Granule Cells
granule cells
Stem cell approaches to understand acquired and genetic epilepsies
The Hsieh lab focuses on the mechanisms that promote neural stem cell self-renewal and differentiation in embryonic and adult brain. Using mouse models, video-EEG monitoring, viral techniques, and imaging/electrophysiological approaches, we elucidated many of the key transcriptional/epigenetic regulators of adult neurogenesis and showed aberrant new neuron integration in adult rodent hippocampus contribute to circuit disruption and seizure development. Building on this work, I will present our recent studies describing how GABA-mediated Ca2+ activity regulates the production of aberrant adult-born granule cells. In a new direction of my laboratory, we are using human induced pluripotent stem cells and brain organoid models as approaches to understand brain development and disease. Mutations in one gene, Aristaless-related homeobox (ARX), are of considerable interest since they are known to cause a common spectrum of neurodevelopmental disorders including epilepsy, autism, and intellectual disability. We have generated cortical and subpallial organoids from patients with poly-alanine expansion mutations in ARX. To understand the nature of ARX mutations in the organoid system, we are currently performing cellular, molecular, and physiological analyses. I will present these data to gain a comprehensive picture of the effect of ARX mutations in brain development. Since we do not understand how human brain development is affected by ARX mutations that contribute to epilepsy, we believe these studies will allow us to understand the mechanism of pathogenesis of ARX mutations, which has the potential to impact the diagnosis and care of patients.
Capacitance clamp - artificial capacitance in biological neurons via dynamic clamp
A basic time scale in neural dynamics from single cells to the network level is the membrane time constant - set by a neuron’s input resistance and its capacitance. Interestingly, the membrane capacitance appears to be more dynamic than previously assumed with implications for neural function and pathology. Indeed, altered membrane capacitance has been observed in reaction to physiological changes like neural swelling, but also in ageing and Alzheimer's disease. Importantly, according to theory, even small changes of the capacitance can affect neuronal signal processing, e.g. increase network synchronization or facilitate transmission of high frequencies. In experiment, robust methods to modify the capacitance of a neuron have been missing. Here, we present the capacitance clamp - an electrophysiological method for capacitance control based on an unconventional application of the dynamic clamp. In its original form, dynamic clamp mimics additional synaptic or ionic conductances by injecting their respective currents. Whereas a conductance directly governs a current, the membrane capacitance determines how fast the voltage responds to a current. Accordingly, capacitance clamp mimics an altered capacitance by injecting a dynamic current that slows down or speeds up the voltage response (Fig 1 A). For the required dynamic current, the experimenter only has to specify the original cell and the desired target capacitance. In particular, capacitance clamp requires no detailed model of present conductances and thus can be applied in every excitable cell. To validate the capacitance clamp, we performed numerical simulations of the protocol and applied it to modify the capacitance of cultured neurons. First, we simulated capacitance clamp in conductance based neuron models and analysed impedance and firing frequency to verify the altered capacitance. Second, in dentate gyrus granule cells from rats, we could reliably control the capacitance in a range of 75 to 200% of the original capacitance and observed pronounced changes in the shape of the action potentials: increasing the capacitance reduced after-hyperpolarization amplitudes and slowed down repolarization. To conclude, we present a novel tool for electrophysiology: the capacitance clamp provides reliable control over the capacitance of a neuron and thereby opens a new way to study the temporal dynamics of excitable cells.
Synchrony and Synaptic Signaling in Cerebellar Circuits
The cerebellum permits a wide range of behaviors that involve sensorimotor integration. We have been investigating how specific cellular and synaptic specializations of cerebellar neurons measured in vitro, give rise to circuit activity in vivo. We have investigated these issues by studying Purkinje neurons as well as the large neurons of the mouse cerebellar nuclei, which form the major excitatory premotor projection from the cerebellum. Large CbN cells have ion channels that favor spontaneous action potential firing and GABAA receptors that generate ultra-fast inhibitory synaptic currents, raising the possibility that these biophysical attributes may permit CbN cells to respond differently to the degree of temporal coherence of their Purkinje cell inputs. In vivo, self-initiated motor programs associated with whisking correlates with asynchronous changes in Purkinje cell simple spiking that are asynchronous across the population. The resulting inhibition converges with mossy fiber excitation to yield little change in CbN cell firing, such that cerebellar output is low or cancelled. In contrast, externally applied sensory stimuli elicits a transient, synchronous inhibition of Purkinje cell simple spiking. During the resulting strong disinhibition of CbN cells, sensory-induced excitation from mossy fibers effectively drives cerebellar outputs that increase the magnitude of reflexive whisking. Purkinje cell synchrony, therefore, may be a key variable contributing to the “positive effort” hypothesized by David Marr in 1969 to be necessary for cerebellar control of movement.
Sparse expansion in cerebellum favours learning speed and performance in the context of motor control
The cerebellum contains more than half of the brain’s neurons and it is essential for motor control. Its neural circuits have a distinctive architecture comprised of a large, sparse expansion from the input mossy fibres to the granule cell layer. For years, theories of how cerebellar architectural features relate to cerebellar function have been formulated. It has been shown that some of these features can facilitate pattern separation. However, these theories don’t consider the need for it to learn fast in order to control smooth and accurate movements. Here, we confront this gap. This talk will show that the expansion to the granule cell layer in the cerebellar cortex improves learning speed and performance in the context of motor control by considering a cerebellar-like network learning an internal model of a motor apparatus online. By expressing the general form of the learning rate for such a system, this talk will provide a calculation of how increasing the number of granule cells diminishes the effect of noise and increases the learning speed. The researchers propose that the particular architecture of cerebellar circuits modifies the geometry of the error function in a favourable way for learning faster. Their results illuminate a new link between cerebellar structure and function.
Generalizing theories of cerebellum-like learning
Since the theories of Marr, Ito, and Albus, the cerebellum has provided an attractive well-characterized model system to investigate biological mechanisms of learning. In recent years, theories have been developed that provide a normative account for many features of the anatomy and function of cerebellar cortex and cerebellum-like systems, including the distribution of parallel fiber-Purkinje cell synaptic weights, the expansion in neuron number of the granule cell layer and their synaptic in-degree, and sparse coding by granule cells. Typically, these theories focus on the learning of random mappings between uncorrelated inputs and binary outputs, an assumption that may be reasonable for certain forms of associative conditioning but is also quite far from accounting for the important role the cerebellum plays in the control of smooth movements. I will discuss in-progress work with Marjorie Xie, Samuel Muscinelli, and Kameron Decker Harris generalizing these learning theories to correlated inputs and general classes of smooth input-output mappings. Our studies build on earlier work in theoretical neuroscience as well as recent advances in the kernel theory of wide neural networks. They illuminate the role of pre-expansion structures in processing input stimuli and the significance of sparse granule cell activity. If there is time, I will also discuss preliminary work with Jack Lindsey extending these theories beyond cerebellum-like structures to recurrent networks.
A novel hypothesis on the role of olfactory bulb granule cells
The role of granule cells in olfactory processing is surrounded by several enigmatic observations, such as the existence of reciprocal spines and the mechanisms for GABA release from them, the missing evidence for functional reciprocal connectivity, and the apparently low inhibitory drive of granule cells, both with respect to recurrent and lateral inhibition. Here, I summarize recent results with regard to GABA release, leading to a novel hypothesis on granule cell function that has the potential to resolve most of these enigmas. I predict that granule cells provide dynamically switched lateral inhibition between coactive glomerular columns and thus possibly a means of olfactory combinatorial coding.
Computational modelling of dentate granule cells reveals Pareto optimal trade-off between pattern separation and energy efficiency (economy)
Bernstein Conference 2024
Modeling the autistic cerebellum: propagation of granule cells alteration through the granular layer microcircuit
Bernstein Conference 2024
Contribution of MEC layer II cells to DG granule cells’ spatial activity revealed by transgenic chemogenetic manipulation
FENS Forum 2024
Engineering capsid-variant AAVs for selective gene delivery to dentate gyrus granule cells in the hippocampus
FENS Forum 2024
Gamma frequency synchronization of nNOS interneurons provides long-lasting inhibition of dentate granule cells
FENS Forum 2024
Heavy alcohol drinking during adolescence compromises GABAergic inhibition in adult mouse dentate gyrus granule cells
FENS Forum 2024
Proteomic and transcriptomic analysis of Id2- and Ascl4-induced wiring in adult hippocampal granule cells
FENS Forum 2024
Unravelling the functional diversity of granule cells in the cerebellar cortex
FENS Forum 2024