← Back

Ion Channels

Topic spotlight
TopicWorld Wide

ion channels

Discover seminars, jobs, and research tagged with ion channels across World Wide.
27 curated items15 Seminars8 ePosters4 Positions
Updated about 15 hours ago
27 items · ion channels
27 results
PositionDevelopmental Neuroscience

Georgia Panagiotakos

Icahn School of Medicine at Mount Sinai
New York, United States
Dec 5, 2025

Looking for a supportive, dynamic and inclusive environment to do cutting edge science? The Panagiotakos Lab at Mount Sinai has two postdoctoral positions open! Links for both positions below – come join us if you love neural development, ion channels or anything in between! The Panagiotakos Lab, in the Departments of Psychiatry and Neuroscience at the Icahn School of Medicine at Mount Sinai in New York, is seeking postdoctoral fellows (recently completed Ph.D., M.D. or M.D./Ph.D.) with expertise in calcium imaging, electrophysiology, developmental neuroscience, stem cell biology, and/or genomics/sequencing approaches to study cellular and molecular mechanisms that underlie the acquisition of cell fate during mammalian brain development. Dr. Panagiotakos’ team combines multiple complementary approaches, including genetic mouse models, calcium imaging, fluorescence microscopy, pharmacology, cortical slice cultures, and various omics and biochemical analyses, to interrogate roles for calcium signaling, electrical activity, ion channel splice isoforms, and disease risk genes during normal development and in the context of neuropsychiatric disorders of developmental origin. The qualified candidates will use cutting-edge cellular/molecular biology, imaging and sequencing approaches in these studies, including long-isoform sequencing, CUT&RUN, and live imaging, to investigate the impact and mechanistic underpinnings of disease-relevant ion channels and calcium signaling on cellular events during brain development, including proliferation, migration, neurogenesis and gliogenesis.

Position

Lukas Groschner

The Francis Crick Institute
London, United Kingdom
Dec 5, 2025

The Groschner lab studies signal processing in the brain using the fruit fly as a model. Our current research focuses on temporal patterns of neural activity that unfold over hundreds of milliseconds up to minutes. Under the umbrella of temporal signal processing, the successful applicant will address one of the following three questions: 1) What ion channel make-up and what circuit motifs allow neurons to delay signals by hundreds of milliseconds? 2) How does visual information accumulate over time to inform behavioural choice? 3) How does a brain construct a memory that is stable during times of immobility, but exquisitely malleable—sensitive to every step—during locomotion? The projects rely on a common set of experimental and computational approaches, which include behavioural assays, recordings and manipulations of neural activity in vivo, transcriptomic profiling of neuronal populations, and biophysically realistic modelling of neurons and circuits. The Groschner lab strives to foster an environment that welcomes, includes, and values people with diverse backgrounds and experiences. We provide all Postdoctoral Fellows with the support, space, and resources they need to pursue their goals and place and emphasis on furthering their careers. They will lead their own projects, contribute to other projects on a collaborative basis (both in the lab and with external collaborators) and may guide PhD students in their research. The ability to work in a team is essential. Responsibilities of the Postdoctoral Fellow include the following: 1) Undertake academic research and develop projects in a timely manner 2) Contribute ideas to the research programme 3) Adapt existing and develop new scientific techniques and experimental protocols 4) Use specialist scientific equipment in a laboratory environment 5) Acquire, analyse, and review scientific data to test and refine working hypotheses 6) Provide guidance and training to less experienced members of the research group 7) Develop ideas for generating research income, gather preliminary data, and present proposals to senior researchers 8) Contribute to the preparation of scientific reports and journal articles 9) Collaborate with colleagues in partner institutions and research groups 10) Attend and participate in academic activities such as lab meetings, journal clubs, wider network meetings, and retreats These duties are a guide to the work that the post holder will be required to undertake and may change with scientific developments.

Position

Prof Richard Smith

Northwestern Medical School
Chicago, USA
Dec 5, 2025

The Smith lab is seeking team members to conduct exciting research in human neurodevelopment and models of neuronal activity in the prenatal brain. Interested applicants can expect to work in an environment that promotes autonomy and all the resources to develop and expand the several ongoing research projects of the lab. These include, but are not limited to, questions relating to human brain development, human disease modeling (using high throughput approaches), and therapeutics. Current NIH funded projects are examining ion flux and biophysical properties of developing cell types in the prenatal brain, specifically as is relates to childhood diseases. As a trainee you will have to opportunity gain expertise in several state-of the art approaches widely used to interrogate important aspects of neurodevelopment, including human stem cell cerebral organoid models, single cell sequencing (RNA/ATAC), high-content confocal microscopy/screening, ferret model of cortex development and hiPSC derived neuronal models (excitatory, dopamine, inhibitory). Additional physiology approaches include, 2-photon imaging, high-throughput electrophysiology, patch-clamp, and calcium/voltage imaging. Please visit our website for details about our research, www.rsmithlab.com

PositionNeuroscience

Ethan Goldberg

The University of Pennsvylvania
Philadelphia, PA, U.S.A.
Dec 5, 2025

A postdoctoral fellowship position is available to study mechanisms genetic epilepsies of childhood in experimental model systems. The lab studies ion channel variants expressed in heterologous systems; neurons and organoids derived from human embryonic stem cells from human patients; cell profiling/transcriptomics; cellular neurophysiology and synaptic transmission in acute brain slices prepared from mice; and 2P calcium imaging and electrophysiology in awake, behaving experimental animals. Recent graduate with a Ph.D. in Neuroscience or applied field (electrical or biomedical engineering; computer science; cellular and molecular biology). Prior experience with electrophysiology, imaging, transcriptomics, and/or computational neuroscience, is preferred. Recent publications from the lab include: -- Favero, M., Sotuyo, N.P., Lopez, E., Kearney, J.A., Goldberg, E.M. : A transient developmental window of fast-spiking interneuron dysfunction in a mouse model of Dravet syndrome. The Journal of Neuroscience 38(36): 7912-7927, September 2018. PMCID: PMC6125809 -- Goff, K.M., Goldberg, E.M.: Vasoactive intestinal peptide-expressing interneurons are impaired in a mouse model of Dravet Syndrome. Elife July 2019. PMCID: PMC6629374 -- Tran, C.H., Vaiana, M., Nakuci, J., Somarowthu, A., Goff, K.M., Goldstein, N., Murthy, P., Muldoon, S.F., Goldberg, E.M.: Interneuron desynchronization precedes seizures in a mouse model of Dravet syndrome. Journal of Neuroscience 40(13): 2764-2775, May 2020. PMCID: PMC7096149 -- Zaman, T., Helbig, K.L., Clatot, J., […] Goldberg, E.M. : SCN3A-related neurodevelopmental disorder: A spectrum of epilepsy and brain malformation. Ann Neurol doi: 10.1002/ana.25809, Online ahead of print 2020.

SeminarNeuroscience

New mechanically-gated ion channels and tethers for touch

Gary Lewin
Max Delbrück Center, Berlin, Germany
May 14, 2023
SeminarNeuroscienceRecording

Can a single neuron solve MNIST? Neural computation of machine learning tasks emerges from the interaction of dendritic properties

Ilenna Jones
University of Pennsylvania
Dec 6, 2022

Physiological experiments have highlighted how the dendrites of biological neurons can nonlinearly process distributed synaptic inputs. However, it is unclear how qualitative aspects of a dendritic tree, such as its branched morphology, its repetition of presynaptic inputs, voltage-gated ion channels, electrical properties and complex synapses, determine neural computation beyond this apparent nonlinearity. While it has been speculated that the dendritic tree of a neuron can be seen as a multi-layer neural network and it has been shown that such an architecture could be computationally strong, we do not know if that computational strength is preserved under these qualitative biological constraints. Here we simulate multi-layer neural network models of dendritic computation with and without these constraints. We find that dendritic model performance on interesting machine learning tasks is not hurt by most of these constraints and may synergistically benefit from all of them combined. Our results suggest that single real dendritic trees may be able to learn a surprisingly broad range of tasks through the emergent capabilities afforded by their properties.

SeminarNeuroscience

Investigating activity-dependent processes in cerebral cortex development and disease

Simona Lodato
Humanitas University
Jul 19, 2022

The cerebral cortex contains an extraordinary diversity of excitatory projection neuron (PN) and inhibitory interneurons (IN), wired together to form complex circuits. Spatiotemporally coordinated execution of intrinsic molecular programs by PNs and INs and activity-dependent processes, contribute to cortical development and cortical microcircuits formation. Alterations of these delicate processes have often been associated to neurological/neurodevelopmental disorders. However, despite the groundbreaking discovery that spontaneous activity in the embryonic brain can shape regional identities of distinct cortical territories, it is still unclear whether this early activity contributes to define subtype-specific neuronal fate as well as circuit assembly. In this study, we combined in utero genetic perturbations via CRISPR/Cas9 system and pharmacological inhibition of selected ion channels with RNA-sequencing and live imaging technologies to identify the activity-regulated processes controlling the development of different cortical PN classes, their wiring and the acquisition of subtype specific features. Moreover, we generated human induced pluripotent stem cells (iPSCs) form patients affected by a severe, rare and untreatable form of developmental epileptic encephalopathy. By differentiating cortical organoids form patient-derived iPSCs we create human models of early electrical alterations for studying molecular, structural and functional consequences of the genetic mutations during cortical development. Our ultimate goal is to define the activity-conditioned processes that physiologically occur during the development of cortical circuits, to identify novel therapeutical paths to address the pathological consequences of neonatal epilepsies.

SeminarNeuroscienceRecording

The GluN2A Subunit of the NMDA Receptor and Parvalbumin Interneurons: A Possible Role in Interneuron Development

Steve Traynelis & Chad Camp
Emory University School of Medicine
Jan 18, 2022

N-methyl-D-aspartate receptors (NMDARs) are excitatory glutamate-gated ion channels that are expressed throughout the central nervous system. NMDARs mediate calcium entry into cells, and are involved in a host of neurological functions. The GluN2A subunit, encoded by the GRIN2A gene, is expressed by both excitatory and inhibitory neurons, with well described roles in pyramidal cells. By using Grin2a knockout mice, we show that the loss of GluN2A signaling impacts parvalbumin-positive (PV) GABAergic interneuron function in hippocampus. Grin2a knockout mice have 33% more PV cells in CA1 compared to wild type but similar cholecystokinin-positive cell density. Immunohistochemistry and electrophysiological recordings show that excess PV cells do eventually incorporate into the hippocampal network and participate in phasic inhibition. Although the morphology of Grin2a knockout PV cells is unaffected, excitability and action-potential firing properties show age-dependent alterations. Preadolescent (P20-25) PV cells have an increased input resistance, longer membrane time constant, longer action-potential half-width, a lower current threshold for depolarization-induced block of action-potential firing, and a decrease in peak action-potential firing rate. Each of these measures are corrected in adulthood, reaching wild type levels, suggesting a potential delay of electrophysiological maturation. The circuit and behavioral implications of this age-dependent PV interneuron malfunction are unknown. However, neonatal Grin2a knockout mice are more susceptible to lipopolysaccharide and febrile-induced seizures, consistent with a critical role for early GluN2A signaling in development and maintenance of excitatory-inhibitory balance. These results could provide insights into how loss-of-function GRIN2A human variants generate an epileptic phenotypes.

SeminarNeuroscienceRecording

NMC4 Short Talk: Resilience through diversity: Loss of neuronal heterogeneity in epileptogenic human tissue impairs network resilience to sudden changes in synchrony

Scott Rich
Kremibl Brain Institute
Nov 30, 2021

A myriad of pathological changes associated with epilepsy, including the loss of specific cell types, improper expression of individual ion channels, and synaptic sprouting, can be recast as decreases in cell and circuit heterogeneity. In recent experimental work, we demonstrated that biophysical diversity is a key characteristic of human cortical pyramidal cells, and past theoretical work has shown that neuronal heterogeneity improves a neural circuit’s ability to encode information. Viewed alongside the fact that seizure is an information-poor brain state, these findings motivate the hypothesis that epileptogenesis can be recontextualized as a process where reduction in cellular heterogeneity renders neural circuits less resilient to seizure onset. By comparing whole-cell patch clamp recordings from layer 5 (L5) human cortical pyramidal neurons from epileptogenic and non-epileptogenic tissue, we present the first direct experimental evidence that a significant reduction in neural heterogeneity accompanies epilepsy. We directly implement experimentally-obtained heterogeneity levels in cortical excitatory-inhibitory (E-I) stochastic spiking network models. Low heterogeneity networks display unique dynamics typified by a sudden transition into a hyper-active and synchronous state paralleling ictogenesis. Mean-field analysis reveals a distinct mathematical structure in these networks distinguished by multi-stability. Furthermore, the mathematically characterized linearizing effect of heterogeneity on input-output response functions explains the counter-intuitive experimentally observed reduction in single-cell excitability in epileptogenic neurons. This joint experimental, computational, and mathematical study showcases that decreased neuronal heterogeneity exists in epileptogenic human cortical tissue, that this difference yields dynamical changes in neural networks paralleling ictogenesis, and that there is a fundamental explanation for these dynamics based in mathematically characterized effects of heterogeneity. These interdisciplinary results provide convincing evidence that biophysical diversity imbues neural circuits with resilience to seizure and a new lens through which to view epilepsy, the most common serious neurological disorder in the world, that could reveal new targets for clinical treatment.

SeminarNeuroscienceRecording

Activity dependent myelination: a mechanism for learning and regeneration?

Thóra Káradóttir
WT-MRC Stem Cell Institute, University of Cambridge
Oct 11, 2021

The CNS is responsive to an ever-changing environment. Until recently, studies of neural plasticity focused almost exclusively on functional and structural changes of neuronal synapses. In recent years, myelin plasticity has emerged as a potential modulator of neural networks. Myelination of previously unmyelinated axons, and changes in the structure on already-myelinated axons, can have large effects on network function. The heterogeneity of the extent of how axons in the CNS are myelinated offers diverse scope for dynamic myelin changes to fine-tune neural circuits. The traditionally held view of myelin as a passive insulator of axons is now changing to one of lifelong changes in myelin, modulated by neuronal activity and experience. Myelin, produced by oligodendrocytes (OLs), is essential for normal brain function, as it provides fast signal transmission, promotes synchronization of neuronal signals and helps to maintain neuronal function. OLs differentiate from oligodendrocyte precursor cells (OPCs), which are distributed throughout the adult brain, and myelination continues into late adulthood. OPCs can sense neuronal activity as they receive synaptic inputs from neurons and express voltage-gated ion channels and neurotransmitter receptors, and differentiate into myelinating OLs in response to changes in neuronal activity. This lecture will explore to what extent myelin plasticity occurs in adult animals, whether myelin changes occur in non-motor learning tasks, especially in learning and memory, and questions whether myelin plasticity and myelin regeneration are two sides of the same coin.

SeminarNeuroscience

Synchrony and Synaptic Signaling in Cerebellar Circuits

Indira Raman
Northwestern University
Apr 29, 2021

The cerebellum permits a wide range of behaviors that involve sensorimotor integration. We have been investigating how specific cellular and synaptic specializations of cerebellar neurons measured in vitro, give rise to circuit activity in vivo. We have investigated these issues by studying Purkinje neurons as well as the large neurons of the mouse cerebellar nuclei, which form the major excitatory premotor projection from the cerebellum. Large CbN cells have ion channels that favor spontaneous action potential firing and GABAA receptors that generate ultra-fast inhibitory synaptic currents, raising the possibility that these biophysical attributes may permit CbN cells to respond differently to the degree of temporal coherence of their Purkinje cell inputs. In vivo, self-initiated motor programs associated with whisking correlates with asynchronous changes in Purkinje cell simple spiking that are asynchronous across the population. The resulting inhibition converges with mossy fiber excitation to yield little change in CbN cell firing, such that cerebellar output is low or cancelled. In contrast, externally applied sensory stimuli elicits a transient, synchronous inhibition of Purkinje cell simple spiking. During the resulting strong disinhibition of CbN cells, sensory-induced excitation from mossy fibers effectively drives cerebellar outputs that increase the magnitude of reflexive whisking. Purkinje cell synchrony, therefore, may be a key variable contributing to the “positive effort” hypothesized by David Marr in 1969 to be necessary for cerebellar control of movement.

SeminarNeuroscience

Under Pressure: the role of PIEZO ion channels in interoception

Kara Marshall
Scripps Research
Feb 28, 2021

PIEZO ion channels detect force in cellular membranes. They are expressed in a wide variety of mammalian tissues, including the vasculature, lymphatic system, and the nervous system. We have found that PIEZO2 in sensory neurons is required for the mechanical senses of touch and proprioception, but our understanding of internal organ sensing, interoception, is far behind. I will describe our findings on the role of PIEZO ion channels in the lesser-known interoceptive senses in multiple organ systems.

SeminarNeuroscienceRecording

The contribution of different information channels to different facets of empathy

Anat Perry
Hebrew Univ.
Jan 25, 2021
SeminarNeuroscienceRecording

Receptor Costs Determine Retinal Design

Simon Laughlin
University of Cambridge
Jan 24, 2021

Our group is interested in discovering design principles that govern the structure and function of neurons and neural circuits. We record from well-defined neurons, mainly in flies’ visual systems, to measure the molecular and cellular factors that determine relevant measures of performance, such as representational capacity, dynamic range and accuracy. We combine this empirical approach with modelling to see how the basic elements of neural systems (ion channels, second messengers systems, membranes, synapses, neurons, circuits and codes) combine to determine performance. We are investigating four general problems. How are circuits designed to integrate information efficiently? How do sensory adaptation and synaptic plasticity contribute to efficiency? How do the sizes of neurons and networks relate to energy consumption and representational capacity? To what extent have energy costs shaped neurons, sense organs and brain regions during evolution?

SeminarNeuroscienceRecording

Differential Resilience of Neurons and Networks with Similar Behavior to Perturbation. (Simultaneous translation to Spanish)

Eve Marder, Ph.D.
Victor and Gwendolyn Beinfield Professor of Neuroscience, Biology Dept and Volen Center, Brandeis University, Waltham, MA, USA
Sep 27, 2020

Both computational and experimental results in single neurons and small networks demonstrate that very similar network function can result from quite disparate sets of neuronal and network parameters. Using the crustacean stomatogastric nervous system, we study the influence of these differences in underlying structure on differential resilience of individuals to a variety of environmental perturbations, including changes in temperature, pH, potassium concentration and neuromodulation. We show that neurons with many different kinds of ion channels can smoothly move through different mechanisms in generating their activity patterns, thus extending their dynamic range. The talk will be simultaneously translated to spanish by the interpreter Liliana Viera, MSc. Los resultados tanto computacionales como experimentales en neuronas individuales y redes pequeñas demuestran que funcionamientos de redes muy similares pueden pueden resultar de conjuntos bastante dispares de parámetros neuronales y de las redes. Utilizando el sistema nervioso estomatogástrico de los crustáceos, estudiamos la influencia de estas diferencias en la estructura subyacente en la resistencia diferencial de los individuos a una variedad de perturbaciones ambientales, incluidos los cambios de temperatura, pH, concentración de potasio y neuromodulación. Mostramos que neuronas con muchos tipos diferentes de canales iónicos pueden moverse suavemente a través de diferentes mecanismos para generar sus patrones de actividad, extendiendo así su rango dinámico. La conferencia será traducida simultáneamente al español por la intérprete Liliana Viera MSc.

SeminarNeuroscience

Physiological importance of phase separation: a case study in synapse formation

Kang Shen
HHMI, Stanford University
Sep 16, 2020

Synapse formation during neuronal development is critical to establish neural circuits and a nervous system1. Every presynapse builds a core active zone structure where ion channels are clustered and synaptic vesicles are released2. While the composition of active zones is well characterized2,3, how active zone proteins assemble together and recruit synaptic release machinery during development is not clear. Here, we find core active zone scaffold proteins SYD-2/Liprin-α and ELKS-1 phase separate during an early stage of synapse development, and later mature into a solid structure. We directly test the in vivo function of phase separation with mutants specifically lacking this activity. These mutant SYD-2 and ELKS-1 proteins remain enriched at synapses, but are defective in active zone assembly and synapse function. The defects are rescued with the introduction of a phase separation motif from an unrelated protein. In vitro, we reconstitute the SYD-2 and ELKS-1 liquid phase scaffold and find it is competent to bind and incorporate downstream active zone components. The fluidity of SYD-2 and ELKS-1 condensates is critical for efficient mixing and incorporation of active zone components. These data reveal that a developmental liquid phase of scaffold molecules is essential for synaptic active zone assembly before maturation into a stable final structure.

ePoster

Dynamic causal communication channels between neocortical areas

COSYNE 2022

ePoster

Biophysically detailed cortical neuron models with genetically-defined ion channels

Darshan Mandge, Yann Roussel, Stijn van Dorp, Tanguy Damart, Aurélien Jaquier, Henry Markram, Daniel Keller, Lida Kanari, Werner Van Geit, Rajnish Ranjan

FENS Forum 2024

ePoster

Blood pressure pulsations modulate olfactory bulb activity via mechanosensitive ion channels

Luna Jammal Salameh, Sebastian H. Bitzenhofer, Ileana L. Hanganu-Opatz, Mathias Dutschmann, Veronica Egger

FENS Forum 2024

ePoster

Channelome: A comprehensive resource for voltage-gated ion channels

Rajnish Ranjan, Emmanuelle Logette, Stijn Van Dorp, Kalaimakan Hervé Arulkandarajah, Mirjia Herzog, Magali Sylvia Emeline Joffraud, Enrico Scantamburlo, Adrien Journe, Katherine Gianan Johnston, Darshan Mandge, Henry Markram

FENS Forum 2024

ePoster

Culturing postnatal mouse neurons of the deep cerebellar nuclei to investigate the functional expression of TRP ion channels in the cerebellum

Violeta Maria Caragea, Tudor Selescu, Alexandru Babes

FENS Forum 2024

ePoster

Differential distribution of key regulatory ion channels in excitatory synapses of the epileptic human brain revealed by freeze-fracture replica analysis

Walter Kaufmann, Alessandro Venturino, David Kleindienst, Karl Rössler, Thomas Czech, David Vandael, Maren Engelhardt, Sandra Siegert, Ryuichi Shigemoto

FENS Forum 2024

ePoster

Role of Alzheimer's disease in the neurosensory hypoacusia associated with alteration in voltage-gated potassium ion channels

Miren Revuelta, Ane Arrizabalaga-Iriondo, Janire Urrutia, Elena Alberdi, Capetillo-Zarate Estibaliz

FENS Forum 2024

ePoster

Statin effects on recombinant and natively expressed thermo-sensitive transient receptor potential ion channels

Dan Tudor Domocos, George Oprita, Ramona Babes, Alexandru Babes

FENS Forum 2024