Labeling
labeling
Consolidation of remote contextual memory in the neocortical memory engram
Recent studies identified memory engram neurons, a neuronal population that is recruited by initial learning and is reactivated during memory recall. Memory engram neurons are connected to one another through memory engram synapses in a distributed network of brain areas. Our central hypothesis is that an associative memory is encoded and consolidated by selective strengthening of engram synapses. We are testing this hypothesis, using a combination of engram cell labeling, optogenetic/chemogenetic, electrophysiological, and virus tracing approaches in rodent models of contextual fear conditioning. In this talk, I will discuss our findings on how synaptic plasticity in memory engram synapses contributes to the acquisition and consolidation of contextual fear memory in a distributed network of the amygdala, hippocampus, and neocortex.
Enhancing Qualitative Coding with Large Language Models: Potential and Challenges
Qualitative coding is the process of categorizing and labeling raw data to identify themes, patterns, and concepts within qualitative research. This process requires significant time, reflection, and discussion, often characterized by inherent subjectivity and uncertainty. Here, we explore the possibility to leverage large language models (LLM) to enhance the process and assist researchers with qualitative coding. LLMs, trained on extensive human-generated text, possess an architecture that renders them capable of understanding the broader context of a conversation or text. This allows them to extract patterns and meaning effectively, making them particularly useful for the accurate extraction and coding of relevant themes. In our current approach, we employed the chatGPT 3.5 Turbo API, integrating it into the qualitative coding process for data from the SWISS100 study, specifically focusing on data derived from centenarians' experiences during the Covid-19 pandemic, as well as a systematic centenarian literature review. We provide several instances illustrating how our approach can assist researchers with extracting and coding relevant themes. With data from human coders on hand, we highlight points of convergence and divergence between AI and human thematic coding in the context of these data. Moving forward, our goal is to enhance the prototype and integrate it within an LLM designed for local storage and operation (LLaMa). Our initial findings highlight the potential of AI-enhanced qualitative coding, yet they also pinpoint areas requiring attention. Based on these observations, we formulate tentative recommendations for the optimal integration of LLMs in qualitative coding research. Further evaluations using varied datasets and comparisons among different LLMs will shed more light on the question of whether and how to integrate these models into this domain.
Silences, Spikes and Bursts: Three-Part Knot of the Neural Code
When a neuron breaks silence, it can emit action potentials in a number of patterns. Some responses are so sudden and intense that electrophysiologists felt the need to single them out, labeling action potentials emitted at a particularly high frequency with a metonym – bursts. Is there more to bursts than a figure of speech? After all, sudden bouts of high-frequency firing are expected to occur whenever inputs surge. In this talk, I will discuss the implications of seeing the neural code as having three syllables: silences, spikes and bursts. In particular, I will describe recent theoretical and experimental results that implicate bursting in the implementation of top-down attention and the coordination of learning.
Minimal genetically encoded tags for fluorescent protein labeling in living neurons
Co-allocation to overlapping dendritic branches in the retrosplenial cortex integrates memories across time
Events occurring close in time are often linked in memory, providing an episodic timeline and a framework for those memories. Recent studies suggest that memories acquired close in time are encoded by overlapping neuronal ensembles, but whether dendritic plasticity plays a role in linking memories is unknown. Using activity-dependent labeling and manipulation, as well as longitudinal one- and two-photon imaging of RSC somatic and dendritic compartments, we show that memory linking is not only dependent on ensemble overlap in the retrosplenial cortex, but also on branch-specific dendritic allocation mechanisms. These results demonstrate a causal role for dendritic mechanisms in memory integration and reveal a novel set of rules that govern how linked, and independent memories are allocated to dendritic compartments.
Remembering immunity: Neuronal representation of immune responses
Accumulating data indicate that the brain can affect immunity, as evidenced, for example, by the effects of stress, stroke, and reward system activity on the peripheral immune system. However, our understanding of this neuroimmune interaction is still limited. Importantly, we do not know how the brain evaluates and represents the state of the immune system. In this talk, I will present our latest study from our lab, designed to test the existence of immune-related information in the brain and determine its relevance to immune regulation. We hypothesized that the InsCtx, specifically the posterior InsCtx (as a primary cortical site of interoception in the brain), is especially suited to contain such a representation of the immune system. Using activity-dependent cell labeling in mice (FosTRAP), we captured neuronal ensembles in the InsCtx that were active under two different inflammatory conditions (dextran sulfate sodium [DSS]-induced colitis and zymosan-induced peritonitis). Chemogenetic reactivation of these neuronal ensembles was sufficient to broadly retrieve the inflammatory state under which these neurons were captured. Moreover, using retrograde neuronal tracing, we found an anatomical efferent pathway linking these InsCtx neurons to the inflamed peripheral sites. Taken together, we show that the brain can store and retrieve specific immune responses, extending the classical concept of immunological memory to neuronal representations of inflammatory information.
New tools for monitoring and manipulating neural circuits
Dr. Looger will present updates on a variety of molecular tools for studying & manipulating neural circuits & other preparations. Topics include genetically encoded calcium indicators (including the new ultra-fast jGCaMP8 variants), neurotransmitter sensors (improved versions for following glutamate, GABA, acetylcholine, serotonin), optogenetic effectors including the new “enhanced Magnets” dimerizers, AAV serotypes for retrograde labeling & altered tropism, probes for correlative light-electron microscopy, chemical gene switches, etc. He will make all his slides freely available - so don’t worry about hurriedly taking notes; instead focus on questions and ideas for collaboration. Please bring your suggestions for molecular tools that would be transformative for the field.
Gap Junction Coupling between Photoreceptors
Simply put, the goal of my research is to describe the neuronal circuitry of the retina. The organization of the mammalian retina is certainly complex but it is not chaotic. Although there are many cell types, most adhere to a relatively constant morphology and they are distributed in non-random mosaics. Furthermore, each cell type ramifies at a characteristic depth in the retina and makes a stereotyped set of synaptic connections. In other words, these neurons form a series of local circuits across the retina. The next step is to identify the simplest and commonest of these repeating neural circuits. They are the building blocks of retinal function. If we think of it in this way, the retina is a fabulous model for the rest of the CNS. We are interested in identifying specific circuits and cell types that support the different functions of the retina. For example, there appear to be specific pathways for rod and cone mediated vision. Rods are used under low light conditions and rod circuitry is specialized for high sensitivity when photons are scarce (when you’re out camping, starlight). The hallmark of the rod-mediated system is monochromatic vision. In contrast, the cone circuits are specialized for high acuity and color vision under relatively bright or daylight conditions. Individual neurons may be filled with fluorescent dyes under visual control. This is achieved by impaling the cell with a glass microelectrode using a 3D micromanipulator. We are also interested in the diffusion of dye through coupled neuronal networks in the retina. The dye filled cells are also combined with antibody labeling to reveal neuronal connections and circuits. This triple-labeled material may be viewed and reconstructed in 3 dimensions by multi-channel confocal microscopy. We have our own confocal microscope facility in the department and timeslots are available to students in my lab.
Storythinking: Why Your Brain is Creative in Ways that Computer AI Can't Ever Be
Computer AI thinks differently from us, which is why it's such a useful tool. Thanks to the ingenuity of human programmers, AI's different method of thinking has made humans redundant at certain human tasks, such as chess. Yet there are mechanical limits to how far AI can replicate the products of human thinking. In this talk, we'll trace one such limit by exploring how AI and humans create differently. Humans create by reverse-engineering tools or behaviors to accomplish new actions. AI creates by mix-and-matching pieces of preexisting structures and labeling which combos are associated with positive and negative results. This different procedure is why AI cannot (and will never) learn to innovate technology or tactics and why it also cannot (and will never) learn to generate narratives (including novels, business plans, and scientific hypotheses). It also serves as a case study in why there's no reason to believe in "general intelligence" and why computer AI would have to partner with other mechanical forms of AI (run on non-computer hardware that, as of yet, does not exist, and would require humans to invent) for AI to take over the globe.
Categories, language, and visual working memory: how verbal labels change capacity limitations
The limited capacity of visual working memory constrains the quantity and quality of the information we can store in mind for ongoing processing. Research from our lab has demonstrated that verbal labeling/categorization of visual inputs increases its retention and fidelity in visual working memory. In this talk, I will outline the hypotheses that explain the interaction between visual and verbal inputs in working memory, leading to the boosts we observed. I will further show how manipulations of the categorical distinctiveness of the labels, the timing of their occurrence, to which item labels are applied, as well as their validity modulate the benefits one can draw from combining visual and verbal inputs to alleviate capacity limitations. Finally, I will discuss the implications of these results to our understanding of working memory and its interaction with prior knowledge.
Multi-scale synaptic analysis for psychiatric/emotional disorders
Dysregulation of emotional processing and its integration with cognitive functions are central features of many mental/emotional disorders associated both with externalizing problems (aggressive, antisocial behaviors) and internalizing problems (anxiety, depression). As Dr. Joseph LeDoux, our invited speaker of this program, wrote in his famous book “Synaptic self: How Our Brains Become Who We Are”—the brain’s synapses—are the channels through which we think, act, imagine, feel, and remember. Synapses encode the essence of personality, enabling each of us to function as a distinctive, integrated individual from moment to moment. Thus, exploring the functioning of synapses leads to the understanding of the mechanism of (patho)physiological function of our brain. In this context, we have investigated the pathophysiology of psychiatric disorders, with particular emphasis on the synaptic function of model mice of various psychiatric disorders such as schizophrenia, autism, depression, and PTSD. Our current interest is how synaptic inputs are integrated to generate the action potential. Because the spatiotemporal organization of neuronal firing is crucial for information processing, but how thousands of inputs to the dendritic spines drive the firing remains a central question in neuroscience. We identified a distinct pattern of synaptic integration in the disease-related models, in which extra-large (XL) spines generate NMDA spikes within these spines, which was sufficient to drive neuronal firing. We experimentally and theoretically observed that XL spines negatively correlated with working memory. Our work offers a whole new concept for dendritic computation and network dynamics, and the understanding of psychiatric research will be greatly reconsidered. The second half of my talk is the development of a novel synaptic tool. Because, no matter how beautifully we can illuminate the spine morphology and how accurately we can quantify the synaptic integration, the links between synapse and brain function remain correlational. In order to challenge the causal relationship between synapse and brain function, we established AS-PaRac1, which is unique not only because it can specifically label and manipulate the recently potentiated dendritic spine (Hayashi-Takagi et al, 2015, Nature). With use of AS-PaRac1, we developed an activity-dependent simultaneous labeling of the presynaptic bouton and the potentiated spines to establish “functional connectomics” in a synaptic resolution. When we apply this new imaging method for PTSD model mice, we identified a completely new functional neural circuit of brain region A→B→C with a very strong S/N in the PTSD model mice. This novel tool of “functional connectomics” and its photo-manipulation could open up new areas of emotional/psychiatric research, and by extension, shed light on the neural networks that determine who we are.
Direction selectivity in hearing: monaural phase sensitivity in octopus neurons
The processing of temporal sound features is fundamental to hearing, and the auditory system displays a plethora of specializations, at many levels, to enable such processing. Octopus neurons are the most extreme temporally-specialized cells in the auditory (and perhaps entire) brain, which make them intriguing but also difficult to study. Notwithstanding the scant physiological data, these neurons have been a favorite cell type of modeling studies which have proposed that octopus cells have critical roles in pitch and speech perception. We used a range of in vivo recording and labeling methods to examine the hypothesis that tonotopic ordering of cochlear afferents combines with dendritic delays to compensate for cochlear delay - which would explain the highly entrained responses of octopus cells to sound transients. Unexpectedly, the experiments revealed that these neurons have marked selectivity to the direction of fast frequency glides, which is tied in a surprising way to intrinsic membrane properties and subthreshold events. The data suggest that octopus cells have a role in temporal comparisons across frequency and may play a role in auditory scene analysis.
Mechanisms underlying detection and temporal sensitivity of single-photon responses in the mammalian retina
We have long known that rod and cone signals interact within the retina and can even contribute to color vision, but the extent of these influences has remained unclear. New results with more powerful methods of RNA expression profiling, specific cell labeling, and single-cell recording have provided greater clarity and are showing that rod and cone signals can mix at virtually every level of signal processing. These interactions influence the integration of retinal signals and make an important contribution to visual perception.
An open-source experimental framework for automation of cell biology experiments
Modern biological methods often require a large number of experiments to be conducted. For example, dissecting molecular pathways involved in a variety of biological processes in neurons and non-excitable cells requires high-throughput compound library or RNAi screens. Another example requiring large datasets - modern data analysis methods such as deep learning. These have been successfully applied to a number of biological and medical questions. In this talk we will describe an open-source platform allowing such experiments to be automated. The platform consists of an XY stage, perfusion system and an epifluorescent microscope with autofocusing. It is extremely easy to build and can be used for different experimental paradigms, ranging from immunolabeling and routine characterisation of large numbers of cell lines to high-throughput imaging of fluorescent reporters.
Molecular controls over corticospinal neuron axon branching at specific spinal segments
Corticospinal neurons (CSN) are the cortical projection neurons that innervate the spinal cord and some brainstem targets with segmental precision to control voluntary movement of specific functional motor groups, limb sections, or individual digits, yet molecular regulation over CSN segmental target specificity is essentially unknown. CSN subpopulations exhibit striking axon targeting specificity from development into maturity: Evolutionarily newer rostrolateral CSN exclusively innervate bulbar-cervical targets (CSNBC-lat), while evolutionarily older caudomedial CSN (CSNmed) are more heterogeneous, with distinct subpopulations extending axons to either bulbar-cervical or thoraco-lumbar segments. The cervical cord, with its evolutionarily enhanced precision of forelimb movement, is innervated by multiple CSN subpopulations, suggesting inter-neuronal interactions in establishing corticospinal connectivity. I identify that Lumican, previously unrecognized in axon development, controls the specificity of cervical spinal cord innervation by CSN. Remarkably, Lumican, an extracellular matrix protein expressed by CSNBC-lat, non-cell-autonomously suppresses axon collateralization in the cervical cord by CSNmed. Intersectional viral labeling and mouse genetics further identify that Lumican controls axon collateralization by multiple subpopulations in caudomedial sensorimotor cortex. These results identify inter-axonal molecular crosstalk between CSN subpopulations as a novel mechanism controlling corticospinal connectivity and competitive specificity. Further, this mechanism has potential implications for evolutionary diversification of corticospinal circuitry with finer scale precision. "" Complementing this work, to comprehensively elucidate related axon projection mechanisms functioning at tips of growing CSN axons in vivo, I am currently applying experimental and analytic approaches recently developed in my postdoc lab (Poulopoulos*, Murphy*, Nature, 2019) to quantitatively and subcellularly “map” RNA and protein molecular machinery of subtype-specific growth cones, in parallel to their parent somata, isolated directly in vivo from developing subcerebral projection neurons (SCPN; the broader cortical output neuron population targeting both brainstem and spinal cord; includes CSN). I am investigating both normal development and GC-soma dysregulation with mutation of central CSN-SCPN transcriptional regulator Ctip2/Bcl11b.
Protein Synthesis at Neuronal Synapses
The complex morphology of neurons, with synapses located 100’s of microns from the cell body, necessitates the localization of important cell biological machines and processes within dendrites and axons. Using expansion microscopy together with metabolic labeling we have discovered that both postsynaptic spines and presynaptic terminals exhibit rapid translation, which exhibits differential sensitivity to different neurotransmitters and neuromodulators. In addition, we have explored the unique mechanisms neurons use to meet protein demands at synapses, identifying the transcriptome and translatome in the neuropil.
An evolutionarily conserved hindwing circuit mediates Drosophila flight control
My research at the interface of neurobiology, biomechanics, and behavior seeks to understand how the timing precision of sensory input structures locomotor output. My lab studies the flight behavior of the fruit fly, Drosophila melanogaster, combining powerful genetic tools available for labeling and manipulating neural circuits with cutting-edge imaging in awake, behaving animals. This work has the potential to fundamentally reshape understanding of the evolution of insect flight, as well as highlight the tremendous importance of timing in the context of locomotion. Timing is crucial to the nervous system. The ability to rapidly detect and process subtle disturbances in the environment determines whether an animal can attain its next meal or successfully navigate complex, unpredictable terrain. While previous work on various animals has made tremendous strides uncovering the specialized neural circuits used to resolve timing differences with sub-microsecond resolution, it has focused on the detection of timing differences in sensory systems. Understanding of how the timing of motor output is structured by precise sensory input remains poor. My research focuses on an organ unique to fruit flies, called the haltere, that serves as a bridge for detecting and acting on subtle timing differences, helping flies execute rapid maneuvers. Understanding how this relatively simple insect canperform such impressive aerial feats demands an integrative approach that combines physics, muscle mechanics, neuroscience, and behavior. This unique, powerful approach will reveal the general principles that govern sensorimotor processing.
Wiring diagram of a central sensory projection revealed by dense Brainbow labeling
COSYNE 2022
Wiring diagram of a central sensory projection revealed by dense Brainbow labeling
COSYNE 2022
Vocal labeling of others by nonhuman primates
COSYNE 2025
Improved neuronal surface detection of α2δ proteins by nanobody immunolabeling
FENS Forum 2024
Juxtacellular recording and labeling of optotagged orbitofrontal cortex interneurons in freely-moving rats performing a decision-making task
FENS Forum 2024