Hypothalamus
hypothalamus
How do we sleep?
There is no consensus on if sleep is for the brain, body or both. But the difference in how we feel following disrupted sleep or having a good night of continuous sleep is striking. Understanding how and why we sleep will likely give insights into many aspects of health. In this talk I will outline our recent work on how the prefrontal cortex can signal to the hypothalamus to regulate sleep preparatory behaviours and sleep itself, and how other brain regions, including the ventral tegmental area, respond to psychosocial stress to induce beneficial sleep. I will also outline our work on examining the function of the glymphatic system, and whether clearance of molecules from the brain is enhanced during sleep or wakefulness.
Obesity and Brain – Bidirectional Influences
The regulation of body weight relies on homeostatic mechanisms that use a combination of internal signals and external cues to initiate and terminate food intake. Homeostasis depends on intricate communication between the body and the hypothalamus involving numerous neural and hormonal signals. However, there is growing evidence that higher-level cognitive function may also influence energy balance. For instance, research has shown that BMI is consistently linked to various brain, cognitive, and personality measures, implicating executive, reward, and attentional systems. Moreover, the rise in obesity rates over the past half-century is attributed to the affordability and widespread availability of highly processed foods, a phenomenon that contradicts the idea that food intake is solely regulated by homeostasis. I will suggest that prefrontal systems involved in value computation and motivation act to limit food overconsumption when food is scarce or expensive, but promote over-eating when food is abundant, an optimum strategy from an economic standpoint. I will review the genetic and neuroscience literature on the CNS control of body weight. I will present recent studies supporting a role of prefrontal systems in weight control. I will also present contradictory evidence showing that frontal executive and cognitive findings in obesity may be a consequence not a cause of increased hunger. Finally I will review the effects of obesity on brain anatomy and function. Chronic adiposity leads to cerebrovascular dysfunction, cortical thinning, and cognitive impairment. As the most common preventable risk factor for dementia, obesity poses a significant threat to brain health. I will conclude by reviewing evidence for treatment of obesity in adults to prevent brain disease.
Private oxytocin supply and its receptors in the hypothalamus for social avoidance learning
Many animals live in complex social groups. To survive, it is essential to know who to avoid and who to interact. Although naïve mice are naturally attracted to any adult conspecifics, a single defeat experience could elicit social avoidance towards the aggressor for days. The neural mechanisms underlying the behavior switch from social approach to social avoidance remains incompletely understood. Here, we identify oxytocin neurons in the retrochiasmatic supraoptic nucleus (SOROXT) and oxytocin receptor (OXTR) expressing cells in the anterior subdivision of ventromedial hypothalamus, ventrolateral part (aVMHvlOXTR) as a key circuit motif for defeat-induced social avoidance learning. After defeat, aVMHvlOXTR cells drastically increase their responses to aggressor cues. This response change is functionally important as optogenetic activation of aVMHvlOXTR cells elicits time-locked social avoidance towards a benign social target whereas inactivating the cells suppresses defeat-induced social avoidance. Furthermore, OXTR in the aVMHvl is itself essential for the behavior change. Knocking out OXTR in the aVMHvl or antagonizing the receptor during defeat, but not during post-defeat social interaction, impairs defeat-induced social avoidance. aVMHvlOXTR receives its private supply of oxytocin from SOROXT cells. SOROXT is highly activated by the noxious somatosensory inputs associated with defeat. Oxytocin released from SOROXT depolarizes aVMHvlOXTR cells and facilitates their synaptic potentiation, and hence, increases aVMHvlOXTR cell responses to aggressor cues. Ablating SOROXT cells impairs defeat-induced social avoidance learning whereas activating the cells promotes social avoidance after a subthreshold defeat experience. Altogether, our study reveals an essential role of SOROXT-aVMHvlOXTR circuit in defeat-induced social learning and highlights the importance of hypothalamic oxytocin system in social ranking and its plasticity.
Hypothalamic episode generators underlying the neural control of fertility
The hypothalamus controls diverse homeostatic functions including fertility. Neural episode generators are required to drive the intermittent pulsatile and surge profiles of reproductive hormone secretion that control gonadal function. Studies in genetic mouse models have been fundamental in defining the neural circuits forming these central pattern generators and the full range of in vitro and in vivo optogenetic and chemogenetic methodologies have enabled investigation into their mechanism of action. The seminar will outline studies defining the hypothalamic “GnRH pulse generator network” and current understanding of its operation to drive pulsatile hormone secretion.
Identifying central mechanisms of glucocorticoid circadian rhythm dysfunction in breast cancer
The circadian release of endogenous glucocorticoids is essential in preparing and synchronizing the body’s daily physiological needs. Disruption in the rhythmic activity of glucocorticoids has been observed in individuals with a variety of cancer types, and blunting of this rhythm has been shown to predict cancer mortality and declines in quality of life. This suggests that a disrupted glucocorticoid rhythm is potentially a shared phenotype across cancers. However, where this phenomenon is driven by the cancer itself, and the causal mechanisms that link glucocorticoid rhythm dysfunction and cancer outcomes remain preliminary at best. The regulation of daily glucocorticoid activity has been well-characterized and is maintained, in part, by the coordinated response of the hypothalamic-pituitary-adrenal (HPA) axis, consisting of the suprachiasmatic nucleus (SCN) and corticotropin-releasing hormone-expressing neurons of the paraventricular nucleus of the hypothalamus (PVNCRH). Consequently, we set out to examine if cancer-induced glucocorticoid dysfunction is regulated by disruptions within these hypothalamic nuclei. In comparison to their tumor-free baseline, mammary tumor-bearing mice exhibited a blunting of glucocorticoid rhythms across multiple timepoints throughout the day, as measured by the overall levels and the slope of fecal corticosterone rhythms, during tumor progression. We further examined how peripheral tumors shape hypothalamic activity within the brain. Serial two-photon tomography for whole-brain cFos imaging suggests a disrupted activation of the PVN in mice with tumors. Additionally, we found GFP labeled CRH+ neurons within the PVN after injection of pseudorabies virus expressing GFP into the tumor, pointing to the PVN as a primary target disrupted by mammary tumors. Preliminary in vivo fiber photometry data show that PVNCRH neurons exhibit enhanced calcium activity during tumor progression, as compared to baseline (no tumor) activity. Taken together, this suggests that there may be an overactive HPA response during tumor progression, which in turn, may result in a subsequent negative feedback on glucocorticoid rhythms. Current studies are examining whether tumor progression modulates SCN calcium activity, how the transcriptional profile of PVNCRH neurons is changed, and test if manipulation of the neurocircuitry surrounding glucocorticoid rhythmicity alters tumor characteristics.
A draft connectome for ganglion cell types of the mouse retina
The visual system of the brain is highly parallel in its architecture. This is clearly evident in the outputs of the retina, which arise from neurons called ganglion cells. Work in our lab has shown that mammalian retinas contain more than a dozen distinct types of ganglion cells. Each type appears to filter the retinal image in a unique way and to relay this processed signal to a specific set of targets in the brain. My students and I are working to understand the meaning of this parallel organization through electrophysiological and anatomical studies. We record from light-responsive ganglion cells in vitro using the whole-cell patch method. This allows us to correlate directly the visual response properties, intrinsic electrical behavior, synaptic pharmacology, dendritic morphology and axonal projections of single neurons. Other methods used in the lab include neuroanatomical tracing techniques, single-unit recording and immunohistochemistry. We seek to specify the total number of ganglion cell types, the distinguishing characteristics of each type, and the intraretinal mechanisms (structural, electrical, and synaptic) that shape their stimulus selectivities. Recent work in the lab has identified a bizarre new ganglion cell type that is also a photoreceptor, capable of responding to light even when it is synaptically uncoupled from conventional (rod and cone) photoreceptors. These ganglion cells appear to play a key role in resetting the biological clock. It is just this sort of link, between a specific cell type and a well-defined behavioral or perceptual function, that we seek to establish for the full range of ganglion cell types. My research concerns the structural and functional organization of retinal ganglion cells, the output cells of the retina whose axons make up the optic nerve. Ganglion cells exhibit great diversity both in their morphology and in their responses to light stimuli. On this basis, they are divisible into a large number of types (>15). Each ganglion-cell type appears to send its outputs to a specific set of central visual nuclei. This suggests that ganglion cell heterogeneity has evolved to provide each visual center in the brain with pre-processed representations of the visual scene tailored to its specific functional requirements. Though the outline of this story has been appreciated for some time, it has received little systematic exploration. My laboratory is addressing in parallel three sets of related questions: 1) How many types of ganglion cells are there in a typical mammalian retina and what are their structural and functional characteristics? 2) What combination of synaptic networks and intrinsic membrane properties are responsible for the characteristic light responses of individual types? 3) What do the functional specializations of individual classes contribute to perceptual function or to visually mediated behavior? To pursue these questions, we label retinal ganglion cells by retrograde transport from the brain; analyze in vitro their light responses, intrinsic membrane properties and synaptic pharmacology using the whole-cell patch clamp method; and reveal their morphology with intracellular dyes. Recently, we have discovered a novel ganglion cell in rat retina that is intrinsically photosensitive. These ganglion cells exhibit robust light responses even when all influences from classical photoreceptors (rods and cones) are blocked, either by applying pharmacological agents or by dissociating the ganglion cell from the retina. These photosensitive ganglion cells seem likely to serve as photoreceptors for the photic synchronization of circadian rhythms, the mechanism that allows us to overcome jet lag. They project to the circadian pacemaker of the brain, the suprachiasmatic nucleus of the hypothalamus. Their temporal kinetics, threshold, dynamic range, and spectral tuning all match known properties of the synchronization or "entrainment" mechanism. These photosensitive ganglion cells innervate various other brain targets, such as the midbrain pupillary control center, and apparently contribute to a host of behavioral responses to ambient lighting conditions. These findings help to explain why circadian and pupillary light responses persist in mammals, including humans, with profound disruption of rod and cone function. Ongoing experiments are designed to elucidate the phototransduction mechanism, including the identity of the photopigment and the nature of downstream signaling pathways. In other studies, we seek to provide a more detailed characterization of the photic responsiveness and both morphological and functional evidence concerning possible interactions with conventional rod- and cone-driven retinal circuits. These studies are of potential value in understanding and designing appropriate therapies for jet lag, the negative consequences of shift work, and seasonal affective disorder.
Neuromodulation of sleep integrity
The arousal construct underlies a spectrum of behaviors that include sleep, exploration, feeding, sexual activity and adaptive stress. Pathological arousal conditions include stress, anxiety disorders, and addiction. The dynamics between arousal state transitions are modulated by norepinephrine neurons in the locus coeruleus, histaminergic neurons in the hypothalamus, dopaminergic neurons in the mesencephalon and cholinergic neurons in the basal forebrain. The hypocretin/orexin system in the lateral hypothalamus I will also present a new mechanism underlying sleep fragmentation during aging. Hcrt neurons are hyperexcitable in aged mice. We identify a potassium conductance known as the M-current, as a critical player in maintaining excitability of Hcrt neurons. Genetic disruption of KCNQ channels in Hcrt neurons of young animals results in sleep fragmentation. In contrast, treatment of aged animals with a KCNQ channel opener restores sleep/wake architecture. These data point to multiple circuits modulating sleep integrity across lifespan.
Why is the suprachiasmatic nucleus such a brilliant circadian time-keeper?
Circadian clocks dominate our lives. By creating and distributing an internal representation of 24-hour solar time, they prepare us, and thereby adapt us, to the daily and seasonal world. Jet-lag is an obvious indicator of what can go wrong when such adaptation is disrupted acutely. More seriously, the growing prevalence of rotational shift-work which runs counter to our circadian life, is a significant chronic challenge to health, presenting as increased incidence of systemic conditions such as metabolic and cardiovascular disease. Added to this, circadian and sleep disturbances are a recognised feature of various neurological and psychiatric conditions, and in some cases may contribute to disease progression. The “head ganglion” of the circadian system is the suprachiasmatic nucleus (SCN) of the hypothalamus. It synchronises the, literally, innumerable cellular clocks across the body, to each other and to solar time. Isolated in organotypic slice culture, it can maintain precise, high-amplitude circadian cycles of neural activity, effectively, indefinitely, just as it does in vivo. How is this achieved: how does this clock in a dish work? This presentation will consider SCN time-keeping at the level of molecular feedback loops, neuropeptidergic networks and neuron-astrocyte interactions.
Synapses, Shadows and Stress Contagion
Survival is predicated on the ability of an organism to respond to stress. The reliability of this response is ensured by a synaptic architecture that is relatively inflexible (i.e. hard-wired). Our work has shown that in naive animals, synapses on CRH neurons in the paraventricular nucleus of the hypothalamus are very reluctant to modification. If animals are stressed, however, these synapses become willing to learn. This seminar will focus on mechanisms linking acute stress to metaplastic changes at glutamate synapses, and also show how stress, and these synaptic changes can be transmitted from one individual to another.
Top-down modulation of the retinal code via histaminergic neurons in the hypothalamus
The mammalian retina is considered an autonomous neuronal tissue, yet there is evidence that it receives inputs from the brain in the form of retinopetal axons. A sub-population of these axons was suggested to belong to histaminergic neurons located in the tuberomammillarynucleus (TMN) of the hypothalamus. Using viral injections to the TMN, we identified these retinopetal axons and found that although few in number, they extensively branch to cover a large portion of the retina. Using Ca2+ imaging and electrophysiology, we show that histamine application increases spontaneous firing rates and alters the light responses of a significant portion of retinal ganglion cells (RGCs). Direct activation of the histaminergic axons also induced significant changes in RGCs activity. Since activity in the TMN was shown to correlate with arousal state, our data suggest the retinal code may change with the animal's behavioral state through the release of histamine from TMN histaminergic neurons.
Estimation of current and future physiological states in insular cortex
Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. While human insular cortex (InsCtx) is implicated in interoception, the cellular and circuit mechanisms remain unclear. I will describe our recent work imaging mouse InsCtx neurons during two physiological deficiency states – hunger and thirst. InsCtx ongoing activity patterns reliably tracked the gradual return to homeostasis, but not changes in behavior. Accordingly, while artificial induction of hunger/thirst in sated mice via activation of specific hypothalamic neurons (AgRP/SFOGLUT) restored cue-evoked food/water-seeking, InsCtx ongoing activity continued to reflect physiological satiety. During natural hunger/thirst, food/water cues rapidly and transiently shifted InsCtx population activity to the future satiety-related pattern. During artificial hunger/thirst, food/water cues further shifted activity beyond the current satiety-related pattern. Together with circuit-mapping experiments, these findings suggest that InsCtx integrates visceral-sensory inputs regarding current physiological state with hypothalamus-gated amygdala inputs signaling upcoming ingestion of food/water, to compute a prediction of future physiological state.
Territory cells in the mammalian hypothalamus
Distinct limbic-hypothalamic circuits for the generation of social behaviors
The main pillars of social behaviors involve (1) mating, where males copulate with female partners to reproduce, and (2) aggression, where males fight conspecific male competitors in territory guarding. Decades of study have identified two key regions in the hypothalamus, the medial preoptic nucleus (MPN) and the ventrolateral part of ventromedial hypothalamus (VMHvl) , that are essential for male sexual and aggressive behaviors, respectively. However, it remains ambiguous what area directs excitatory control of the hypothalamic activity and generates the initiation signal for social behaviors. Through neural tracing, in vivo optical recording and functional manipulations, we identified the estrogen receptor alpha (Esr1)-expressing cells in the posterior amygdala (PA) as a main source of excitatory inputs to the MPN and VMHvl, and key hubs in mating and fighting circuits in males. Importantly, two spatially-distinct populations in the PA regulate male sexual and aggressive behaviors, respectively. Moreover, these two subpopulations in the PA display differential molecular phenotypes, projection patterns and in vivo neural responses. Our work also observed the parallels between these social behavior circuits and basal ganglia circuits to control motivated behaviors, which Larry Swanson (2000) originally proposed based on extensive developmental and anatomical evidence.
The suprachiasmatic nucleus: the brain's circadian clock
Sleep and all of the other circadian rhythms that adapt us to the 24 hour world are controlled by the suprachiasmatic nucleus (SCN), the brain's central circadian clock. And yet, the SCN consists of only 20,000 neurons and astrocytes, so what makes it such a powerful clock, able to set the tempo to our lives? Professor Hastings will consider the cell-autonomus and neural circuit-level mechanisms that sustain the SCN clock and how it regulates rest, activity and sleep.
Hypothalamic control of internal states underlying social behaviors in mice
Social interactions such as mating and fighting are driven by internal emotional states. How can we study internal states of an animal when it cannot tell us its subjective feelings? Especially when the meaning of the animal’s behavior is not clear to us, can we understand the underlying internal states of the animal? In this talk, I will introduce our recent work in which we used male mounting behavior in mice as an example to understand the underlying internal state of the animals. In many animal species, males exhibit mounting behavior toward females as part of the mating behavior repertoire. Interestingly, males also frequently show mounting behavior toward other males of the same species. It is not clear what the underlying motivation is - whether it is reproductive in nature or something distinct. Through detailed analysis of video and audio recordings during social interactions, we found that while male-directed and female-directed mounting behaviors are motorically similar, they can be distinguished by both the presence of ultrasonic vocalization during female-directed mounting (reproductive mounting) and the display of aggression following male-directed mounting (aggressive mounting). Using optogenetics, we further identified genetically defined neural populations in the medial preoptic area (MPOA) that mediate reproductive mounting and the ventrolateral ventromedial hypothalamus (VMHvl) that mediate aggressive mounting. In vivo microendocsopic imaging in MPOA and VMHvl revealed distinct neural ensembles that mainly encode either a reproductive or an aggressive state during which male or female directed mounting occurs. Together, these findings demonstrate that internal states are represented in the hypothalamus and that motorically similar behaviors exhibited under different contexts may reflect distinct internal states.
Using human pluripotent stem cells to model obesity in vitro
Obesity and neurodegeneration lead to millions of premature deaths each year and lack broadly effective treatments. Obesity is largely caused by the abnormal function of cell populations in the hypothalamus that regulate appetite. We have developed methods generate human hypothalamic neurons from hPSCs to study how they respond to nutrients and hormones (e.g. leptin) and how disease-associated mutations alter their function. Since human hypothalamic neurons can be produced in large numbers, are functionally responsive, have a human genome that can be readily edited, and are in culture environment that can be readily controlled, there is an unprecedented opportunity to study the genetic and environmental factors underlying obesity. In addition, we are fascinated by the fact that mid-life obesity is a risk factor for dementia later in life, and caloric restriction, exercise, and certain anti-obesity drugs are neuroprotective, suggesting that there are shared mechanisms between obesity and neurodegeneration. Studies of HPSC-derived hypothalamic neurons may help bridge the mechanistic gulf between human genetic data and organismic phenotypes, revealing new therapeutic targets.
The role of orexin/hypocretin in social behaviour
My lab is focused on how brain encodes and modulates social interactions. Intraspecific social interactions are integral for survival and maintenance of society among all mammalian species. Despite the importance of social interactions, we lack a complete understanding of the brain circuitry involved in processing social behaviour. My lab investigates how the hypothalamic orexin (hypocretin) neurons and their downstream circuits participate in social interaction behaviours. These neurons are located exclusively in the hypothalamus that regulates complex and goal-directed behaviours. We recently identified that orexin neurons differentially encode interaction between familiar and novel animals. We are currently investigating how chronic social isolation, a risk factor for the development of social-anxiety like behaviours, affects orexin neuron activity and how we can manipulate the activity of these neurons to mitigate isolation-induced social deficits.
Long-term effects of diet-induced obesity on gut-brain communication
Rapid communication between the gut and the brain about recently consumed nutrients is critical for regulating food intake and maintaining energy homeostasis. We have shown that the infusion of nutrients directly into the gastrointestinal tract rapidly inhibits hunger-promoting AgRP neurons in the arcuate nucleus of the hypothalamus and suppresses subsequent feeding. The mechanism of this inhibition appears to be dependent upon macronutrient content, and can be recapitulated by a several hormones secreted in the gut in response to nutrient ingestion. In high-fat diet-induced obese mice, the response of AgRP neurons to nutrient-related stimuli are broadly attenuated. This attenuation is largely irreversible following weight loss and may represent a mechanism underlying difficulty with weight loss and propensity for weight regain in obesity.
Cortical estimation of current and future bodily states
Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. Human neuroimaging studies suggest insular cortex plays a central role in interoception, yet the cellular and circuit mechanisms of its involvement remain unclear. We developed a microprism-based cellular imaging approach to monitor insular cortex activity in behaving mice across different physiological need states. We combine this imaging approach with manipulations of peripheral physiology, circuit-mapping, cell type-specific and circuit-specific manipulation approaches to investigate the underlying circuit mechanisms. I will present our recent data investigating insular cortex activity during two physiological need states – hunger and thirst. These wereinduced naturally by caloric/fluid deficiency, or artificially by activation of specific hypothalamic “hunger neurons” and “thirst neurons”. We found that insular cortex ongoing activity faithfully represents current physiological state, independently of behavior or arousal levels. In contrast, transient responses to learned food- or water-predicting cues reflect a population-level “simulation” of future predicted satiety. Together with additional circuit-mapping and manipulation experiments, our findings suggest that insular cortex integrates visceral-sensory inputs regarding current physiological state with hypothalamus-gated amygdala inputs signaling availability of food/water. This way, insular cortex computes a prediction of future physiological state that can be used to guide behavioral choice.
Neurocircuits in control of integrative physiology
This open colloquia session is part of the special workshop entitled "Obesity at the Interface of Neuroscience and Physiology II". Abstract: Proopiomelanocortin (POMC)- and agouti related peptide (AgRP)-expressing neurons in the arcuate nucleus of the hypothalamus (ARH) are critical regulators of food intake and energy homeostasis. They rapidly integrate the energy state of the organism through sensing fuel availability via hormones, nutrient components and even rapidly upon sensory food perception. Importantly, they not only regulate feeding responses, but numerous autonomic responses including glucose and lipid metabolism, inflammation and blood pressure. More recently, we could demonstrate that sensory food cue-dependent regulation of POMC neurons primes the hepatic endoplasmic reticulum (ER) stress response to prime liver metabolism for the postpramndial state. The presentation will focus on the regulation of these neurons in control of integrative physiology, the identification of distinct neuronal circuitries targeted by these cells and finally on the broad range implications resulting from dysregulation of these circuits as a consequence of altered maternal metabolism.
Plasticity in hypothalamic circuits for oxytocin release
Mammalian babies are “sensory traps” for parents. Various sensory cues from the newborn are tremendously efficient in triggering parental responses in caregivers. We recently showed that core aspects of maternal behavior such as pup retrieval in response to infant vocalizations rely on active learning of auditory cues from pups facilitated by the neurohormone oxytocin (OT). Release of OT from the hypothalamus might thus help induce recognition of different infant cues but it is unknown what sensory stimuli can activate OT neurons. I performed unprecedented in vivo whole-cell and cell-attached recordings from optically-identified OT neurons in awake dams. I found that OT neurons, but not other hypothalamic cells, increased their firing rate after playback of pup distress vocalizations. Using anatomical tracing approaches and channelrhodopsin-assisted circuit mapping, I identified the projections and brain areas (including inferior colliculus, auditory cortex, and posterior intralaminar thalamus) relaying auditory information about social sounds to OT neurons. In hypothalamic brain slices, when optogenetically stimulating thalamic afferences to mimic high-frequency thalamic discharge, observed in vivo during pup calls playback, I found that thalamic activity led to long-term depression of synaptic inhibition in OT neurons. This was mediated by postsynaptic NMDARs-induced internalization of GABAARs. Therefore, persistent activation of OT neurons following pup calls in vivo is likely mediated by disinhibition. This gain modulation of OT neurons by infant cries, may be important for sustaining motivation. Using a genetically-encoded OT sensor, I demonstrated that pup calls were efficient in triggering OT release in downstream motivational areas. When thalamus projections to hypothalamus were inhibited with chemogenetics, dams exhibited longer latencies to retrieve crying pups, suggesting that the thalamus-hypothalamus noncanonical auditory pathway may be a specific circuit for the detection of social sounds, important for disinhibiting OT neurons, gating OT release in downstream brain areas, and speeding up maternal behavior.
Communication between the suprachiasmatic nucleus and the subparaventricular zone of the hypothalamus
FENS Forum 2024
Complex mechanisms responsible for the pressor response of angiotensin 1-7 injected into the rat paraventricular nucleus of the hypothalamus
FENS Forum 2024
Distinct hypothalamus-habenula circuits govern risk preference
FENS Forum 2024
Dynamic integration of space and social status in the mammalian hypothalamus
FENS Forum 2024
Effects of partial lesions of hypocretin neurons in the lateral hypothalamus on sleep in rats
FENS Forum 2024
Effects of repeated stimulation of CB1 receptors in the nucleus accumbens and in the lateral hypothalamus on long-term food preference in adolescent rats
FENS Forum 2024
Encoding of avoidance behaviours from a social threat in the ventromedial hypothalamus of male and female mice
FENS Forum 2024
Experience-dependent modulation of sensory inputs in the postpartum hypothalamus for infant-directed motor actions
FENS Forum 2024
Expression of angiotensin II receptors within hypothalamus-pituitary-adrenal axis after injury at lower and higher thoracic spinal level
FENS Forum 2024
The ketogenic diet suppresses appetite altering orexigenic and anorexigenic pathways in hypothalamus of diet-induced obese and lean mice
FENS Forum 2024
Lesions of the lateral hypothalamus-nigral projection result in motor deficits in rats: Implications for Parkinson’s disease
FENS Forum 2024
Regulation of anxiety-related behaviors by leptin receptor-expressing neurons in the lateral hypothalamus
FENS Forum 2024
Role of the gestational maternal gut-microbiota in the neurodevelopment of the hypothalamus and the amygdala
FENS Forum 2024
Role of lateral hypothalamus neuropeptides in cocaine-induced locomotive behavior
FENS Forum 2024
A role of prefrontal inputs to lateral hypothalamus in coping with stress
FENS Forum 2024