← Back

Gut Microbiota

Topic spotlight
TopicWorld Wide

gut microbiota

Discover seminars, jobs, and research tagged with gut microbiota across World Wide.
14 curated items8 ePosters6 Seminars
Updated about 4 years ago
14 items · gut microbiota
14 results
SeminarNeuroscience

Role of the gut microbiota in the development of alcohol use disorder

Philippe de Timary
UCLouvain, Belgium, Institute of Neuroscience and Department of Adult Psychiatry
Nov 18, 2021

The gut microbiota is composed of a very large number of bacteria, viruses, fungi and yeasts that play an important role in the body, through the production of a series of metabolites (including neurotransmitters), and through an essential role in the barrier function of the gut and the regulation of immunity and stress response. In this lecture I will present, based mainly on human studies but also on preclinical studies, the evidence for a role of the gut microbiota in the development of alcohol use disorder. I will show the first results of trials to test the effects of nutritional approaches to address these deficits.

SeminarNeuroscience

How much gut needs the brain ? Gut microbiota-immune crosstalk in neuroinflammation

Anne-Kathrin Proebste
Biomedical Department, University Hospital Basel, Switzerland
Sep 15, 2021
SeminarNeuroscience

Microbiome and behaviour: Exploring underlying mechanisms

Sarah-Jane Leigh
APC Microbiome Ireland
Jul 9, 2021

Environmental insults alter brain function and behaviour inboth rodents and people. One putative underlying mechanism that has receivedsubstantial attention recently is the gut microbiota, the ecosystem ofsymbiotic microorganisms that populate the intestinal tract, which is known toplay a role in brain health and function via the gut-brain axis. Two keyenvironmental insults known to affect both brain function and behaviour, andthe gut microbiome, are poor diet and psychological stress. While there isstrong evidence for interactions between the microbiome and host physiology inthe context of chronic stress, little is known about the role of the microbiomein the host response to acute stress. Determining the underlying mechanisms bywhich stress may provoke functional changes in the gut and brain is criticalfor developing therapeutics to alleviate adverse consequences of traumaticstress.

SeminarNeuroscience

New Strategies and Approaches to Tackle and Understand Neurological Disorder

Mauro Costa-Mattioli
The Memory & Brain Research Center (MBRC), Baylor College of Medicine, Houston, Texas, USA
Mar 17, 2021

Broadly, the Mauro Costa-Mattioli laboratory (The MCM Lab) encompasses two complementary lines of research. The first one, more traditional but very important, aims at unraveling the molecular mechanisms underlying memory formation (e.g., using state-of-the-art molecular and cell-specific genetic approaches). Learning and memory disorders can strike the brain during development (e.g., Autism Spectrum Disorders and Down Syndrome), as well as during adulthood (e.g., Alzheimer’s disease). We are interested in understanding the specific circuits and molecular pathways that are primarily targeted in these disorders and how they can be restored. To tackle these questions, we use a multidisciplinary, convergent and cross-species approach that combines mouse and fly genetics, molecular biology, electrophysiology, stem cell biology, optogenetics and behavioral techniques. The second line of research, more recent and relatively unexplored, is focused on understanding how gut microbes control CNS driven-behavior and brain function. Our recent discoveries, that microbes in the gut could modulate brain function and behavior in a very powerful way, have added a whole new dimension to the classic view of how complex behaviors are controlled. The unexpected findings have opened new avenues of study for us and are currently driving my lab to answer a host of new and very interesting questions: - What are the gut microbes (and metabolites) that regulate CNS-driven behaviors? Would it be possible to develop an unbiased screening method to identify specific microbes that regulate different behaviors? - If this is the case, can we identify how members of the gut microbiome (and their metabolites) mechanistically influence brain function? - What is the communication channel between the gut microbiota and the brain? Do different gut microbes use different ways to interact with the brain? - Could disruption of the gut microbial ecology cause neurodevelopmental dysfunction? If so, what is the impact of disruption in young and adult animals? - More importantly, could specific restoration of selected bacterial strains (new generation probiotics) represent a novel therapeutic approach for the targeted treatment of neurodevelopmental disorders? - Finally, can we develop microbiota-directed therapeutic foods to repair brain dysfunction in a variety of neurological disorders?

SeminarNeuroscience

Interactions between the microbiome and nervous system during early development

Elaine Hsiao
UCLA Department of Integrative Biology and Physiology
Dec 9, 2020

The gut microbiota is emerging as an important modulator of brain function and behavior, as several recent discoveries reveal substantial effects of the microbiome on neurophysiology, neuroimmunity and animal behavior. Despite these findings supporting a “microbiome-gut-brain axis”, the molecular and cellular mechanisms that underlie interactions between the gut microbiota and brain remain poorly understood. To uncover these, the Hsiao laboratory is mining the human microbiota for microbial modulators of host neuroactive molecules, investigating the impact of microbiota-immune system interactions on neurodevelopment and examining the microbiome as an interface between gene-environment interactions in neurological diseases. In particular, our research on effects of the maternal microbiome on offspring development in utero are revealing novel interactions between microbiome-dependent metabolites and fetal thalamocortical axonogenesis. Overall, we aim to dissect biological pathways for communication between the gut microbiota and nervous system, toward understanding fundamental interactions between physiological systems that impact brain and behavior.

ePoster

AAV-mediated overexpression of wild-type human alpha-synuclein leads to alterations in gut microbiota in a ‘brain-first’ rat model of prodromal Parkinson’s disease

Joan Osayande, Ciara O'Donovan, Susan Goulding, Siobhain M. O'Mahony, Noelia Morales Prieto, Francisca Villalobos-Manriquez, Gerard Clarke, Paul D. Cotter, Louise M. Collins, Aideen M. Sullivan, Gerard W. O'Keeffe

FENS Forum 2024

ePoster

Extracellular vesicles from mesenchymal stem cells alter gut microbiota and improve neuroinflammation and motor impairment in rats with mild liver damage

Gergana Mincheva, Vicente Felipo, Victoria Moreno-Manzano, Alfonso Benítez-Páez, Marta Llansola

FENS Forum 2024

ePoster

The maternal gut microbiota regulates embryonic cortical development in mice

Hugo Blair, Lorena Morales, Alexandre J.C. Cergneux, Jennifer Morael, Valentine Turpin, Jennifer Shearer, John F. Cryan, María R. Aburto

FENS Forum 2024

ePoster

Gut microbiota alterations and hypothalamic inflammation precede obesity in a rat model of binge eating

Clara Rossetti, Sedreh Nassirnia, Claire Bertelli-Lombardo, Gilbert Greub, Benjamin Boutrel

FENS Forum 2024

ePoster

A novel sEH inhibitor reduces inflammation and promotes neuroprotective effects by modulating gut microbiota

Júlia Jarne Ferrer, Christian Griñán-Ferré, Lluisa Miró, Anna Perez-Bosque, Santiago Vazquez, Mercè Pallàs

FENS Forum 2024

ePoster

The pesticide glyphosate induces sex-dependent behavioural changes in mice: A role for the gut microbiota?

Rie Matsuzaki, Eoin Gunnigle, John F Cryan

FENS Forum 2024

ePoster

Primary sensory neurons require a functional interleukin-6 signal transducer to regulate gut microbiota composition in mice

Lydia Riehl, Johannes Fürst, Susanne K. Sauer, Kai Kummer, Nadiia Rykalo, Theodora Kalpachidou, Michaela Kress

FENS Forum 2024

ePoster

Targeting the gut microbiota to ameliorate the effects of an early-life high-fat/high-sugar diet on eating behaviour in adolescence and adulthood

Cristina Cuesta-Marti, Eduardo Ponce España, Friederike Uhlig, Gerard Clarke, Siobhain M. O’Mahony, Harriët Schellekens

FENS Forum 2024