Topic spotlight
TopicWorld Wide

Ista

Discover seminars, jobs, and research tagged with Ista across World Wide.
101 curated items60 Seminars40 ePosters1 Position
Updated 2 days ago
101 items · Ista
101 results
SeminarOpen Source

Computational bio-imaging via inverse scattering

Shwetadwip Chowdhury
Assistant Professor, University of Texas at Austin
Nov 24, 2025

Optical imaging is a major research tool in the basic sciences, and is the only imaging modality that routinely enables non-ionized imaging with subcellular spatial resolutions and high imaging speeds. In biological imaging applications, however, optical imaging is limited by tissue scattering to short imaging depths. This prevents large-scale bio-imaging by allowing visualization of only the outer superficial layers of an organism, or specific components isolated from within the organism and prepared in-vitro.

SeminarOpen SourceRecording

Resonancia Magnética y Detección Remota: No se Necesita Estar tan Cerca”

Alfredo Rodriguez
Universidad Autonoma Metropolitana Itzapalapa
Mar 26, 2025

La resonancia magnética nuclear está basada en el fenómeno del magnetismo nuclear que más aplicaciones ha encontrado para el estudio de enfermedades humanas. Usualmente la señal de RM es recibida y transmitida a distancias cercanas al objeto del que se quiere obtener una imagen. Otra alternativa es emitir y recibir la misma señal de manera remota haciendo uso de guías de onda. Este enfoque tiene la ventaja que se puede aplicar a altos campos magnéticos, la absorción de energía es menor, además es posible cubrir mayores regiones de interés y comodidad para el paciente. Por otro lado, sufre de baja calidad de imagen en algunos casos. En esta ocasión hablaremos de nuestra experiencia haciendo uso de este enfoque empleando una guía de ondas abierta y metamateriales tanto para sistemas clínicos como preclínicos de IRM.

SeminarNeuroscience

Spatio-temporal Regulation of Gene Expression in Neurons: Insights from Imaging mRNAs Live in Action

Sulagna Das
Assistant Professor, Emory University School of Medicine
Mar 2, 2025
SeminarNeuroscienceRecording

Brain Emulation Challenge Workshop

Razvan Marinescu
Assistant Professor, UC Santa Cruz, Department of Computer Science and Engineering
Feb 21, 2025

Brain Emulation Challenge workshop will tackle cutting-edge topics such as ground-truthing for validation, leveraging artificial datasets generated from virtual brain tissue, and the transformative potential of virtual brain platforms, such as applied to the forthcoming Brain Emulation Challenge.

SeminarPsychology

Neural makers of lapses in attention during sustained ‘real-world’ task performance

Emily Cunningham
University of Stirling
Feb 11, 2025

Lapses in attention are ubiquitous and, unfortunately, the cause of many tragic accidents. One potential solution may be to develop assistance systems which can use objective, physiological signals to monitor attention levels and predict a lapse in attention before it occurs. As it stands, it is unclear which physiological signals are the most reliable markers of inattention, and even less is known about how reliably they will work in a more naturalistic setting. My project aims to address these questions across two experiments: a lab-based experiment and a more ‘real-world’ experiment. In this talk I will present the findings from my lab experiment, in which we combined EEG and pupillometry to detect markers of inattention during two computerised sustained attention tasks. I will then present the methods for my second, more ‘naturalistic’ experiment in which we use the same methods (EEG and pupillometry) to examine whether these markers can still be extracted from noisier data.

SeminarNeuroscience

CNS Control of Peripheral Mitochondrial Form and Function: Mitokines

Andy Dillin
University of California, Berkeley
Jan 27, 2025

My laboratory has made an intriguing discovery that mitochondrial stress in one tissue can be communicated to distal tissues. We find that mitochondrial stress in the nervous system triggers the production of entities known as mitokines. These mitokines are discharged from the nervous system, orchestrating a response in peripheral tissues that extends the lifespan of C. elegans. The revelation came as a surprise, given the prevalent belief that cell autonomous mechanisms would underlie the relationship between mitochondrial function and aging. It was also surprising given the prevailing dogma that mitochondrial function must be increased, not decreased, to improve health and longevity. Our work also underscores the fact that mitochondria, which originated as a microbial entity and later evolved into an intracellular symbiont, have retained their capacity for intercommunication, now facilitated by signals from the nervous system. We hypothesize that this communication has evolved as a mechanism to reduce infection from pathogens.

SeminarNeuroscience

Brain circuits for spatial navigation

Ann Hermundstad, Ila Fiete, Barbara Webb
Janelia Research Campus; MIT; University of Edinburgh
Nov 28, 2024

In this webinar on spatial navigation circuits, three researchers—Ann Hermundstad, Ila Fiete, and Barbara Webb—discussed how diverse species solve navigation problems using specialized yet evolutionarily conserved brain structures. Hermundstad illustrated the fruit fly’s central complex, focusing on how hardwired circuit motifs (e.g., sinusoidal steering curves) enable rapid, flexible learning of goal-directed navigation. This framework combines internal heading representations with modifiable goal signals, leveraging activity-dependent plasticity to adapt to new environments. Fiete explored the mammalian head-direction system, demonstrating how population recordings reveal a one-dimensional ring attractor underlying continuous integration of angular velocity. She showed that key theoretical predictions—low-dimensional manifold structure, isometry, uniform stability—are experimentally validated, underscoring parallels to insect circuits. Finally, Webb described honeybee navigation, featuring path integration, vector memories, route optimization, and the famous waggle dance. She proposed that allocentric velocity signals and vector manipulation within the central complex can encode and transmit distances and directions, enabling both sophisticated foraging and inter-bee communication via dance-based cues.

SeminarNeuroscience

Localisation of Seizure Onset Zone in Epilepsy Using Time Series Analysis of Intracranial Data

Hamid Karimi-Rouzbahani
The University of Queensland
Oct 10, 2024

There are over 30 million people with drug-resistant epilepsy worldwide. When neuroimaging and non-invasive neural recordings fail to localise seizure onset zones (SOZ), intracranial recordings become the best chance for localisation and seizure-freedom in those patients. However, intracranial neural activities remain hard to visually discriminate across recording channels, which limits the success of intracranial visual investigations. In this presentation, I present methods which quantify intracranial neural time series and combine them with explainable machine learning algorithms to localise the SOZ in the epileptic brain. I present the potentials and limitations of our methods in the localisation of SOZ in epilepsy providing insights for future research in this area.

SeminarOpen Source

Optogenetic control of Nodal signaling patterns

Nathan Lord
Assistant Professor, Department of Computational and Systems Biology
Sep 19, 2024

Embryos issue instructions to their cells in the form of patterns of signaling activity. Within these patterns, the distribution of signaling in time and space directs the fate of embryonic cells. Tools to perturb developmental signaling with high resolution in space and time can help reveal how these patterns are decoded to make appropriate fate decisions. In this talk, I will present new optogenetic reagents and an experimental pipeline for creating designer Nodal signaling patterns in live zebrafish embryos. Our improved optoNodal reagents eliminate dark activity and improve response kinetics, without sacrificing dynamic range. We adapted an ultra-widefield microscopy platform for parallel light patterning in up to 36 embryos and demonstrated precise spatial control over Nodal signaling activity and downstream gene expression. Using this system, we demonstrate that patterned Nodal activation can initiate specification and internalization movements of endodermal precursors. Further, we used patterned illumination to generate synthetic signaling patterns in Nodal signaling mutants, rescuing several characteristic developmental defects. This study establishes an experimental toolkit for systematic exploration of Nodal signaling patterns in live embryos.

SeminarNeuroscience

Evolution of convulsive therapy from electroconvulsive therapy to Magnetic Seizure Therapy; Interventional Neuropsychiatry

Mustafa Husain, MD & Prof. Nolan Williams, MD
Duke University / UT Southwestern Medical Center & Stanford University
Apr 24, 2024

In April, we will host Nolan Williams and Mustafa Husain. Be prepared to embark on a journey from early brain stimulation with ECT to state-of-the art TMS protocols and magnetic seizure therapy! The talks will be held on Thursday, April 25th at noon ET / 6PM CET. Nolan Williams, MD, is an associate professor of Psychiatry and Behavioral Science at Stanford University. He developed the SAINT protocol, which is the first FDA-cleared non-invasive, rapid-acting neuromodulation treatment for treatment-resistant depression. Mustafa Husain, MD, is an adjunct professor of Psychiatry and Behavioral Sciences at Duke University and a professor of Psychiatry and Neurology at UT Southwestern Medical Center, Dallas. He will tell us about “Evolution of convulsive therapy from electroconvulsive therapy to Magnetic Seizure Therapy”. As always, we will also get a glimpse at the “Person behind the science”. Please register va talks.stimulatingbrains.org to receive the (free) Zoom link, subscribe to our newsletter, or follow us on Twitter/X for further updates!

SeminarPsychology

Enabling witnesses to actively explore faces and reinstate study-test pose during a lineup increases discrimination accuracy

Heather Flowe
University of Birmingham
Apr 21, 2024

In 2014, the US National Research Council called for the development of new lineup technologies to increase eyewitness identification accuracy (National Research Council, 2014). In a police lineup, a suspect is presented alongside multiple individuals known to be innocent who resemble the suspect in physical appearance know as fillers. A correct identification decision by an eyewitness can lead to a guilty suspect being convicted or an innocent suspect being exonerated from suspicion. An incorrect decision can result in the perpetrator remaining at large, or even a wrongful conviction of a mistakenly identified person. Incorrect decisions carry considerable human and financial costs, so it is essential to develop and enact lineup procedures that maximise discrimination accuracy, or the witness’ ability to distinguish guilty from innocent suspects. This talk focuses on new technology and innovation in the field of eyewitness identification. We will focus on the interactive lineup, which is a procedure that we developed based on research and theory from the basic science literature on face perception and recognition. The interactive lineup enables witnesses to actively explore and dynamically view the lineup members. The procedure has been shown to maximize discrimination accuracy, which is the witness’ ability to discriminate guilty from innocent suspects. The talk will conclude by reflecting on emerging technological frontiers and research opportunities.

SeminarNeuroscienceRecording

Blood-brain barrier dysfunction in epilepsy: Time for translation

Alon Friedman
Dalhousie University
Feb 27, 2024

The neurovascular unit (NVU) consists of cerebral blood vessels, neurons, astrocytes, microglia, and pericytes. It plays a vital role in regulating blood flow and ensuring the proper functioning of neural circuits. Among other, this is made possible by the blood-brain barrier (BBB), which acts as both a physical and functional barrier. Previous studies have shown that dysfunction of the BBB is common in most neurological disorders and is associated with neural dysfunction. Our studies have demonstrated that BBB dysfunction results in the transformation of astrocytes through transforming growth factor beta (TGFβ) signaling. This leads to activation of the innate neuroinflammatory system, changes in the extracellular matrix, and pathological plasticity. These changes ultimately result in dysfunction of the cortical circuit, lower seizure threshold, and spontaneous seizures. Blocking TGFβ signaling and its associated pro-inflammatory pathway can prevent this cascade of events, reduces neuroinflammation, repairs BBB dysfunction, and prevents post-injury epilepsy, as shown in experimental rodents. To further understand and assess BBB integrity in human epilepsy, we developed a novel imaging technique that quantitatively measures BBB permeability. Our findings have confirmed that BBB dysfunction is common in patients with drug-resistant epilepsy and can assist in identifying the ictal-onset zone prior to surgery. Current clinical studies are ongoing to explore the potential of targeting BBB dysfunction as a novel treatment approach and investigate its role in drug resistance, the spread of seizures, and comorbidities associated with epilepsy.

SeminarNeuroscience

Prefrontal mechanisms involved in learning distractor-resistant working memory in a dual task

Albert Compte
IDIBAPS
Nov 16, 2023

Working memory (WM) is a cognitive function that allows the short-term maintenance and manipulation of information when no longer accessible to the senses. It relies on temporarily storing stimulus features in the activity of neuronal populations. To preserve these dynamics from distraction it has been proposed that pre and post-distraction population activity decomposes into orthogonal subspaces. If orthogonalization is necessary to avoid WM distraction, it should emerge as performance in the task improves. We sought evidence of WM orthogonalization learning and the underlying mechanisms by analyzing calcium imaging data from the prelimbic (PrL) and anterior cingulate (ACC) cortices of mice as they learned to perform an olfactory dual task. The dual task combines an outer Delayed Paired-Association task (DPA) with an inner Go-NoGo task. We examined how neuronal activity reflected the process of protecting the DPA sample information against Go/NoGo distractors. As mice learned the task, we measured the overlap between the neural activity onto the low-dimensional subspaces that encode sample or distractor odors. Early in the training, pre-distraction activity overlapped with both sample and distractor subspaces. Later in the training, pre-distraction activity was strictly confined to the sample subspace, resulting in a more robust sample code. To gain mechanistic insight into how these low-dimensional WM representations evolve with learning we built a recurrent spiking network model of excitatory and inhibitory neurons with low-rank connections. The model links learning to (1) the orthogonalization of sample and distractor WM subspaces and (2) the orthogonalization of each subspace with irrelevant inputs. We validated (1) by measuring the angular distance between the sample and distractor subspaces through learning in the data. Prediction (2) was validated in PrL through the photoinhibition of ACC to PrL inputs, which induced early-training neural dynamics in well-trained animals. In the model, learning drives the network from a double-well attractor toward a more continuous ring attractor regime. We tested signatures for this dynamical evolution in the experimental data by estimating the energy landscape of the dynamics on a one-dimensional ring. In sum, our study defines network dynamics underlying the process of learning to shield WM representations from distracting tasks.

SeminarNeuroscience

Vocal emotion perception at millisecond speed

Ana Pinehiro
University of Lisbon
Oct 16, 2023

The human voice is possibly the most important sound category in the social landscape. Compared to other non-verbal emotion signals, the voice is particularly effective in communicating emotions: it can carry information over large distances and independent of sight. However, the study of vocal emotion expression and perception is surprisingly far less developed than the study of emotion in faces. Thereby, its neural and functional correlates remain elusive. As the voice represents a dynamically changing auditory stimulus, temporally sensitive techniques such as the EEG are particularly informative. In this talk, the dynamic neurocognitive operations that take place when we listen to vocal emotions will be specified, with a focus on the effects of stimulus type, task demands, and speaker and listener characteristics (e.g., age). These studies suggest that emotional voice perception is not only a matter of how one speaks but also of who speaks and who listens. Implications of these findings for the understanding of psychiatric disorders such as schizophrenia will be discussed.

SeminarNeuroscienceRecording

Adaptive deep brain stimulation to treat gait disorders in Parkinson's disease; Personalized chronic adaptive deep brain stimulation outperforms conventional stimulation in Parkinson's disease

Doris Wang, MD, PhD & Stephanie Cernera, PhD
University of California, San Francisco, USA
Aug 30, 2023

On Friday, August 31st we will host Stephanie Cernera & Doris Wang! Stephanie Cernera, PhD, is a postdoctoral research fellow in the Starr lab at University of California San Francisco. She will tell us about “Personalized chronic adaptive deep brain stimulation outperforms conventional stimulation in Parkinson’s Disease”. Doris Wang, MD, PhD, is a neurosurgeon and assistant professor at the University of California San Francisco. Apart from her scientific presentation about “Adaptive Deep Brain Stimulation to Treat Gait Disorders in Parkinson’s Disease”, she will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscience

Synaptic mechanisms of pattern completion in the hippocampal CA3 region

Peter Jonas
Institute of Science and Technology Austria, ISTA
Jul 26, 2023
SeminarNeuroscience

Why spikes?

Romaine Brette
Institut de la Vision
May 30, 2023

On a fast timescale, neurons mostly interact by short, stereotypical electrical impulses or spikes. Why? A common answer is that spikes are useful for long-distance communication, to avoid alterations while traveling along axons. But as it turns out, spikes are seen in many places outside neurons: in the heart, in muscles, in plants and even in protists. From these examples, it appears that action potentials mediate some form of coordinated action, a timed event. From this perspective, spikes should not be seen simply as noisy implementations of underlying continuous signals (a sort of analog-to-digital conversion), but rather as events or actions. I will give a number of examples of functional spike-based interactions in living systems.

SeminarNeuroscienceRecording

Feedback control in the nervous system: from cells and circuits to behaviour

Timothy O'Leary
Department of Engineering, University of Cambridge
May 15, 2023

The nervous system is fundamentally a closed loop control device: the output of actions continually influences the internal state and subsequent actions. This is true at the single cell and even the molecular level, where “actions” take the form of signals that are fed back to achieve a variety of functions, including homeostasis, excitability and various kinds of multistability that allow switching and storage of memory. It is also true at the behavioural level, where an animal’s motor actions directly influence sensory input on short timescales, and higher level information about goals and intended actions are continually updated on the basis of current and past actions. Studying the brain in a closed loop setting requires a multidisciplinary approach, leveraging engineering and theory as well as advances in measuring and manipulating the nervous system. I will describe our recent attempts to achieve this fusion of approaches at multiple levels in the nervous system, from synaptic signalling to closed loop brain machine interfaces.

SeminarNeuroscienceRecording

Why is 7T MRI indispensable in epilepsy now?

Maxime Guye
CRMBM Aix Marseille University
Apr 25, 2023

Identifying a structural brain lesion on MRI is the most important factor that correlates with seizure freedom after surgery in patients suffering from drug-resistant focal epilepsy. By providing better image contrast and higher spatial resolution, structural MRI at 7 Tesla (7T) can lead to lesion detection in about 25% of patients presenting with negative MRI at lower fields. In addition to a better detection/delineation/phenotyping of epileptogenic lesions, higher signal at ultra-high field also facilitates more detailed analyses of several functional and molecular alterations of tissues, susceptible to detect epileptogenic properties even in absence of visible lesions. These advantages but also the technical challenges of 7T MRI in practice will be presented and discussed.

SeminarNeuroscienceRecording

Causal Symptom Network Mapping Based on Lesions and Brain Stimulation; Converging Evidence about a Depression Circuit Using Causal Sources of Information

Michael D. Fox, MD, PhD & Prof. Shan Siddiqi, MD
Harvard Medical School & Brigham and Women's Hospital Boston
Mar 29, 2023

It’s our pleasure to announce that we will host Shan Siddiqi and Michael D. Fox on Thursday, March 30th at noon ET / 6PM CET. Shan Siddiqi, MD, is an Assistant Professor of Psychiatry at Harvard Medical School and the director of Psychiatric Neuromodulation Research at the Brigham and Women’s Hospital. Michael D. Fox, MD, PhD, is an Associate Professor of Neurology at Harvard Medical School and the founding director of the Center for Brain Circuit Therapeutics at the Brigham and Women’s Hospital. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

Effect of Different Influences on Temporal Error Monitoring

Tutku Öztel
Koç University, Istanbul
Mar 28, 2023

Metacognition has long been defined as “cognition about cognition”. One of its aspects is the error monitoring ability, which includes being aware of one’s own errors without external feedback. This ability is mostly investigated in two-alternative forced choice tasks, where the performance has all or none nature in terms of accuracy. The previous literature documents the effect of different influences on the error monitoring ability, such as working memory, feedback and sensorimotor involvement. However, these demonstrations fall short of generalizing to the real life scenarios where the errors often have a magnitude and a direction. To bridge this gap, recent studies showed that humans could keep track of the magnitude and the direction of their errors in temporal, spatial and numerical domains in two metrics: confidence and short-long/few-more judgements. This talk will cover how the documented effects that are obtained in the two alternative forced choices tasks apply to the temporal error monitoring ability. Finally, how magnitude and direction monitoring (i.e., confidence and short-long judgements) can be differentiated as the two indices of temporal error monitoring ability will be discussed.

SeminarNeuroscienceRecording

Behavioural Basis of Subjective Time Distortions

Franklenin Sierra
Max Planck Institute for Empirical Aesthetics, Germany
Mar 28, 2023

Precisely estimating event timing is essential for survival, yet temporal distortions are ubiquitous in our daily sensory experience. Here, we tested whether the relative position, duration, and distance in time of two sequentially-organized events—standard S, with constant duration, and comparison C, with duration varying trial-by-trial—are causal factors in generating temporal distortions. We found that temporal distortions emerge when the first event is shorter than the second event. Importantly, a significant interaction suggests that a longer inter-stimulus interval (ISI) helps to counteract such serial distortion effect only when the constant S is in the first position, but not if the unpredictable C is in the first position. These results imply the existence of a perceptual bias in perceiving ordered event durations, mechanistically contributing to distortion in time perception. Our results clarify the mechanisms generating time distortions by identifying a hitherto unknown duration-dependent encoding inefficiency in human serial temporal perception, something akin to a strong prior that can be overridden for highly predictable sensory events but unfolds for unpredictable ones.

SeminarNeuroscienceRecording

Are place cells just memory cells? Probably yes

Stefano Fusi
Columbia University, New York
Mar 21, 2023

Neurons in the rodent hippocampus appear to encode the position of the animal in physical space during movement. Individual ``place cells'' fire in restricted sub-regions of an environment, a feature often taken as evidence that the hippocampus encodes a map of space that subserves navigation. But these same neurons exhibit complex responses to many other variables that defy explanation by position alone, and the hippocampus is known to be more broadly critical for memory formation. Here we elaborate and test a theory of hippocampal coding which produces place cells as a general consequence of efficient memory coding. We constructed neural networks that actively exploit the correlations between memories in order to learn compressed representations of experience. Place cells readily emerged in the trained model, due to the correlations in sensory input between experiences at nearby locations. Notably, these properties were highly sensitive to the compressibility of the sensory environment, with place field size and population coding level in dynamic opposition to optimally encode the correlations between experiences. The effects of learning were also strongly biphasic: nearby locations are represented more similarly following training, while locations with intermediate similarity become increasingly decorrelated, both distance-dependent effects that scaled with the compressibility of the input features. Using virtual reality and 2-photon functional calcium imaging in head-fixed mice, we recorded the simultaneous activity of thousands of hippocampal neurons during virtual exploration to test these predictions. Varying the compressibility of sensory information in the environment produced systematic changes in place cell properties that reflected the changing input statistics, consistent with the theory. We similarly identified representational plasticity during learning, which produced a distance-dependent exchange between compression and pattern separation. These results motivate a more domain-general interpretation of hippocampal computation, one that is naturally compatible with earlier theories on the circuit's importance for episodic memory formation. Work done in collaboration with James Priestley, Lorenzo Posani, Marcus Benna, Attila Losonczy.

SeminarNeuroscienceRecording

Central place foraging: how insects anchor spatial information

Barbara Webb
University of Edinburgh
Mar 13, 2023

Many insect species maintain a nest around which their foraging behaviour is centered, and can use path integration to maintain an accurate estimate of their distance and direction (a vector) to their nest. Some species, such as bees and ants, can also store the vector information for multiple salient locations in the world, such as food sources, in a common coordinate system. They can also use remembered views of the terrain around salient locations or along travelled routes to guide return. Recent modelling of these abilities shows convergence on a small set of algorithms and assumptions that appear sufficient to account for a wide range of behavioural data, and which can be mapped to specific insect brain circuits. Notably, this does not include any significant topological knowledge: the insect does not need to recover the information (implicit in their vector memory) about the relationships between salient places; nor to maintain any connectedness or ordering information between view memories; nor to form any associations between views and vectors. However, there remains some experimental evidence not fully explained by these algorithms that may point towards the existence of a more complex or integrated mental map in insects.

SeminarNeuroscienceRecording

AI for Multi-centre Epilepsy Lesion Detection on MRI

Sophie Adler
Feb 28, 2023

Epilepsy surgery is a safe but underutilised treatment for drug-resistant focal epilepsy. One challenge in the presurgical evaluation of patients with drug-resistant epilepsy are patients considered “MRI negative”, i.e. where a structural brain abnormality has not been identified on MRI. A major pathology in “MRI negative” patients is focal cortical dysplasia (FCD), where lesions are often small or subtle and easily missed by visual inspection. In recent years, there has been an explosion in artificial intelligence (AI) research in the field of healthcare. Automated FCD detection is an area where the application of AI may translate into significant improvements in the presurgical evaluation of patients with focal epilepsy. I will provide an overview of our automated FCD detection work, the Multicentre Epilepsy Lesion Detection (MELD) project and how AI algorithms are beginning to be integrated into epilepsy presurgical planning at Great Ormond Street Hospital and elsewhere around the world. Finally, I will discuss the challenges and future work required to bring AI to the forefront of care for patients with epilepsy.

SeminarNeuroscienceRecording

Prox2+ and Runx3+ vagal sensory neurons regulate esophageal motility

Elijah Lowenstein
Birchmeier lab, Max Delbrück Center
Feb 28, 2023

Sensory neurons of the vagus nerve monitor distention and stretch in the gastrointestinal tract. We used genetically guided anatomical tracing, optogenetics and electrophysiology to identify and characterize two vagal sensory neuronal subtypes expressing Prox2 and Runx3. We show that these neuronal subtypes innervate the esophagus where they display regionalized innervation patterns. Electrophysiological analyses showed that they are both low threshold mechanoreceptors but possess different adaptation properties. Lastly, genetic ablation of Prox2 and Runx3 neurons demonstrated their essential roles for esophageal peristalsis and swallowing in freely behaving animals. Our work reveals the identity and function of the vagal neurons that provide mechanosensory feedback from the esophagus to the brain and could lead to better understanding and treatment of esophageal motility disorders.

SeminarPsychology

A Better Method to Quantify Perceptual Thresholds : Parameter-free, Model-free, Adaptive procedures

Julien Audiffren
University of Fribourg
Feb 28, 2023

The ‘quantification’ of perception is arguably both one of the most important and most difficult aspects of perception study. This is particularly true in visual perception, in which the evaluation of the perceptual threshold is a pillar of the experimental process. The choice of the correct adaptive psychometric procedure, as well as the selection of the proper parameters, is a difficult but key aspect of the experimental protocol. For instance, Bayesian methods such as QUEST, require the a priori choice of a family of functions (e.g. Gaussian), which is rarely known before the experiment, as well as the specification of multiple parameters. Importantly, the choice of an ill-fitted function or parameters will induce costly mistakes and errors in the experimental process. In this talk we discuss the existing methods and introduce a new adaptive procedure to solve this problem, named, ZOOM (Zooming Optimistic Optimization of Models), based on recent advances in optimization and statistical learning. Compared to existing approaches, ZOOM is completely parameter free and model-free, i.e. can be applied on any arbitrary psychometric problem. Moreover, ZOOM parameters are self-tuned, thus do not need to be manually chosen using heuristics (eg. step size in the Staircase method), preventing further errors. Finally, ZOOM is based on state-of-the-art optimization theory, providing strong mathematical guarantees that are missing from many of its alternatives, while being the most accurate and robust in real life conditions. In our experiments and simulations, ZOOM was found to be significantly better than its alternative, in particular for difficult psychometric functions or when the parameters when not properly chosen. ZOOM is open source, and its implementation is freely available on the web. Given these advantages and its ease of use, we argue that ZOOM can improve the process of many psychophysics experiments.

SeminarNeuroscienceRecording

Orientation selectivity in rodent V1: theory vs experiments

German Mato
CONICET, Bariloche
Feb 14, 2023

Neurons in the primary visual cortex (V1) of rodents are selective to the orientation of the stimulus, as in other mammals such as cats and monkeys. However, in contrast with those species, their neurons display a very different type of spatial organization. Instead of orientation maps they are organized in a “salt and pepper” pattern, where adjacent neurons have completely different preferred orientations. This structure has motivated both experimental and theoretical research with the objective of determining which aspects of the connectivity patterns and intrinsic neuronal responses can explain the observed behavior. These analysis have to take into account also that the neurons of the thalamus that send their outputs to the cortex have more complex responses in rodents than in higher mammals, displaying, for instance, a significant degree of orientation selectivity. In this talk we present work showing that a random feed-forward connectivity pattern, in which the probability of having a connection between a cortical neuron and a thalamic neuron depends only on the relative distance between them is enough explain several aspects of the complex phenomenology found in these systems. Moreover, this approach allows us to evaluate analytically the statistical structure of the thalamic input on the cortex. We find that V1 neurons are orientation selective but the preferred orientation of the stimulus depends on the spatial frequency of the stimulus. We disentangle the effect of the non circular thalamic receptive fields, finding that they control the selectivity of the time-averaged thalamic input, but not the selectivity of the time locked component. We also compare with experiments that use reverse correlation techniques, showing that ON and OFF components of the aggregate thalamic input are spatially segregated in the cortex.

SeminarNeuroscienceRecording

Children-Agent Interaction For Assessment and Rehabilitation: From Linguistic Skills To Mental Well-being

Micole Spitale
Department of Computer Science and Technology, University of Cambridge
Feb 6, 2023

Socially Assistive Robots (SARs) have shown great potential to help children in therapeutic and healthcare contexts. SARs have been used for companionship, learning enhancement, social and communication skills rehabilitation for children with special needs (e.g., autism), and mood improvement. Robots can be used as novel tools to assess and rehabilitate children’s communication skills and mental well-being by providing affordable and accessible therapeutic and mental health services. In this talk, I will present the various studies I have conducted during my PhD and at the Cambridge Affective Intelligence and Robotics Lab to explore how robots can help assess and rehabilitate children’s communication skills and mental well-being. More specifically, I will provide both quantitative and qualitative results and findings from (i) an exploratory study with children with autism and global developmental disorders to investigate the use of intelligent personal assistants in therapy; (ii) an empirical study involving children with and without language disorders interacting with a physical robot, a virtual agent, and a human counterpart to assess their linguistic skills; (iii) an 8-week longitudinal study involving children with autism and language disorders who interacted either with a physical or a virtual robot to rehabilitate their linguistic skills; and (iv) an empirical study to aid the assessment of mental well-being in children. These findings can inform and help the child-robot interaction community design and develop new adaptive robots to help assess and rehabilitate linguistic skills and mental well-being in children.

SeminarNeuroscienceRecording

Engineering an inhibitor-resistant human CSF1R variant for microglia replacement

Terhi Lohela
University of Helsinki
Jan 18, 2023
SeminarNeuroscienceRecording

Do large language models solve verbal analogies like children do?

Claire Stevenson
University of Amsterdam
Nov 16, 2022

Analogical reasoning –learning about new things by relating it to previous knowledge– lies at the heart of human intelligence and creativity and forms the core of educational practice. Children start creating and using analogies early on, making incredible progress moving from associative processes to successful analogical reasoning. For example, if we ask a four-year-old “Horse belongs to stable like chicken belongs to …?” they may use association and reply “egg”, whereas older children will likely give the intended relational response “chicken coop” (or other term to refer to a chicken’s home). Interestingly, despite state-of-the-art AI-language models having superhuman encyclopedic knowledge and superior memory and computational power, our pilot studies show that these large language models often make mistakes providing associative rather than relational responses to verbal analogies. For example, when we asked four- to eight-year-olds to solve the analogy “body is to feet as tree is to …?” they responded “roots” without hesitation, but large language models tend to provide more associative responses such as “leaves”. In this study we examine the similarities and differences between children's and six large language models' (Dutch/multilingual models: RobBERT, BERT-je, M-BERT, GPT-2, M-GPT, Word2Vec and Fasttext) responses to verbal analogies extracted from an online adaptive learning environment, where >14,000 7-12 year-olds from the Netherlands solved 20 or more items from a database of 900 Dutch language verbal analogies.

SeminarNeuroscience

Internally Organized Abstract Task Maps in the Mouse Medial Frontal Cortex

Mohamady El-Gaby
University of Oxford
Sep 27, 2022

New tasks are often similar in structure to old ones. Animals that take advantage of such conserved or “abstract” task structures can master new tasks with minimal training. To understand the neural basis of this abstraction, we developed a novel behavioural paradigm for mice: the “ABCD” task, and recorded from their medial frontal neurons as they learned. Animals learned multiple tasks where they had to visit 4 rewarded locations on a spatial maze in sequence, which defined a sequence of four “task states” (ABCD). Tasks shared the same circular transition structure (… ABCDABCD …) but differed in the spatial arrangement of rewards. As well as improving across tasks, mice inferred that A followed D (i.e. completed the loop) on the very first trial of a new task. This “zero-shot inference” is only possible if animals had learned the abstract structure of the task. Across tasks, individual medial Frontal Cortex (mFC) neurons maintained their tuning to the phase of an animal’s trajectory between rewards but not their tuning to task states, even in the absence of spatial tuning. Intriguingly, groups of mFC neurons formed modules of coherently remapping neurons that maintained their tuning relationships across tasks. Such tuning relationships were expressed as replay/preplay during sleep, consistent with an internal organisation of activity into multiple, task-matched ring attractors. Remarkably, these modules were anchored to spatial locations: neurons were tuned to specific task space “distances” from a particular spatial location. These newly discovered “Spatially Anchored Task clocks” (SATs), suggest a novel algorithm for solving abstraction tasks. Using computational modelling, we show that SATs can perform zero-shot inference on new tasks in the absence of plasticity and guide optimal policy in the absence of continual planning. These findings provide novel insights into the Frontal mechanisms mediating abstraction and flexible behaviour.

SeminarNeuroscienceRecording

Time as its own representation? Exploring a link between timing of cognition and time perception

Ishan Singhal
Indian Institute of Technology, Kanpur
Sep 27, 2022

The way we represent and perceive time has crucial implications for studying temporality in conscious experience. Contrasting positions posit that temporal information is separately abstracted out like any other perceptual property, or that time is represented through representations having temporal properties themselves. To add to this debate, we investigated alterations in felt time in conditions where only conscious visual experience is altered while a bistable figure remains physically unchanged. In this talk, I will discuss two studies that we have done in relation to answering this question. In study 1, we investigated whether perceptual switches in fixed intervals altered felt time. In three experiments we showed that a break in visual experience (via a perceptual switch) also leads to a break in felt time. In study 2, we are currently looking at figure-ground perception in ambigous displays. Here, in experiment 1 we show that differences in flicker frequencies on ambigous regions can induce figure-ground segregation. To see if a reverse complementarity exists for felt time, we ask participants to view ambigous regions as figure/ground and show that they have different temporal resolutions for the same region based on whether it is seen as figure or background. Overall, the two studies provide evidence for temporal mirroring and isomorphism in visual experience, arguing for a link between the timing of experience and time perception.

SeminarNeuroscienceRecording

Analogical retrieval across disparate task domains

Shir Dekel
The University of Sydney
Jul 13, 2022

Previous experiments have shown that a comparison of two written narratives highlights their shared relational structure, which in turn facilitates the retrieval of analogous narratives from the past (e.g., Gentner, Loewenstein, Thompson, & Forbus, 2009). However, analogical retrieval occurs across domains that appear more conceptually distant than merely different narratives, and the deepest analogies use matches in higher-order relational structure. The present study investigated whether comparison can facilitate analogical retrieval of higher-order relations across written narratives and abstract symbolic problems. Participants read stories which became retrieval targets after a delay, cued by either analogous stories or letter-strings. In Experiment 1 we replicated Gentner et al. who used narrative retrieval cues, and also found preliminary evidence for retrieval between narrative and symbolic domains. In Experiment 2 we found clear evidence that a comparison of analogous letter-string problems facilitated the retrieval of source stories with analogous higher-order relations. Experiment 3 replicated the retrieval results of Experiment 2 but with a longer delay between encoding and recall, and a greater number of distractor source stories. These experiments offer support for the schema induction account of analogical retrieval (Gentner et al., 2009) and show that the schemas abstracted from comparison of narratives can be transferred to non-semantic symbolic domains.

SeminarNeuroscienceRecording

The functional architecture of the human entorhinal-hippocampal circuitry

Xenia Grande
Düzel Lab, University Magdeburg & German Center for Neurodegenerative Diseases
Jul 5, 2022

Cognitive functions like episodic memory require the formation of cohesive representations. Critical for that process is the entorhinal-hippocampal circuitry’s interaction with cortical information streams and the circuitry’s inner communication. With ultra-high field functional imaging we investigated the functional architecture of the human entorhinal-hippocampal circuitry. We identified an organization that is consistent with convergence of information in anterior and lateral entorhinal subregions and the subiculum/CA1 border while keeping a second route specific for scene processing in a posterior-medial entorhinal subregion and the distal subiculum. Our findings agree with information flow along information processing routes which functionally split the entorhinal-hippocampal circuitry along its transversal axis. My talk will demonstrate how ultra-high field imaging in humans can bridge the gap between anatomical and electrophysiological findings in rodents and our understanding of human cognition. Moreover, I will point out the implications that basic research on functional architecture has for cognitive and clinical research perspectives.

SeminarNeuroscience

Ebselen: a lithium-mimetic without lithium side-effects?

Beata R. Godlewska
Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
Jun 30, 2022

Development of new medications for mental health conditions is a pressing need given the high proportion of people not responding to available treatments. We hope that presenting ebselen to a wider audience will inspire further studies on this promising agent with a benign side-effects profile. Laboratory research, animal research and human studies suggest that ebselen shares many features with the mood stabilising drug lithium, creating a promise of a drug that would have a similar clinical effect but without lithium’s troublesome side-effect profile and toxicity. Both drugs have a common biological target, inositol monophosphatase, whose inhibition is thought key to lithium’s therapeutic effect. Both drugs have neuroprotective action and reduce oxidative stress. In animal studies, ebselen affected neurotransmitters involved in the development of mental health symptoms, and in particular, produced effects of serotonin function very similar to lithium. Both ebselen and lithium share behavioural effects: antidepressant-like effects in rodent models of depression and decrease in behavioural impulsivity, a property associated with lithium's anti-suicidal action. Human neuropsychological studies support an antidepressant profile for ebselen based on its positive impact on emotional processing and reward seeking. Our group currently is exploring ebselen’s effects in patients with mood disorders. A completed ‘add-on’ clinical trial in mania showed ebselen’s superiority over placebo after three weeks of treatment. Our ongoing experimental research explores ebselen’s antidepressant profile in patients with treatment resistant depression. If successful, this will lead to a clinical trial of ebselen as an antidepressant augmentation agent, similar to lithium.

SeminarNeuroscienceRecording

Semantic Distance and Beyond: Interacting Predictors of Verbal Analogy Performance

Lara Jones
Wayne State University
Jun 22, 2022

Prior studies of A:B::C:D verbal analogies have identified several factors that affect performance, including the semantic similarity between source and target domains (semantic distance), the semantic association between the C-term and incorrect answers (distracter salience), and the type of relations between word pairs (e.g., categorical, compositional, and causal). However, it is unclear how these stimulus properties affect performance when utilized together. Moreover, how do these item factors interact with individual differences such as crystallized intelligence and creative thinking? Several studies reveal interactions among these item and individual difference factors impacting verbal analogy performance. For example, a three-way interaction demonstrated that the effects of semantic distance and distracter salience had a greater impact on performance for compositional and causal relations than for categorical ones (Jones, Kmiecik, Irwin, & Morrison, 2022). Implications for analogy theories and future directions are discussed.

SeminarNeuroscience

Zebrafish models help untangle genetic interactions in motor neuron degeneration

Sorana Ciura
Imagine Institute, Université de Paris
May 30, 2022

Due to high homology to the human genome and rapid development, zebrafish have been successfully used to model diseases of the neuromuscular system. In this seminar, I will present current advances in modeling genetic causes of Amyotrophic Lateral Sclerosis (ALS), the most common motor neuron degeneration and show how epistatic interaction studies in zebrafish have helped elucidate synergistic effects of major ALS genes and their cellular targets.

SeminarNeuroscience

MicroRNAs as targets in the epilepsies: hits, misses and complexes

David Henshall
The Royal College of Surgeons in Ireland
May 3, 2022

MicroRNAs are small noncoding RNAs that provide a critical layer of gene expression control. Individual microRNAs variably exert effects across networks of genes via sequence-specific binding to mRNAs, fine-tuning protein levels. This helps coordinate the timing and specification of cell fate transitions during brain development and maintains neural circuit function and plasticity by activity-dependent (re)shaping of synapses and the levels of neurotransmitter components. MicroRNA levels have been found to be altered in tissue from the epileptogenic zone resected from adults with drug-resistant focal epilepsy and this has driven efforts to explore their therapeutic potential, in particular using antisense oligonucleotide (ASOs) inhibitors termed antimirs. Here, we review the molecular mechanisms by which microRNAs control brain excitability and the latest progress towards a microRNA-based treatment for temporal lobe epilepsy. We also look at whether microRNA-based approaches could be used to treat genetic epilepsies, correcting individual genes or dysregulated pathways. Finally, we look at how cells have evolved to maximise the efficiency of the microRNA system via RNA editing, where single base changes is capable of altering the repertoire of genes under the control of a single microRNA. The findings improve our understanding of the molecular landscape of the epileptic brain and may lead to new therapies.

SeminarNeuroscienceRecording

Computation in the neuronal systems close to the critical point

Anna Levina
Universität Tübingen
Apr 28, 2022

It was long hypothesized that natural systems might take advantage of the extended temporal and spatial correlations close to the critical point to improve their computational capabilities. However, on the other side, different distances to criticality were inferred from the recordings of nervous systems. In my talk, I discuss how including additional constraints on the processing time can shift the optimal operating point of the recurrent networks. Moreover, the data from the visual cortex of the monkeys during the attentional task indicate that they flexibly change the closeness to the critical point of the local activity. Overall it suggests that, as we would expect from common sense, the optimal state depends on the task at hand, and the brain adapts to it in a local and fast manner.

SeminarNeuroscienceRecording

A transcriptomic axis predicts state modulation of cortical interneurons

Stephane Bugeon
Harris & Carandini's lab, UCL
Apr 26, 2022

Transcriptomics has revealed that cortical inhibitory neurons exhibit a great diversity of fine molecular subtypes, but it is not known whether these subtypes have correspondingly diverse activity patterns in the living brain. We show that inhibitory subtypes in primary visual cortex (V1) have diverse correlates with brain state, but that this diversity is organized by a single factor: position along their main axis of transcriptomic variation. We combined in vivo 2-photon calcium imaging of mouse V1 with a novel transcriptomic method to identify mRNAs for 72 selected genes in ex vivo slices. We classified inhibitory neurons imaged in layers 1-3 into a three-level hierarchy of 5 Subclasses, 11 Types, and 35 Subtypes using previously-defined transcriptomic clusters. Responses to visual stimuli differed significantly only across Subclasses, suppressing cells in the Sncg Subclass while driving cells in the other Subclasses. Modulation by brain state differed at all hierarchical levels but could be largely predicted from the first transcriptomic principal component, which also predicted correlations with simultaneously recorded cells. Inhibitory Subtypes that fired more in resting, oscillatory brain states have less axon in layer 1, narrower spikes, lower input resistance and weaker adaptation as determined in vitro and express more inhibitory cholinergic receptors. Subtypes firing more during arousal had the opposite properties. Thus, a simple principle may largely explain how diverse inhibitory V1 Subtypes shape state-dependent cortical processing.

SeminarNeuroscience

Neuromodulation of sleep integrity

Luís de Lecea
Stanford University
Apr 11, 2022

The arousal construct underlies a spectrum of behaviors that include sleep, exploration, feeding, sexual activity and adaptive stress. Pathological arousal conditions include stress, anxiety disorders, and addiction. The dynamics between arousal state transitions are modulated by norepinephrine neurons in the locus coeruleus, histaminergic neurons in the hypothalamus, dopaminergic neurons in the mesencephalon and cholinergic neurons in the basal forebrain. The hypocretin/orexin system in the lateral hypothalamus I will also present a new mechanism underlying sleep fragmentation during aging. Hcrt neurons are hyperexcitable in aged mice. We identify a potassium conductance known as the M-current, as a critical player in maintaining excitability of Hcrt neurons. Genetic disruption of KCNQ channels in Hcrt neurons of young animals results in sleep fragmentation. In contrast, treatment of aged animals with a KCNQ channel opener restores sleep/wake architecture. These data point to multiple circuits modulating sleep integrity across lifespan.

SeminarNeuroscience

Unravelling bistable perception from human intracranial recordings

Rodica Curtu
UIOWA
Apr 5, 2022

Discovering dynamical patterns from high fidelity timeseries is typically a challenging task. In this talk, the timeseries data consist of neural recordings taken from the auditory cortex of human subjects who listened to sequences of repeated triplets of tones and reported their perception by pressing a button. Subjects reported spontaneous alternations between two auditory perceptual states (1-stream and 2-streams). We discuss a data-driven method, which leverages time-delayed coordinates, diffusion maps, and dynamic mode decomposition, to identify neural features that correlated with subject-reported switching between perceptual states.

SeminarNeuroscience

The functional connectome across temporal scales

Sepideh Sadaghiani
Assistant Professor, University of Illinois, USA
Mar 29, 2022

The view of human brain function has drastically shifted over the last decade, owing to the observation that the majority of brain activity is intrinsic rather than driven by external stimuli or cognitive demands. Specifically, all brain regions continuously communicate in spatiotemporally organized patterns that constitute the functional connectome, with consequences for cognition and behavior. In this talk, I will argue that another shift is underway, driven by new insights from synergistic interrogation of the functional connectome using different acquisition methods. The human functional connectome is typically investigated with functional magnetic resonance imaging (fMRI) that relies on the indirect hemodynamic signal, thereby emphasizing very slow connectivity across brain regions. Conversely, more recent methodological advances demonstrate that fast connectivity within the whole-brain connectome can be studied with real-time methods such as electroencephalography (EEG). Our findings show that combining fMRI with scalp or intracranial EEG in humans, especially when recorded concurrently, paints a rich picture of neural communication across the connectome. Specifically, the connectome comprises both fast, oscillation-based connectivity observable with EEG, as well as extremely slow processes best captured by fMRI. While the fast and slow processes share an important degree of spatial organization, these processes unfold in a temporally independent manner. Our observations suggest that fMRI and EEG may be envisaged as capturing distinct aspects of functional connectivity, rather than intermodal measurements of the same phenomenon. Infraslow fluctuation-based and rapid oscillation-based connectivity of various frequency bands constitute multiple dynamic trajectories through a shared state space of discrete connectome configurations. The multitude of flexible trajectories may concurrently enable functional connectivity across multiple independent sets of distributed brain regions.

SeminarNeuroscience

Predictions, Perception, and Psychosis

Philipp Sterzer
Charite
Mar 28, 2022
SeminarNeuroscience

Chemogenetic therapies for epilepsy: promises and challenges

Robrecht Raedt
Ghent University
Mar 15, 2022

Expression of Gi-coupled designer receptors exclusively activated by designer drugs (DREADDs) on excitatory hippocampal neurons in the hippocampus represents a potential new therapeutic strategy for drug-resistant epilepsy. During my talk I will demonstrate that we obtained potent suppression of spontaneous epileptic seizures in mouse and a rat models for temporal lobe epilepsy using different DREADD ligands, up to one year after viral vector expression. The chemogenetic approach clearly outperforms the seizure-suppressing efficacy of currently existing anti-epileptic drugs. Besides the promises, I will also present some of the challenges associated with a potential chemogenetic therapy, including constitutive DREADD activity, tolerance effects, risk for toxicity, paradoxical excitatory effects in non-epileptic hippocampal tissue.

SeminarNeuroscience

Emerging Treatment Options in Psychiatry

Erik Wong
University of British Columbia
Feb 27, 2022

The World Health Organization (WHO) estimates that untreated mental disorders accountfor 13% of the total global burden of disease, and by 2030, depression alone will be the leadingcause of disability around the world – outpacing heart disease, cancer, and HIV. This grim pictureis further compounded by the mental health burden delivered by the coronavirus pandemic.The lack of novel treatment options in psychiatry is restricted by a limited understanding in theneuroscience basis of mental disorders, availability of relevant biomarkers, poor predictability inanimal models, and high failure rates in psychiatric drug development. However, theannouncement in 2019 from the Federal Drug Administration (FDA) for approvals of newinterventions for treatment-resistant depression (intranasal esketamine) and postpartumdepression (i.v. brexanolone), demand critical attention. Novel public-private partnerships indrug discovery, new translational data on co-morbid biology, in particular the ascendance ofpsycho-immunology, have highlighted the arrival of a new frontier in biological psychiatryresearch for depressive disorders.

SeminarNeuroscience

The Role of Cerebrovascular Pathology in Aging and Neurodegenerative Disease Populations

Mahsa Dadar
Assistant Professor, Department of Psychiatry, McGill University, Canada
Feb 22, 2022

Late-life cognitive impairment and dementia are heterogeneous and multifactorial conditions driven by a combination of genetic, vascular, and lifestyle-related factors. More than 75% of patients with dementia have evidence of cerebrovascular pathology at autopsy. Cerebrovascular disease lesions can be detected on structural MRI and used as biomarkers to determine the extent of cerebrovascular pathology. These biomarkers are associated with cognitive difficulties and increase the risk of dementia for the same level of neurodegenerative pathology. Given that some of the risk factors for cerebrovascular disease are potentially modifiable, identifying the role of cerebrovascular pathology in aging and neurodegenerative disease populations opens a window for prevention of cognitive decline and dementia.

SeminarNeuroscienceRecording

How does the metabolically-expensive mammalian brain adapt to food scarcity?

Zahid Padamsey
Rochefort lab, University of Edinburgh
Feb 22, 2022

Information processing is energetically expensive. In the mammalian brain, it is unclear how information coding and energy usage are regulated during food scarcity. I addressed this in the visual cortex of awake mice using whole-cell recordings and two-photon imaging to monitor layer 2/3 neuronal activity and ATP usage. I found that food restriction reduced synaptic ATP usage by 29% through a decrease in AMPA receptor conductance. Neuronal excitability was nonetheless preserved by a compensatory increase in input resistance and a depolarized resting membrane potential. Consequently, neurons spiked at similar rates as controls, but spent less ATP on underlying excitatory currents. This energy-saving strategy had a cost since it amplified the variability of visually-evoked subthreshold responses, leading to a 32% broadening in orientation tuning and impaired fine visual discrimination. This reduction in coding precision was associated with reduced levels of the fat mass-regulated hormone leptin and was restored by exogenous leptin supplementation. These findings reveal novel mechanisms that dynamically regulate energy usage and coding precision in neocortex.

SeminarNeuroscienceRecording

The effect of gravity on the perception of distance and self-motion: a multisensory perspective

Laurence Harris
Centre for Vision Research, York University, Toronto
Feb 9, 2022

Gravity is a constant in our lives. It provides an internalized reference to which all other perceptions are related. We can experimentally manipulate the relationship between physical gravity with other cues to the direction of “up” using virtual reality - with either HMDs or specially built tilting environments - to explore how gravity contributes to perceptual judgements. The effect of gravity can also be cancelled by running experiments on the International Space Station in low Earth orbit. Changing orientation relative to gravity - or even just perceived orientation – affects your perception of how far away things are (they appear closer when supine or prone). Cancelling gravity altogether has a similar effect. Changing orientation also affects how much visual motion is needed to perceive a particular travel distance (you need less when supine or prone). Adapting to zero gravity has the opposite effect (you need more). These results will be discussed in terms of their practical consequences and the multisensory processes involved, in particular the response to visual-vestibular conflict.

SeminarNeuroscience

Separable pupillary signatures of perception and action during perceptual multistability

Jan Brascamp
Michigan State University
Jan 25, 2022

The pupil provides a rich, non-invasive measure of the neural bases of perception and cognition, and has been of particular value in uncovering the role of arousal-linked neuromodulation, which alters cortical processing as well as pupil size. But pupil size is subject to a multitude of influences, which complicates unique interpretation. We measured pupils of observers experiencing perceptual multistability -- an ever-changing subjective percept in the face of unchanging but inconclusive sensory input. In separate conditions the endogenously generated perceptual changes were either task-relevant or not, allowing a separation between perception-related and task-related pupil signals. Perceptual changes were marked by a complex pupil response that could be decomposed into two components: a dilation tied to task execution and plausibly indicative of an arousal-linked noradrenaline surge, and an overlapping constriction tied to the perceptual transient and plausibly a marker of altered visual cortical representation. Constriction, but not dilation, amplitude systematically depended on the time interval between perceptual changes, possibly providing an overt index of neural adaptation. These results show that the pupil provides a simultaneous reading on interacting but dissociable neural processes during perceptual multistability, and suggest that arousal-linked neuromodulation shapes action but not perception in these circumstances. This presentation covers work that was published in e-life

SeminarNeuroscience

Stress deceleration theory: chronic adolescent stress exposure results in decelerated neurobehavioral maturation

Kshitij Jadhav
University of Cambridge
Jan 18, 2022

Normative development in adolescence indicates that the prefrontal cortex is still under development thereby unable to exert efficient top-down inhibitory control on subcortical regions such as the basolateral amygdala and the nucleus accumbens. This imbalance in the developmental trajectory between cortical and subcortical regions is implicated in expression of the prototypical impulsive, compulsive, reward seeking and risk-taking adolescent behavior. Here we demonstrate that a chronic mild unpredictable stress procedure during adolescence in male Wistar rats arrests the normal behavioral maturation such that they continue to express adolescent-like impulsive, hyperactive, and compulsive behaviors into late adulthood. This arrest in behavioral maturation is associated with the hypoexcitability of prelimbic cortex (PLC) pyramidal neurons and reduced PLC-mediated synaptic glutamatergic control of BLA and nucleus accumbens core (NAcC) neurons that lasts late into adulthood. At the same time stress exposure in adolescence results in the hyperexcitability of the BLA pyramidal neurons sending stronger glutamatergic projections to the NAcC. Chemogenetic reversal of the PLC hypoexcitability decreased compulsivity and improved the expression of goal-directed behavior in rats exposed to stress during adolescence, suggesting a causal role for PLC hypoexcitability in this stress-induced arrested behavioral development. (https://www.biorxiv.org/content/10.1101/2021.11.21.469381v1.abstract)

SeminarNeuroscienceRecording

The GluN2A Subunit of the NMDA Receptor and Parvalbumin Interneurons: A Possible Role in Interneuron Development

Steve Traynelis & Chad Camp
Emory University School of Medicine
Jan 18, 2022

N-methyl-D-aspartate receptors (NMDARs) are excitatory glutamate-gated ion channels that are expressed throughout the central nervous system. NMDARs mediate calcium entry into cells, and are involved in a host of neurological functions. The GluN2A subunit, encoded by the GRIN2A gene, is expressed by both excitatory and inhibitory neurons, with well described roles in pyramidal cells. By using Grin2a knockout mice, we show that the loss of GluN2A signaling impacts parvalbumin-positive (PV) GABAergic interneuron function in hippocampus. Grin2a knockout mice have 33% more PV cells in CA1 compared to wild type but similar cholecystokinin-positive cell density. Immunohistochemistry and electrophysiological recordings show that excess PV cells do eventually incorporate into the hippocampal network and participate in phasic inhibition. Although the morphology of Grin2a knockout PV cells is unaffected, excitability and action-potential firing properties show age-dependent alterations. Preadolescent (P20-25) PV cells have an increased input resistance, longer membrane time constant, longer action-potential half-width, a lower current threshold for depolarization-induced block of action-potential firing, and a decrease in peak action-potential firing rate. Each of these measures are corrected in adulthood, reaching wild type levels, suggesting a potential delay of electrophysiological maturation. The circuit and behavioral implications of this age-dependent PV interneuron malfunction are unknown. However, neonatal Grin2a knockout mice are more susceptible to lipopolysaccharide and febrile-induced seizures, consistent with a critical role for early GluN2A signaling in development and maintenance of excitatory-inhibitory balance. These results could provide insights into how loss-of-function GRIN2A human variants generate an epileptic phenotypes.

SeminarNeuroscience

Neural Codes for Natural Behaviors in Flying Bats

Nachum Ulanovsky
Weizmann Institute
Jan 12, 2022

This talk will focus on the importance of using natural behaviors in neuroscience research – the “Natural Neuroscience” approach. I will illustrate this point by describing studies of neural codes for spatial behaviors and social behaviors, in flying bats – using wireless neurophysiology methods that we developed – and will highlight new neuronal representations that we discovered in animals navigating through 3D spaces, or in very large-scale environments, or engaged in social interactions. In particular, I will discuss: (1) A multi-scale neural code for very large environments, which we discovered in bats flying in a 200-meter long tunnel. This new type of neural code is fundamentally different from spatial codes reported in small environments – and we show theoretically that it is superior for representing very large spaces. (2) Rapid modulation of position × distance coding in the hippocampus during collision-avoidance behavior between two flying bats. This result provides a dramatic illustration of the extreme dynamism of the neural code. (3) Local-but-not-global order in 3D grid cells – a surprising experimental finding, which can be explained by a simple physics-inspired model, which successfully describes both 3D and 2D grids. These results strongly argue against many of the classical, geometrically-based models of grid cells. (4) I will also briefly describe new results on the social representation of other individuals in the hippocampus, in a highly social multi-animal setting. The lecture will propose that neuroscience experiments – in bats, rodents, monkeys or humans – should be conducted under evermore naturalistic conditions.

SeminarNeuroscienceRecording

Distance-tuned neurons drive specialized path integration calculations in medial entorhinal cortex

Alexander Attinger
Giocomo lab, Stanford University
Jan 11, 2022

During navigation, animals estimate their position using path integration and landmarks, engaging many brain areas. Whether these areas follow specialized or universal cue integration principles remains incompletely understood. We combine electrophysiology with virtual reality to quantify cue integration across thousands of neurons in three navigation-relevant areas: primary visual cortex (V1), retrosplenial cortex (RSC), and medial entorhinal cortex (MEC). Compared with V1 and RSC, path integration influences position estimates more in MEC, and conflicts between path integration and landmarks trigger remapping more readily. Whereas MEC codes position prospectively, V1 codes position retrospectively, and RSC is intermediate between the two. Lowered visual contrast increases the influence of path integration on position estimates only in MEC. These properties are most pronounced in a population of MEC neurons, overlapping with grid cells, tuned to distance run in darkness. These results demonstrate the specialized role that path integration plays in MEC compared with other navigation-relevant cortical areas.

SeminarNeuroscienceRecording

Deforming the metric of cognitive maps distorts memory

Jacob Bellmund
Doeller lab, MPI CBS and the Kavli Institute
Jan 11, 2022

Environmental boundaries anchor cognitive maps that support memory. However, trapezoidal boundary geometry distorts the regular firing patterns of entorhinal grid cells proposedly providing a metric for cognitive maps. Here, we test the impact of trapezoidal boundary geometry on human spatial memory using immersive virtual reality. Consistent with reduced regularity of grid patterns in rodents and a grid-cell model based on the eigenvectors of the successor representation, human positional memory was degraded in a trapezoid compared to a square environment; an effect particularly pronounced in the trapezoid’s narrow part. Congruent with spatial frequency changes of eigenvector grid patterns, distance estimates between remembered positions were persistently biased; revealing distorted memory maps that explained behavior better than the objective maps. Our findings demonstrate that environmental geometry affects human spatial memory similarly to rodent grid cell activity — thus strengthening the putative link between grid cells and behavior along with their cognitive functions beyond navigation.

SeminarNeuroscienceRecording

Neural signature for accumulated evidence underlying temporal decisions

Nir Ofir
The Hebrew University of Jerusalem
Dec 15, 2021

Cognitive models of timing often include a pacemaker analogue whose ticks are accumulated to form an internal representation of time, and a threshold that determines when a target duration has elapsed. However, clear EEG manifestations of these abstract components have not yet been identified. We measured the EEG of subjects while they performed a temporal bisection task in which they were requested to categorize visual stimuli as short or long in duration. We report an ERP component whose amplitude depends monotonically on the stimulus duration. The relation of the ERP amplitude and stimulus duration can be captured by a simple model, adapted from a known drift-diffusion model for time perception. It includes a noisy accumulator that starts with the stimulus onset and a threshold. If the threshold is reached during stimulus presentation, the stimulus is categorized as "long", otherwise the stimulus is categorized as "short". At the stimulus offset, a response proportional to the distance to the threshold is emitted. This simple model has two parameters that fit both the behavior and ERP amplitudes recorded in the task. Two subsequent experiments replicate and extend this finding to another modality (touch) as well as to different time ranges (subsecond and suprasecond), establishing the described ERP component as a useful handle on the cognitive processes involved in temporal decisions.

SeminarNeuroscience

Scaffolding up from Social Interactions: A proposal of how social interactions might shape learning across development

Sarah Gerson
Cardiff University
Dec 8, 2021

Social learning and analogical reasoning both provide exponential opportunities for learning. These skills have largely been studied independently, but my future research asks how combining skills across previously independent domains could add up to more than the sum of their parts. Analogical reasoning allows individuals to transfer learning between contexts and opens up infinite opportunities for innovation and knowledge creation. Its origins and development, so far, have largely been studied in purely cognitive domains. Constraining analogical development to non-social domains may mistakenly lead researchers to overlook its early roots and limit ideas about its potential scope. Building a bridge between social learning and analogy could facilitate identification of the origins of analogical reasoning and broaden its far-reaching potential. In this talk, I propose that the early emergence of social learning, its saliency, and its meaningful context for young children provides a springboard for learning. In addition to providing a strong foundation for early analogical reasoning, the social domain provides an avenue for scaling up analogies in order to learn to learn from others via increasingly complex and broad routes.

SeminarNeuroscienceRecording

Neural representations of space in the hippocampus of a food-caching bird

Hannah Payne
Aronov lab, Columbia University
Nov 30, 2021

Spatial memory in vertebrates requires brain regions homologous to the mammalian hippocampus. Between vertebrate clades, however, these regions are anatomically distinct and appear to produce different spatial patterns of neural activity. We asked whether hippocampal activity is fundamentally different even between distant vertebrates that share a strong dependence on spatial memory. We studied tufted titmice – food-caching birds capable of remembering many concealed food locations. We found mammalian-like neural activity in the titmouse hippocampus, including sharp-wave ripples and anatomically organized place cells. In a non-food-caching bird species, spatial firing was less informative and was exhibited by fewer neurons. These findings suggest that hippocampal circuit mechanisms are similar between birds and mammals, but that the resulting patterns of activity may vary quantitatively with species-specific ethological needs.

SeminarNeuroscience

Neural network models of binocular depth perception

Paul Hibbard
University of Essex
Nov 30, 2021

Our visual experience of living in a three-dimensional world is created from the information contained in the two-dimensional images projected into our eyes. The overlapping visual fields of the two eyes mean that their images are highly correlated, and that the small differences that are present represent an important cue to depth. Binocular neurons encode this information in a way that both maximises efficiency and optimises disparity tuning for the depth structures that are found in our natural environment. Neural network models provide a clear account of how these binocular neurons encode the local binocular disparity in images. These models can be expanded to multi-layer models that are sensitive to salient features of scenes, such as the orientations and discontinuities between surfaces. These deep neural network models have also shown the importance of binocular disparity for the segmentation of images into separate objects, in addition to the estimation of distance. These results demonstrate the usefulness of machine learning approaches as a tool for understanding biological vision.

ePoster

Bimodal multistability during perceptual detection in the ventral premotor cortex

Bernardo Andrade-Ortega, Sergio Parra, Antonio Zainos, Héctor Díaz, Ranulfo Romo, Lucas Bayones, Roman Rossi-Pool

Bernstein Conference 2024

ePoster

Bistability at the cellular level promotes robust and tunable criticality at the circuit level

Caroline Dejace, Pierre Sacré

Bernstein Conference 2024

ePoster

Short-Distance Connections Enhance Neural Network Dynamics

Mohmmad Sharif Hussainyar, Dong Li, Claus Hilgetag

Bernstein Conference 2024

ePoster

Comparing noisy neural population dynamics using optimal transport distances

Amin Nejatbakhsh, Victor Geadah, Alex Williams, David Lipshutz

COSYNE 2025

ePoster

Tracking the distance to criticality across the mouse visual hierarchy

Brendan Harris, Leonardo Gollo, Ben Fulcher

COSYNE 2025

ePoster

Visual circuitry for distance estimation in Drosophila

Elizabeth Wu, Joseph Shomar, Braedyn Au, Kate Maier, Baohua Zhou, Natalia Matos, Garrett Sager, Gustavo Santana, Ryosuke Tanaka, Damon Clark

COSYNE 2025

ePoster

Acoustical distance to the average voice modulates neural tuning in the macaque voice patches

Yoan Esposito, Margherita Giamundo, Régis Trapeau, Luc Renaud, Thomas G. Brochier, Pascal Belin

FENS Forum 2024

ePoster

Active tool-use training in near and far distances does not change time perception in peripersonal or far space

Amir Jahanian Najafabadi, Christoph Kayser

FENS Forum 2024

ePoster

Antidepressant-like effect of curcumin in olfactory bulbectomized model of depression in male Wistar albino rats: Antidepressant behavior screening tests

Sandip Shah, Sarun Koirala, Laxman Khanal

FENS Forum 2024

ePoster

Astrocyte noradrenaline α-1A receptor activation induces changes to inhibitory synaptic transmission in the hippocampus and reduces the frequency of pharmacoresistant spontaneous seizures

Marcus Dyer, Sofie Bournons, Jérôme Wahis, Matthew Holt, Raedt Robrecht, Ilse Smolders, Dimitri De Bundel

FENS Forum 2024

ePoster

Behavioral sensitization and tolerance induced by repeated treatment with ketamine enantiomers in male Wistar rats

Kristian Elersič, Anamarija Banjac, Marko Živin, Maja Zorović

FENS Forum 2024

ePoster

A bistable inhibitory optoGPCR for multiplexed optogenetic control of neural circuits

Jonas Wietek, Adrianna Nozownik, Mauro Pulin, Inbar Saraf-Sinik, Noa Matosevich, Raajaram Gowrishankar, Asaf Gat, Daniela Malan, Bobbie J. Brown, Julien Dine, Bibi Nusreen Imambocus, Rivka Levy, Kathrin Sauter, Anna Litvin, Noa Regev, Suraj Subramaniam, Khalid Abrera, Dustin Summarli, Eva Madeline Goren, Gili Mizrachi, Eyal Bitton, Asaf Benjamin, Bryan A. Copits, Philipp Sasse, Benjamin R. Rost, Dietmar Schmitz, Michael R. Bruchas, Peter Soba, Meital Oren-Suissa, Yuval Nir, J. Simon Wiegert, Ofer Yizhar

FENS Forum 2024

ePoster

Breakdown of bistability in cortical synchronization dynamics characterizes early stages of Alzheimer’s disease

Ehtasham Javed, Sheng H Wang, Isabel Suárez-Méndez, Gianluca Susi, Satu Palva, Fernando Maestú, Matias Palva

FENS Forum 2024

ePoster

Chemogenetic modulation of CX3CR1+ microglia in the intrahippocampal kainic acid mouse model of drug-resistant temporal lobe epilepsy

Jo Bossuyt, Ilse Smolders

FENS Forum 2024

ePoster

Chronic unpredictable sleep disruption induces changes in locomotor activity, metabolism, and inflammation in Wistar rats

Heather Macpherson, Roger Varela, Sebastian McCullough, Tristan Houghton, Isha Chawla, Ning Wang, Xiaoying Cui, Susannah Tye

FENS Forum 2024

ePoster

Circadian clock in choroid plexus is resistant to immune challenge

Tereza Dockal, Pavel Houdek, Martin Sladek, Kateryna Semenovykh, Alena Sumova

FENS Forum 2024

ePoster

Computational model-based analysis of spatial navigation strategies under stress and uncertainty using place, distance, and border cells

Yanran Qiu, Shiqi Wang, Jiachuan Wang, Wenyuan Zhu, Yuchen Cheng, Beste Aydemir, Wulfram Gerstner, Carmen Sandi, Gediminas Luksys

FENS Forum 2024

ePoster

Driving effect of distal surround stimuli on primary visual cortex firing rates

Nisa Cuevas Vicente, Boris Sotomayor-Gómez, Athanasia Tzanou, Ana Broggini, Martin Vinck

FENS Forum 2024

ePoster

Dietary restriction during adolescence improves the memory performance of old female Wistar rats in an onset- and duration-dependent manner

Andjela Vukojevic, Milica Prvulovic, Aleksandra Mladenovic, Srdjan Sokanovic, Valentina Simeunovic, Milena Jovic, Desanka Milanovic, Smilja Todorovic

FENS Forum 2024

ePoster

Development and testing of a novel, wirelessly powered telemeter for simultaneous optogenetic stimulation and EEG recording in adult Wistar rats

Bethan Rees, Stuart Greenhill, Phil Griffiths

FENS Forum 2024

ePoster

Differential impact of calorie restriction on memory and mTOR signaling in aging female Wistar rats

Milica Prvulovic, Smilja Todorovic, Desanka Milanovic, Valentina Simeunovic, Andjela Vukojevic, Milena Jovic, Srdjan Sokanovic, Aleksandra Mladenovic

FENS Forum 2024

ePoster

Can dynamic causal modelling (DCM) identify multistable neural circuits for decision-making?

Amin Azimi, Abdoreza Asadpour, KongFatt Wong-Lin

FENS Forum 2024

ePoster

The effect of chronic monosodium glutamate consumption on hippocampal dendrite morphology in Wistar and genetic absence epileptic (GAERS) rats

Sevdenur Yazi, Berna Ozen, Idil Dokuz, Rozerin Deniz Gulmez, Dilba Danis, Turgay Karaman, Sevval Nazli Sayan, Tarik Emre Gokirmak, Ozlem Kirazli, Umit Suleyman Sehirli, Hasan Raci Yananli

FENS Forum 2024

ePoster

Hippocampal place cells can map space using distal auditory cues

Laura Dolón Vera, Denise Manahan-Vaughan

FENS Forum 2024

ePoster

Hippocampal plasticity in the Wistar-Kyoto rat: Effects of chronic mild stress, acute and chronic ketamine treatment

Vincent Loizeau, Sylvain Hugel, Robin Kuster, Alexandra Barbelivien, Lucas Lecourtier

FENS Forum 2024

ePoster

Histaminergic circadian modulation of mouse retinal output in vivo

Matteo Tripodi, Dmitry Molotkov, Hiroki Asari

FENS Forum 2024

ePoster

HOISDF: Estimating hand-object interactions from a single camera via global signed distance fields

Haozhe Qi, Chen Zhao, Mthieu Salzman, Alexander Mathis

FENS Forum 2024

ePoster

Impact of social distancing on willingness to exert effort in mice of both sexes: Studies of dopamine manipulations

Paula Matas Navarro, Régulo Olivares-García, Andrea Martínez-Verdú, Carla Carratalá-Ros, Berta Catalán-Bernabeu, John D. Salamone, Mercè Correa

FENS Forum 2024

ePoster

Investigating the role for the neuromodulator histamine in the development of the bed nucleus of the stria terminalis (BNST)

Yasmin Cras, Tommas Ellender

FENS Forum 2024

ePoster

Investigation of GABAergic system in treatment-resistant depression-related cognitive decline in different age

Chi-Wei Lee, Yang Tzu-Jung, Chi Hsiang, Wu Ching-Yao, Chia Shu-Jui, Li Cheng-Ta, Lin Hui-Ching

FENS Forum 2024

ePoster

The kainic acid induced status epilepticus: Comparative study of the hippocampus ultrastructure in Wistar rats

Irine Sharikadze, Nadezhda Japaridze, Fuad Rzayev, Eldar Gasimov, Mzia Zhvania

FENS Forum 2024

ePoster

Ketamine exerts differential effects on implicit and explicit memory processes in adult Wistar rats

Bahar Yüksel, Zeynep Sen, Gunes Unal

FENS Forum 2024

ePoster

Modifying factors of the insulin-induced stress studied in Wistar rats

Evelin Szabo, Prabhat Kumar, Anita Kovacs, Dora Zelena

FENS Forum 2024

ePoster

Motor neuroprosthetic control by Wistar rats in a one-dimensional two-target reaching task

Syed Muhammad Talha Zaidi, Hasan Berke Bilki, Halise Erten, Samet Kocatürk, Tunçer Baykaş, Mehmet Kocatürk

FENS Forum 2024

ePoster

Multisession electric stimulation of the auditory cortex prevents cortical aging in an age-related hearing loss Wistar rat model

Inés S. Fernández del Campo, Antonio Fuente Juan, Iván Díaz, Ignacio Plaza, Miguel A. Merchán

FENS Forum 2024

ePoster

Myeloid cells coordinately induce glioma cell-intrinsic and -extrinsic pathways for chemoresistance via GP130 signaling

Roland Kälin, Jiying Cheng, Min Li, Edyta Motta, Deivi Barci, Wangyang Song, Ding Zhou, Gen Li, Brian D. Vaillant, Hiroshi Katayama, Krishna P. L. B Bhat, Charlotte Flüh, Rainer Glass

FENS Forum 2024

ePoster

Orexin as a neuropsychological basis for temptation-resistant voluntary exercise

Alexander Tesmer, Xinyang Li, Eva Bracey, Cyra Schmandt, Rafael Polania, Daria Peleg-Raibstein, Denis Burdakov

FENS Forum 2024

ePoster

Spine synapses newly formed during motor learning accompany more distant perisynaptic astrocytic processes compared to stable synapses in mouse primary motor cortex

Mohammed Youssef, Jaerin Sohn, Estilla Toth, Christopher K Salmon, Yasuo Kawaguchi, Yoshiyuki Kubota

FENS Forum 2024

ePoster

Distant mild traumatic brain injury: a review of electrophysiological and imaging findings at late times after concussion

Tomasz Kuliński

Neuromatch 5

ePoster

‘What a Mistake!’: Prediction error modulates explicit and visuomotor predictions in virtual reality

Yonatan Stern

Neuromatch 5