupt change in evidence, and many neurons in the frontal eye field displayed a corresponding dip in activity at this time, similar to the dip frequently observed after stimulus onset. Generalized drift-diffusion models revealed that behavior and neural activity were consistent with a brief suppression of motor output without a change in evidence accumulation itself, in contrast to the popular belief that evidence accumulation is paused or reset. These results suggest that a brief interruption in motor preparation is an important strategy for dealing with changing evidence during perceptual decision making.
Deciding to stop deciding: A cortical-subcortical circuit for forming and terminating a decision
The neurobiology of decision-making is informed by neurons capable of representing information over time scales of seconds. Such neurons were initially characterized in studies of spatial working memory, motor planning (e.g., Richard Andersen lab) and spatial attention. For decision-making, such neurons emit graded spike rates, that represent the accumulated evidence for or against a choice. They establish the conduit between the formation of the decision and its completion, usually in the form of a commitment to an action, even if provisional. Indeed, many decisions appear to arise through an accumulation of noisy samples of evidence to a terminating threshold, or bound. Previous studies show that single neurons in the lateral intraparietal area (LIP) represent the accumulation of evidence when monkeys make decisions about the direction of random dot motion (RDM) and express their decision with a saccade to the neuron’s preferred target. The mechanism of termination (the bound) is elusive. LIP is interconnected with other brain regions that also display decision-related activity. Whether these areas play roles in the decision process that are similar to or fundamentally different from that of LIP is unclear. I will present new unpublished experiments that begin to resolve these issues by recording from populations of neurons simultaneously in LIP and one of its primary targets, the superior colliculus (SC), while monkeys make difficult perceptual decisions.
Choosing, fast and slow: Implications of prioritized-sampling models for understanding automaticity and control
The idea that behavior results from a dynamic interplay between automatic and controlled processing underlies much of decision science, but has also generated considerable controversy. In this talk, I will highlight behavioral and neural data showing how recently-developed computational models of decision making can be used to shed new light on whether, when, and how decisions result from distinct processes operating at different timescales. Across diverse domains ranging from altruism to risky choice biases and self-regulation, our work suggests that a model of prioritized attentional sampling and evidence accumulation may provide an alternative explanation for many phenomena previously interpreted as supporting dual process models of choice. However, I also show how some features of the model might be taken as support for specific aspects of dual-process models, providing a way to reconcile conflicting accounts and generating new predictions and insights along the way.
The recent history of the replication crisis in psychology & how Open Science can be part of the solution
In recent years, more and more evidence has accumulated showing that many studies in psychological research cannot be replicated, effects are often overestimated, and little is publicly known about unsuccessful studies. What are the mechanisms behind this crisis? In this talk, I will explain how we got there and why it is still difficult to break free from the current system. I will further explain which role Open Science plays within the replication crisis and how it can help to improve science. This might sound like a pessimistic, negative talk, but I will end it on a positive note, I promise!
Neural coding in the auditory cortex - "Emergent Scientists Seminar Series
Dr Jennifer Lawlor Title: Tracking changes in complex auditory scenes along the cortical pathway Complex acoustic environments, such as a busy street, are characterised by their everchanging dynamics. Despite their complexity, listeners can readily tease apart relevant changes from irrelevant variations. This requires continuously tracking the appropriate sensory evidence while discarding noisy acoustic variations. Despite the apparent simplicity of this perceptual phenomenon, the neural basis of the extraction of relevant information in complex continuous streams for goal-directed behavior is currently not well understood. As a minimalistic model for change detection in complex auditory environments, we designed broad-range tone clouds whose first-order statistics change at a random time. Subjects (humans or ferrets) were trained to detect these changes.They were faced with the dual-task of estimating the baseline statistics and detecting a potential change in those statistics at any moment. To characterize the extraction and encoding of relevant sensory information along the cortical hierarchy, we first recorded the brain electrical activity of human subjects engaged in this task using electroencephalography. Human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. To further this investigation, we performed a series of electrophysiological recordings in the primary auditory cortex (A1), secondary auditory cortex (PEG) and frontal cortex (FC) of the fully trained behaving ferret. A1 neurons exhibited strong onset responses and change-related discharges specific to neuronal tuning. PEG population showed reduced onset-related responses, but more categorical change-related modulations. Finally, a subset of FC neurons (dlPFC/premotor) presented a generalized response to all change-related events only during behavior. We show using a Generalized Linear Model (GLM) that the same subpopulation in FC encodes sensory and decision signals, suggesting that FC neurons could operate conversion of sensory evidence to perceptual decision. All together, these area-specific responses suggest a behavior-dependent mechanism of sensory extraction and generalization of task-relevant event. Aleksandar Ivanov Title: How does the auditory system adapt to different environments: A song of echoes and adaptation
Confidence-guided waiting as an evidence accumulation process
COSYNE 2022
Divisive normalization shapes evidence accumulation during dynamic decision-making
COSYNE 2022
Identifying changes in behavioral strategy from neural responses during evidence accumulation
COSYNE 2022
Identifying changes in behavioral strategy from neural responses during evidence accumulation
COSYNE 2022
Distinct mechanisms for evidence accumulation and choice memory explain diverse neuronal dynamics
COSYNE 2023
A generalized Weber’s law reveals behaviorally limiting slow noise in evidence accumulation
COSYNE 2023
Large-scale geometry of cortical dynamics underlying evidence accumulation and short-term memory
COSYNE 2025
Neural correlates of evidence accumulation in an expanded judgement task with variable temporal gaps between samples
FENS Forum 2024
NMDAR blockade impairs cognitive control necessary for evidence accumulation and short-term memory
FENS Forum 2024
Strategic decision bias relates to altered parietal evidence accumulation and scales with task-evoked, but not baseline, neuromodulator activity
FENS Forum 2024
Visual evidence accumulation in Drosophila melanogaster
FENS Forum 2024
Recovering Neurocognitive Evidence Accumulation Models of Response Inhibition with Invertible Neural Networks
Neuromatch 5