← Back

Evidence

Topic spotlight
TopicWorld Wide

evidence accumulation

Discover seminars, jobs, and research tagged with evidence accumulation across World Wide.
21 curated items12 ePosters9 Seminars
Updated about 3 years ago
21 items · evidence accumulation
21 results
SeminarNeuroscienceRecording

A neural mechanism for terminating decisions

Gabriel Stine
Shadlen Lab, Columbia University
Sep 20, 2022

The brain makes decisions by accumulating evidence until there is enough to stop and choose. Neural mechanisms of evidence accumulation are well established in association cortex, but the site and mechanism of termination is unknown. Here, we elucidate a mechanism for termination by neurons in the primate superior colliculus. We recorded simultaneously from neurons in lateral intraparietal cortex (LIP) and the superior colliculus (SC) while monkeys made perceptual decisions, reported by eye-movements. Single-trial analyses revealed distinct dynamics: LIP tracked the accumulation of evidence on each decision, and SC generated one burst at the end of the decision, occasionally preceded by smaller bursts. We hypothesized that the bursts manifest a threshold mechanism applied to LIP activity to terminate the decision. Focal inactivation of SC produced behavioral effects diagnostic of an impaired threshold sensor, requiring a stronger LIP signal to terminate a decision. The results reveal the transformation from deliberation to commitment.

SeminarNeuroscience

From Computation to Large-scale Neural Circuitry in Human Belief Updating

Tobias Donner
University Medical Center Hamburg-Eppendorf
Jun 28, 2022

Many decisions under uncertainty entail dynamic belief updating: multiple pieces of evidence informing about the state of the environment are accumulated across time to infer the environmental state, and choose a corresponding action. Traditionally, this process has been conceptualized as a linear and perfect (i.e., without loss) integration of sensory information along purely feedforward sensory-motor pathways. Yet, natural environments can undergo hidden changes in their state, which requires a non-linear accumulation of decision evidence that strikes a tradeoff between stability and flexibility in response to change. How this adaptive computation is implemented in the brain has remained unknown. In this talk, I will present an approach that my laboratory has developed to identify evidence accumulation signatures in human behavior and neural population activity (measured with magnetoencephalography, MEG), across a large number of cortical areas. Applying this approach to data recorded during visual evidence accumulation tasks with change-points, we find that behavior and neural activity in frontal and parietal regions involved in motor planning exhibit hallmarks signatures of adaptive evidence accumulation. The same signatures of adaptive behavior and neural activity emerge naturally from simulations of a biophysically detailed model of a recurrent cortical microcircuit. The MEG data further show that decision dynamics in parietal and frontal cortex are mirrored by a selective modulation of the state of early visual cortex. This state modulation is (i) specifically expressed in the alpha frequency-band, (ii) consistent with feedback of evolving belief states from frontal cortex, (iii) dependent on the environmental volatility, and (iv) amplified by pupil-linked arousal responses during evidence accumulation. Together, our findings link normative decision computations to recurrent cortical circuit dynamics and highlight the adaptive nature of decision-related long-range feedback processing in the brain.

SeminarNeuroscience

Neural circuits for novel choices and for choice speed and accuracy changes in macaques

Alessandro Bongioanni
University of Oxford
Feb 3, 2022

While most experimental tasks aim at isolating simple cognitive processes to study their neural bases, naturalistic behaviour is often complex and multidimensional. I will present two studies revealing previously uncharacterised neural circuits for decision-making in macaques. This was possible thanks to innovative experimental tasks eliciting sophisticated behaviour, bridging the human and non-human primate research traditions. Firstly, I will describe a specialised medial frontal circuit for novel choice in macaques. Traditionally, monkeys receive extensive training before neural data can be acquired, while a hallmark of human cognition is the ability to act in novel situations. I will show how this medial frontal circuit can combine the values of multiple attributes for each available novel item on-the-fly to enable efficient novel choices. This integration process is associated with a hexagonal symmetry pattern in the BOLD response, consistent with a grid-like representation of the space of all available options. We prove the causal role played by this circuit by showing that focussed transcranial ultrasound neuromodulation impairs optimal choice based on attribute integration and forces the subjects to default to a simpler heuristic decision strategy. Secondly, I will present an ongoing project addressing the neural mechanisms driving behaviour shifts during an evidence accumulation task that requires subjects to trade speed for accuracy. While perceptual decision-making in general has been thoroughly studied, both cognitively and neurally, the reasons why speed and/or accuracy are adjusted, and the associated neural mechanisms, have received little attention. We describe two orthogonal dimensions in which behaviour can vary (traditional speed-accuracy trade-off and efficiency) and we uncover independent neural circuits concerned with changes in strategy and fluctuations in the engagement level. The former involves the frontopolar cortex, while the latter is associated with the insula and a network of subcortical structures including the habenula.

SeminarNeuroscienceRecording

Deciding to stop deciding: A cortical-subcortical circuit for forming and terminating a decision

Michael Shadlen
Columbia University
Jun 9, 2021

The neurobiology of decision-making is informed by neurons capable of representing information over time scales of seconds. Such neurons were initially characterized in studies of spatial working memory, motor planning (e.g., Richard Andersen lab) and spatial attention. For decision-making, such neurons emit graded spike rates, that represent the accumulated evidence for or against a choice. They establish the conduit between the formation of the decision and its completion, usually in the form of a commitment to an action, even if provisional. Indeed, many decisions appear to arise through an accumulation of noisy samples of evidence to a terminating threshold, or bound. Previous studies show that single neurons in the lateral intraparietal area (LIP) represent the accumulation of evidence when monkeys make decisions about the direction of random dot motion (RDM) and express their decision with a saccade to the neuron’s preferred target. The mechanism of termination (the bound) is elusive. LIP is interconnected with other brain regions that also display decision-related activity. Whether these areas play roles in the decision process that are similar to or fundamentally different from that of LIP is unclear. I will present new unpublished experiments that begin to resolve these issues by recording from populations of neurons simultaneously in LIP and one of its primary targets, the superior colliculus (SC), while monkeys make difficult perceptual decisions.

SeminarPsychology

The recent history of the replication crisis in psychology & how Open Science can be part of the solution

Julia Beitner
Goethe University Frankfurt
Apr 14, 2021

In recent years, more and more evidence has accumulated showing that many studies in psychological research cannot be replicated, effects are often overestimated, and little is publicly known about unsuccessful studies. What are the mechanisms behind this crisis? In this talk, I will explain how we got there and why it is still difficult to break free from the current system. I will further explain which role Open Science plays within the replication crisis and how it can help to improve science. This might sound like a pessimistic, negative talk, but I will end it on a positive note, I promise!

SeminarNeuroscience

Neural coding in the auditory cortex - "Emergent Scientists Seminar Series

Dr Jennifer Lawlor & Mr Aleksandar Ivanov
Johns Hopkins University / University of Oxford
Jul 16, 2020

Dr Jennifer Lawlor Title: Tracking changes in complex auditory scenes along the cortical pathway Complex acoustic environments, such as a busy street, are characterised by their everchanging dynamics. Despite their complexity, listeners can readily tease apart relevant changes from irrelevant variations. This requires continuously tracking the appropriate sensory evidence while discarding noisy acoustic variations. Despite the apparent simplicity of this perceptual phenomenon, the neural basis of the extraction of relevant information in complex continuous streams for goal-directed behavior is currently not well understood. As a minimalistic model for change detection in complex auditory environments, we designed broad-range tone clouds whose first-order statistics change at a random time. Subjects (humans or ferrets) were trained to detect these changes.They were faced with the dual-task of estimating the baseline statistics and detecting a potential change in those statistics at any moment. To characterize the extraction and encoding of relevant sensory information along the cortical hierarchy, we first recorded the brain electrical activity of human subjects engaged in this task using electroencephalography. Human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. To further this investigation, we performed a series of electrophysiological recordings in the primary auditory cortex (A1), secondary auditory cortex (PEG) and frontal cortex (FC) of the fully trained behaving ferret. A1 neurons exhibited strong onset responses and change-related discharges specific to neuronal tuning. PEG population showed reduced onset-related responses, but more categorical change-related modulations. Finally, a subset of FC neurons (dlPFC/premotor) presented a generalized response to all change-related events only during behavior. We show using a Generalized Linear Model (GLM) that the same subpopulation in FC encodes sensory and decision signals, suggesting that FC neurons could operate conversion of sensory evidence to perceptual decision. All together, these area-specific responses suggest a behavior-dependent mechanism of sensory extraction and generalization of task-relevant event. Aleksandar Ivanov Title: How does the auditory system adapt to different environments: A song of echoes and adaptation

ePoster

Confidence-guided waiting as an evidence accumulation process

COSYNE 2022

ePoster

Divisive normalization shapes evidence accumulation during dynamic decision-making

COSYNE 2022

ePoster

Identifying changes in behavioral strategy from neural responses during evidence accumulation

COSYNE 2022

ePoster

Identifying changes in behavioral strategy from neural responses during evidence accumulation

COSYNE 2022

ePoster

Distinct mechanisms for evidence accumulation and choice memory explain diverse neuronal dynamics

Thomas Luo, Carlos Brody, Timothy Kim, Brian DePasquale*

COSYNE 2023

ePoster

A generalized Weber’s law reveals behaviorally limiting slow noise in evidence accumulation

Victoria Shavina, Alex Pouget, Valerio Mante

COSYNE 2023

ePoster

Large-scale geometry of cortical dynamics underlying evidence accumulation and short-term memory

Renan Costa, Peter Salvino, Jiaqi Luo, Shawna Ibarra, Lucas Pinto

COSYNE 2025

ePoster

Neural correlates of evidence accumulation in an expanded judgement task with variable temporal gaps between samples

Elisabet Pares Pujolras, Simon Kelly

FENS Forum 2024

ePoster

NMDAR blockade impairs cognitive control necessary for evidence accumulation and short-term memory

Alexis Cerván, Tiffany Oña-Jodar, Genís Prat-Ortega, Josep Dalmau, Albert Compte, Jaime de la Rocha, Carles Sindreu

FENS Forum 2024

ePoster

Strategic decision bias relates to altered parietal evidence accumulation and scales with task-evoked, but not baseline, neuromodulator activity

Stijn Nuiten, Jan Willem de Gee, Jasper Zantvoord, Philipp Sterzer, Johannes Fahrenfort, Simon van Gaal

FENS Forum 2024

ePoster

Visual evidence accumulation in Drosophila melanogaster

Matteo Bruzzone, Giulio Maria Menti, Marco Dal Maschio, Aram Megighian

FENS Forum 2024

ePoster

Recovering Neurocognitive Evidence Accumulation Models of Response Inhibition with Invertible Neural Networks

Konrad Mikalauskas

Neuromatch 5