← Back

Mental Disorders

Topic spotlight
TopicWorld Wide

mental disorders

Discover seminars, jobs, and research tagged with mental disorders across World Wide.
77 curated items60 Seminars11 ePosters6 Positions
Updated 1 day ago
77 items · mental disorders
77 results
Position

Axel Hutt

INRIA
Strasbourg, France
Dec 5, 2025

The new research team NECTARINE at INRIA in Strasbourg / France aims to create a synergy between clinicians and mathematical researchers to develop new healthcare technologies. The team works on stochastic microscopic network models to describe macroscopic experimental data, such as behavior and/or encephalographic. They collaborate closely with clinicians and choose their research focus along the clinical applications. Major scientific objectives are stochastic multi-scale simulations and mean-field descriptions of neural activity on the macroscopic scale. Moreover, merging experimental data and numerical models by machine learning techniques is an additional objective. The team's clinical research focuses on neuromodulation of patients suffering from deficits in attention and temporal prediction. The team offers the possibility to apply for a permanent position as Chargé de Recherche (CR) or Directeur de Recherche (DR) in the research field of mathematical neuroscience with a strong focus on stochastic dynamics linking brain network modelling with experimental data.

Position

Jochen Triesch

LOEWE center DYNAMIC, University of Frankfurt, Frankfurt Institute for Advanced Studies, Goethe University Frankfurt
University of Frankfurt
Dec 5, 2025

We solicit applications for a PhD position to develop machine learning techniques for personalized prediction of psychopathology. The position will be part of a large new center aiming to develop a novel dynamic network approach of mental health. This center, the 'LOEWE center DYNAMIC', brings together scientists from a range of disciplines, including psychology, psychiatry, computer science and machine learning, with a shared goal of advancing our understanding of mental disorders and developing new treatment options. The center’s research focuses on the application of dynamic network models at various levels (neurobiological, psychological and psychopathological) to mental disorder research. It brings together researchers from the Universities of Marburg, Giessen, Frankfurt and Darmstadt, as well as the Leibniz Institute for Research and Information in Education DIPF and the Ernst Strüngmann Institute for Neurosciences ESI. The respective university hospitals and the psychotherapy outpatient clinics of the psychological university institutes are also involved, facilitating the rapid transfer of research results into practice. The present opening will be associated with the Department of Computer Science at the University of Frankfurt. The objective of the project is to develop a personalized prediction model for changes in psychopathology (new depressive episodes), behavioral patterns and biological parameters. Many mental illnesses are characterized by changes in the network structure of the brain that affect observable patterns of activity or behavior in the future. Early detection and especially prediction of changes in behavioral parameters, psychopathology and biomarkers could enable targeted, personalized interventions to offer special (additional, more specific) therapies to patients with poor prognosis. The objective of this project is to develop methods for the early and reliable detection and prediction of changes in multimodal data.

Position

Axel Hutt

National Institute for Computer Science and Control (INRIA)
Strasbourg, France
Dec 5, 2025

The National Institute for Computer Science and Control (INRIA) provides a postdoctoral fellowship on Mathematical modelling of neuronal EEG activity under brain stimulation. We are interested in developing neurostimulation techniques in order to improve the cure of patients suffering from mental disorders. To this end, our aim is to develop dynamic neural models and merging these data to experimentally observed data, such as EEG or BOLD responses. This merge may utilize diverse optimization techniques, such as data assimilation. The latter permits to estimate model parameters adaptively in non-stationary signals, i.e. online in time. A prominent example for a data assimilation technique is Kalman filtering. More detailed, we are looking for collaborators, who are interested in neural population models describing macroscopic brain activity in pathological brain states under neurostimulation. The mathematical analysis of such models typically yields important insights into the origin of the brain activity. Moreover, the merge with experimental data demands a certain understanding of data analysis techniques to prepare the experimental data and identify correctly good biomarkers. It would be advantageous if the candidate has some fundamental expertise in this respect. Finally, the perfect future collaborator has already some expertise in parameter estimation techniques, especially in data assimilation.

SeminarNeuroscience

Organization of thalamic networks and mechanisms of dysfunction in schizophrenia and autism

Vasileios Zikopoulos
Boston University
Nov 2, 2025

Thalamic networks, at the core of thalamocortical and thalamosubcortical communications, underlie processes of perception, attention, memory, emotions, and the sleep-wake cycle, and are disrupted in mental disorders, including schizophrenia and autism. However, the underlying mechanisms of pathology are unknown. I will present novel evidence on key organizational principles, structural, and molecular features of thalamocortical networks, as well as critical thalamic pathway interactions that are likely affected in disorders. This data can facilitate modeling typical and abnormal brain function and can provide the foundation to understand heterogeneous disruption of these networks in sleep disorders, attention deficits, and cognitive and affective impairments in schizophrenia and autism, with important implications for the design of targeted therapeutic interventions

SeminarNeuroscience

Cellular Crosstalk in Brain Development, Evolution and Disease

Silvia Cappello
Molecular Physiology of Neurogenesis at the Ludwig Maximilian University of Munich
Oct 1, 2025

Cellular crosstalk is an essential process during brain development and is influenced by numerous factors, including cell morphology, adhesion, the local extracellular matrix and secreted vesicles. Inspired by mutations associated with neurodevelopmental disorders, we focus on understanding the role of extracellular mechanisms essential for the proper development of the human brain. Therefore, we combine 2D and 3D in vitro human models to better understand the molecular and cellular mechanisms involved in progenitor proliferation and fate, migration and maturation of excitatory and inhibitory neurons during human brain development and tackle the causes of neurodevelopmental disorders.

SeminarNeuroscience

Gene regulatory mechanisms of neocortex development and evolution

Mareike Albert
Center for Regenerative Therapies, Dresden University of Technology, Germany
Dec 11, 2024

The neocortex is considered to be the seat of higher cognitive functions in humans. During its evolution, most notably in humans, the neocortex has undergone considerable expansion, which is reflected by an increase in the number of neurons. Neocortical neurons are generated during development by neural stem and progenitor cells. Epigenetic mechanisms play a pivotal role in orchestrating the behaviour of stem cells during development. We are interested in the mechanisms that regulate gene expression in neural stem cells, which have implications for our understanding of neocortex development and evolution, neural stem cell regulation and neurodevelopmental disorders.

SeminarNeuroscience

Virtual and experimental approaches to the pathogenicity of SynGAP1 missense mutations

Michael Courtney & Pekka Postila
University of Turku
Nov 20, 2024
SeminarNeuroscience

Targeting gamma oscillations to improve cognition

Vikaas Sohal, MD, PhD
UCSF
Oct 30, 2024
SeminarNeuroscience

SYNGAP1 Natural History Study/ Multidisciplinary Clinic at Children’s Hospital Colorado

Megan Abbott, MD
Children's Hospital Colorado
Jul 16, 2024
SeminarNeuroscience

Beyond the synapse: SYNGAP1 in primary and motile cilia

Helen Willsey, PhD
University of California San Francisco
May 24, 2024
SeminarNeuroscienceRecording

The Roles of Distinct Functions of SynGAP1 in SYNGAP1-Related Disorders

Richard Huganir
Johns Hopkins Medicine
May 14, 2024
SeminarNeuroscience

Modeling human brain development and disease: the role of primary cilia

Kyrousi Christina
Medical School, National and Kapodistrian University of Athens, Athens, Greece
Apr 23, 2024

Neurodevelopmental disorders (NDDs) impose a global burden, affecting an increasing number of individuals. While some causative genes have been identified, understanding the human-specific mechanisms involved in these disorders remains limited. Traditional gene-driven approaches for modeling brain diseases have failed to capture the diverse and convergent mechanisms at play. Centrosomes and cilia act as intermediaries between environmental and intrinsic signals, regulating cellular behavior. Mutations or dosage variations disrupting their function have been linked to brain formation deficits, highlighting their importance, yet their precise contributions remain largely unknown. Hence, we aim to investigate whether the centrosome/cilia axis is crucial for brain development and serves as a hub for human-specific mechanisms disrupted in NDDs. Towards this direction, we first demonstrated species-specific and cell-type-specific differences in the cilia-genes expression during mouse and human corticogenesis. Then, to dissect their role, we provoked their ectopic overexpression or silencing in the developing mouse cortex or in human brain organoids. Our findings suggest that cilia genes manipulation alters both the numbers and the position of NPCs and neurons in the developing cortex. Interestingly, primary cilium morphology is disrupted, as we find changes in their length, orientation and number that lead to disruption of the apical belt and altered delamination profiles during development. Our results give insight into the role of primary cilia in human cortical development and address fundamental questions regarding the diversity and convergence of gene function in development and disease manifestation. It has the potential to uncover novel pharmacological targets, facilitate personalized medicine, and improve the lives of individuals affected by NDDs through targeted cilia-based therapies.

SeminarNeuroscience

Contrasting developmental principles of human brain development and their relevance to neurodevelopmental disorders

Tom Nowakowski
University of California, San Francisco
Apr 16, 2024
SeminarNeuroscienceRecording

Predictive processing: a circuit approach to psychosis

Georg Keller
Friedrich Miescher Institute for Biomedical Research, Basel
Mar 13, 2024

Predictive processing is a computational framework that aims to explain how the brain processes sensory information by making predictions about the environment and minimizing prediction errors. It can also be used to explain some of the key symptoms of psychotic disorders such as schizophrenia. In my talk, I will provide an overview of our progress in this endeavor.

SeminarNeuroscience

Cortical interneurons from brain development to disease

Denaxa Myrto
Biomedical Sciences Reaserch Center "Alexander Fleming", Athens, Greece
Mar 12, 2024
SeminarNeuroscience

Cellular crosstalk in Neurodevelopmental Disorders

Silvia Cappello
Max Planck Institute
Sep 26, 2023

Cellular crosstalk is an essential process during brain development and it is influenced by numerous factors, including the morphology of the cells, their adhesion molecules, the local extracellular matrix and the secreted vesicles. Inspired by mutations associated with neurodevelopmental disorders, we focus on understanding the role of extracellular mechanisms essential for the correct development of the human brain. Hence, we combine the in vivo mouse model and the in vitro human-derived neurons, cerebral organoids, and dorso-ventral assembloids in order to better comprehend the molecular and cellular mechanisms involved in ventral progenitors’ proliferation and fate as well as migration and maturation of inhibitory neurons during human brain development and tackle the causes of neurodevelopmental disorders. We particularly focus on mutations in genes influencing cell-cell contacts, extracellular matrix, and secretion of vesicles and therefore study intrinsic and extrinsic mechanisms contributing to the formation of the brain. Our data reveal an important contribution of cell non-autonomous mechanisms in the development of neurodevelopmental disorders.

SeminarNeuroscience

Quantifying perturbed SynGAP1 function caused by coding mutations

Michael Courtney, PhD
Turku Bioscience
Jun 14, 2023
SeminarNeuroscience

Movement planning as a window into hierarchical motor control

Katja Kornysheva
Centre for Human Brain (CHBH) at the University of Birmingham, UK
Jun 14, 2023

The ability to organise one's body for action without having to think about it is taken for granted, whether it is handwriting, typing on a smartphone or computer keyboard, tying a shoelace or playing the piano. When compromised, e.g. in stroke, neurodegenerative and developmental disorders, the individuals’ study, work and day-to-day living are impacted with high societal costs. Until recently, indirect methods such as invasive recordings in animal models, computer simulations, and behavioural markers during sequence execution have been used to study covert motor sequence planning in humans. In this talk, I will demonstrate how multivariate pattern analyses of non-invasive neurophysiological recordings (MEG/EEG), fMRI, and muscular recordings, combined with a new behavioural paradigm, can help us investigate the structure and dynamics of motor sequence control before and after movement execution. Across paradigms, participants learned to retrieve and produce sequences of finger presses from long-term memory. Our findings suggest that sequence planning involves parallel pre-ordering of serial elements of the upcoming sequence, rather than a preparation of a serial trajectory of activation states. Additionally, we observed that the human neocortex automatically reorganizes the order and timing of well-trained movement sequences retrieved from memory into lower and higher-level representations on a trial-by-trial basis. This echoes behavioural transfer across task contexts and flexibility in the final hundreds of milliseconds before movement execution. These findings strongly support a hierarchical and dynamic model of skilled sequence control across the peri-movement phase, which may have implications for clinical interventions.

SeminarNeuroscience

Therapeutic Strategies for Autism: Targeting Three Levels of the Central Dogma of Molecular Biology with a Focus on SYNGAP1

Prof. Lilia Iakoucheva, PhD & Mr. Derek Hong, MS
UCSD School of Medicine
Jun 7, 2023
SeminarNeuroscience

Involvement of the brain endothelium in neurodevelopmental disorders

Baptiste Lacoste, PhD
University of Ottawa
May 17, 2023
SeminarNeuroscience

Circuit mechanisms of attention dysfunction in Scn8a+/- mice: implications for epilepsy and neurodevelopmental disorders

Brielle Ferguson
Harvard Medical School
May 16, 2023
SeminarNeuroscience

Catatonia in Neurodevelopmental Conditions

Joshua Ryan Smith
Vanderbilt University Medical Center
May 10, 2023
SeminarNeuroscience

The balanced brain: two-photon microscopy of inhibitory synapse formation

Corette Wierenga
Donders Institute
May 10, 2023

Coordination between excitatory and inhibitory synapses (providing positive and negative signals respectively) is required to ensure proper information processing in the brain. Many brain disorders, especially neurodevelopental disorders, are rooted in a specific disturbance of this coordination. In my research group we use a combination of two-photon microscopy and electrophisiology to examine how inhibitory synapses are fromed and how this formation is coordinated with nearby excitatroy synapses.

SeminarNeuroscience

Precision Genomics in Neurodevelopmental Disorders

Tychele Turner
Washington University
May 2, 2023
SeminarNeuroscience

A Data-Driven Approach to Reconstructing Disease Trajectories in SYNGAP1-Related Disorders

Jillian McKee, MD, PhD
UPENN
Apr 26, 2023
SeminarNeuroscience

Harnessing mRNA metabolism for the development of precision gene therapy

Jeff Coller, PhD
Johns Hopkins Medicine
Mar 15, 2023
SeminarNeuroscience

Linking SYNGAP1 with Human-Specific Mechanisms of Neuronal Development

Pierre Vanderhaeghen, MD, PhD
VIB Center for Brain & Disease Research
Mar 8, 2023
SeminarNeuroscience

SYNGAP1 and Epilepsy SurgerySYNGAP1 and Epilepsy Surgery

Taylor Abel, MD and Monika Jones, JD
Pediatric Epilepsy Surgery Program at UPMC Children’s Hospital of Pittsburgh/Pediatric Epilepsy Surgery Alliance
Feb 15, 2023
SeminarNeuroscience

Myelin Formation and Oligodendrocyte Biology in Epilepsy

Angelika Mühlebner
Universitair Medisch Centrum Utrecht
Feb 15, 2023

Epilepsy is one of the most common neurological diseases according to the World Health Organization (WHO) affecting around 70 million people worldwide [WHO]. Patients who suffer from epilepsy also suffer from a variety of neuro-psychiatric co-morbidities, which they can experience as crippling as the seizure condition itself. Adequate organization of cerebral white matter is utterly important for cognitive development. The failure of integration of neurologic function with cognition is reflected in neuro-psychiatric disease, such as autism spectrum disorder (ASD). However, in epilepsy we know little about the importance of white matter abnormalities in epilepsy-associated co-morbidities. Epilepsy surgery is an important therapy strategy in patients where conventional anti-epileptic drug treatment fails . On histology of the resected brain samples, malformations of cortical development (MCD) are common among the epilepsy surgery population, especially focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC). Both pathologies are associated with constitutive activation of the mTOR pathway. Interestingly, some type of FCD is morphological similar to TSC cortical tubers including the abnormalities of the white matter. Hypomyelination with lack of myelin-producing cells, the oligodendrocytes, within the lesional area is a striking phenomenon. Impairment of the complex myelination process can have a major impact on brain function. In the worst case leading to distorted or interrupted neurotransmissions. It is still unclear whether the observed myelin pathology in epilepsy surgical specimens is primarily related to the underlying malformation process or is just a secondary phenomenon of recurrent epileptic seizures creating a toxic micro-environment which hampers myelin formation. Interestingly, mTORC1 has been implicated as key signal for myelination, thus, promoting the maturation of oligodendrocytes . These results, however, remain controversial. Regardless of the underlying pathophysiologic mechanism, alterations of myelin dynamics, depending on their severity, are known to be linked to various kinds of developmental disorders or neuropsychiatric manifestations.

SeminarNeuroscienceRecording

Children-Agent Interaction For Assessment and Rehabilitation: From Linguistic Skills To Mental Well-being

Micole Spitale
Department of Computer Science and Technology, University of Cambridge
Feb 6, 2023

Socially Assistive Robots (SARs) have shown great potential to help children in therapeutic and healthcare contexts. SARs have been used for companionship, learning enhancement, social and communication skills rehabilitation for children with special needs (e.g., autism), and mood improvement. Robots can be used as novel tools to assess and rehabilitate children’s communication skills and mental well-being by providing affordable and accessible therapeutic and mental health services. In this talk, I will present the various studies I have conducted during my PhD and at the Cambridge Affective Intelligence and Robotics Lab to explore how robots can help assess and rehabilitate children’s communication skills and mental well-being. More specifically, I will provide both quantitative and qualitative results and findings from (i) an exploratory study with children with autism and global developmental disorders to investigate the use of intelligent personal assistants in therapy; (ii) an empirical study involving children with and without language disorders interacting with a physical robot, a virtual agent, and a human counterpart to assess their linguistic skills; (iii) an 8-week longitudinal study involving children with autism and language disorders who interacted either with a physical or a virtual robot to rehabilitate their linguistic skills; and (iv) an empirical study to aid the assessment of mental well-being in children. These findings can inform and help the child-robot interaction community design and develop new adaptive robots to help assess and rehabilitate linguistic skills and mental well-being in children.

SeminarNeuroscienceRecording

Developmental disorders of presynaptic vesicle cycling - Synaptotagmin-1 and beyond

Kate Baker
MRC Cognition and Brain Sciences Unit, University of Cambridge
Nov 22, 2022

Post-diagnostic research on rare genetic developmental disorders presents new opportunities (and a few challenges) for discovery neuroscience and translation. In this talk, Kate will describe and discuss neurodevelopmental phenotypes arising from rare, high penetrance genomic variants which directly influence pre-synaptic vesicle cycling (SVC disorders). She will focus on Synaptotagmin-1 Associated Neurodevelopmental Disorder (also known as Baker Gordon Syndrome), first described in 2015 and now diagnosed in more than 50 children and young people worldwide. She will then present work-in-progress by her group on the neurodevelopmental spectrum of SVC disorders more broadly, and discuss opportunities for collaborative neuroscience which can bridge the gaps between genetic cause and complex neurological, cognitive and mental health outcomes.

SeminarNeuroscience

Baby steps to breakthroughs in precision health in neurodevelopmental disorders

Shafali Spurling Jeste
Children's Hospital Los Angeles
Oct 25, 2022
SeminarNeuroscience

Myelin Formation and Oligodendrocyte Biology in Epilepsy

Angelika Mühlebner
Universitair Medisch Centrum Utrecht
Oct 18, 2022

Epilepsy is one of the most common neurological diseases according to the World Health Organization (WHO) affecting around 70 million people worldwide [WHO]. Patients who suffer from epilepsy also suffer from a variety of neuro-psychiatric co-morbidities, which they can experience as crippling as the seizure condition itself. Adequate organization of cerebral white matter is utterly important for cognitive development. The failure of integration of neurologic function with cognition is reflected in neuro-psychiatric disease, such as autism spectrum disorder (ASD). However, in epilepsy we know little about the importance of white matter abnormalities in epilepsy-associated co-morbidities. Epilepsy surgery is an important therapy strategy in patients where conventional anti-epileptic drug treatment fails . On histology of the resected brain samples, malformations of cortical development (MCD) are common among the epilepsy surgery population, especially focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC). Both pathologies are associated with constitutive activation of the mTOR pathway. Interestingly, some type of FCD is morphological similar to TSC cortical tubers including the abnormalities of the white matter. Hypomyelination with lack of myelin-producing cells, the oligodendrocytes, within the lesional area is a striking phenomenon. Impairment of the complex myelination process can have a major impact on brain function. In the worst case leading to distorted or interrupted neurotransmissions. It is still unclear whether the observed myelin pathology in epilepsy surgical specimens is primarily related to the underlying malformation process or is just a secondary phenomenon of recurrent epileptic seizures creating a toxic micro-environment which hampers myelin formation. Interestingly, mTORC1 has been implicated as key signal for myelination, thus, promoting the maturation of oligodendrocytes . These results, however, remain controversial. Regardless of the underlying pathophysiologic mechanism, alterations of myelin dynamics, depending on their severity, are known to be linked to various kinds of developmental disorders or neuropsychiatric manifestations.

SeminarNeuroscienceRecording

Targeting alternative splicing of SYNGAP1 using antisense oligonucleotides

Benjamin Prosser
University of Pennsylvania Perelman School of Medicine, PhD
Sep 28, 2022
SeminarNeuroscience

Functional and translational implications of A-to-I editing in brain development and neurodevelopmental disorders

Michael Breen
Icahn School of Medicine at Mount Sinai
Sep 20, 2022
SeminarNeuroscience

Investigating activity-dependent processes in cerebral cortex development and disease

Simona Lodato
Humanitas University
Jul 19, 2022

The cerebral cortex contains an extraordinary diversity of excitatory projection neuron (PN) and inhibitory interneurons (IN), wired together to form complex circuits. Spatiotemporally coordinated execution of intrinsic molecular programs by PNs and INs and activity-dependent processes, contribute to cortical development and cortical microcircuits formation. Alterations of these delicate processes have often been associated to neurological/neurodevelopmental disorders. However, despite the groundbreaking discovery that spontaneous activity in the embryonic brain can shape regional identities of distinct cortical territories, it is still unclear whether this early activity contributes to define subtype-specific neuronal fate as well as circuit assembly. In this study, we combined in utero genetic perturbations via CRISPR/Cas9 system and pharmacological inhibition of selected ion channels with RNA-sequencing and live imaging technologies to identify the activity-regulated processes controlling the development of different cortical PN classes, their wiring and the acquisition of subtype specific features. Moreover, we generated human induced pluripotent stem cells (iPSCs) form patients affected by a severe, rare and untreatable form of developmental epileptic encephalopathy. By differentiating cortical organoids form patient-derived iPSCs we create human models of early electrical alterations for studying molecular, structural and functional consequences of the genetic mutations during cortical development. Our ultimate goal is to define the activity-conditioned processes that physiologically occur during the development of cortical circuits, to identify novel therapeutical paths to address the pathological consequences of neonatal epilepsies.

SeminarNeuroscience

Don't forget the gametes: Neurodevelopmental pathogenesis starts in the sperm and egg

Jill Escher
Jill Escher is founder of the Escher Fund for Autism, which funds research on non-genetic inheritance, as well as autism-related programs. She is a member of the governing council of the Environmental Mutagenesis and Genomics Society, where she is past chair of the Germ Cell and Heritable Effects special interest group. She also serves as president of the National Council on Severe Autism and past president of Autism Society San Francisco Bay Area. A former lawyer, she and her husband are the pa
Jul 5, 2022

Proper development of the nervous system depends not only on the inherited DNA sequence, but also on proper regulation of gene expression, as controlled in part by epigenetic mechanisms present in the parental gametes. In this presentation an internationally recognized research advocate explains why researchers concerned about the origins of increasingly prevalent neurodevelopmental disorders such as autism and attention deficit hyperactivity disorder should look beyond genetics in probing the origins of dysregulated transcription of brain-related genes. The culprit for a subset of cases, she contends, may lie in the exposure history of the parents, and thus their germ cells. To illustrate how environmentally informed, nongenetic dysfunction may occur, she focuses on the example of parents' histories of exposure to common agents of modern inhalational anesthesia, a highly toxic exposure that in mammalian models has been seen to induce heritable neurodevelopmental abnormality in offspring born of exposed germline.

SeminarNeuroscience

How are nervous systems remodeled in complex metazoans?

Marc Freeman
Oregon Health & Science University, Portland OR, USA
May 11, 2022

Early in development the nervous system is constructed with far too many neurons that make an excessive number of synaptic connections.  Later, a wave of neuronal remodeling radically reshapes nervous system wiring and cell numbers through the selective elimination of excess synapses, axons and dendrites, and even whole neurons.  This remodeling is widespread across the nervous system, extensive in terms of how much individual brain regions can change (e.g. in some cases 50% of neurons integrated into a brain circuit are eliminated), and thought to be essential for optimizing nervous system function.  Perturbations of neuronal remodeling are thought to underlie devastating neurodevelopmental disorders including autism spectrum disorder, schizophrenia, and epilepsy.  This seminar will discuss our efforts to use the relatively simple nervous system of Drosophila to understand the mechanistic basis by which cells, or parts of cells, are specified for removal and eliminated from the nervous system.

SeminarNeuroscience

2nd In-Vitro 2D & 3D Neuronal Networks Summit

Dr. Manuel Schröter, Dr. David Pamies, Dr. Silvia Ronchi, Jens Duru, Dr. Hideaki Yamamoto, Xiaohan Xue, Danny McSweeney, Dr. Katherine Czysz, Dr. Maria Sundberg
Apr 6, 2022

The event is open to everyone interested in Neuroscience, Cell Biology, Drug Discovery, Disease Modeling, and Bio/Neuroengineering! This meeting is a platform bringing scientists from all over the world together and fostering scientific exchange and collaboration.

SeminarNeuroscience

2nd In-Vitro 2D & 3D Neuronal Networks Summit

Prof. Dr. Nael Nadif Kasri, Prof. Dr. Naihe Jing, Prof. Dr. Bastian Hengerer, Prof. Dr. Janos Vörös, Dr. Bruna Paulsen, Dr. Annina Denoth-Lippuner, Dr, Jessica Sevetson, Prof. Dr. Kenneth Kosik
Apr 5, 2022

The event is open to everyone interested in Neuroscience, Cell Biology, Drug Discovery, Disease Modeling, and Bio/Neuroengineering! This meeting is a platform bringing scientists from all over the world together and fostering scientific exchange and collaboration.

SeminarNeuroscience

Mapping the Dynamics of the Linear and 3D Genome of Single Cells in the Developing Brain

Longzhi Tan
Stanford
Mar 29, 2022

Three intimately related dimensions of the mammalian genome—linear DNA sequence, gene transcription, and 3D genome architecture—are crucial for the development of nervous systems. Changes in the linear genome (e.g., de novo mutations), transcriptome, and 3D genome structure lead to debilitating neurodevelopmental disorders, such as autism and schizophrenia. However, current technologies and data are severely limited: (1) 3D genome structures of single brain cells have not been solved; (2) little is known about the dynamics of single-cell transcriptome and 3D genome after birth; (3) true de novo mutations are extremely difficult to distinguish from false positives (DNA damage and/or amplification errors). Here, I filled in this longstanding technological and knowledge gap. I recently developed a high-resolution method—diploid chromatin conformation capture (Dip-C)—which resolved the first 3D structure of the human genome, tackling a longstanding problem dating back to the 1880s. Using Dip-C, I obtained the first 3D genome structure of a single brain cell, and created the first transcriptome and 3D genome atlas of the mouse brain during postnatal development. I found that in adults, 3D genome “structure types” delineate all major cell types, with high correlation between chromatin A/B compartments and gene expression. During development, both transcriptome and 3D genome are extensively transformed in the first month of life. In neurons, 3D genome is rewired across scales, correlated with gene expression modules, and independent of sensory experience. Finally, I examined allele-specific structure of imprinted genes, revealing local and chromosome-wide differences. More recently, I expanded my 3D genome atlas to the human and mouse cerebellum—the most consistently affected brain region in autism. I uncovered unique 3D genome rewiring throughout life, providing a structural basis for the cerebellum’s unique mode of development and aging. In addition, to accurately measure de novo mutations in a single cell, I developed a new method—multiplex end-tagging amplification of complementary strands (META-CS), which eliminates nearly all false positives by virtue of DNA complementarity. Using META-CS, I determined the true mutation spectrum of single human brain cells, free from chemical artifacts. Together, my findings uncovered an unknown dimension of neurodevelopment, and open up opportunities for new treatments for autism and other developmental disorders.

SeminarNeuroscience

One by one: brain organoid modelling of neurodevelopmental disorders at single cell resolution

Giuseppe Testa
Human Technopole
Mar 8, 2022
SeminarNeuroscienceRecording

The use of milk exosomes to increase the expression of SYNGAP1 expression in SYNGAP1 mice

Janos Zempleni
University of Nebraska
Mar 2, 2022
SeminarNeuroscience

Emerging Treatment Options in Psychiatry

Erik Wong
University of British Columbia
Feb 27, 2022

The World Health Organization (WHO) estimates that untreated mental disorders accountfor 13% of the total global burden of disease, and by 2030, depression alone will be the leadingcause of disability around the world – outpacing heart disease, cancer, and HIV. This grim pictureis further compounded by the mental health burden delivered by the coronavirus pandemic.The lack of novel treatment options in psychiatry is restricted by a limited understanding in theneuroscience basis of mental disorders, availability of relevant biomarkers, poor predictability inanimal models, and high failure rates in psychiatric drug development. However, theannouncement in 2019 from the Federal Drug Administration (FDA) for approvals of newinterventions for treatment-resistant depression (intranasal esketamine) and postpartumdepression (i.v. brexanolone), demand critical attention. Novel public-private partnerships indrug discovery, new translational data on co-morbid biology, in particular the ascendance ofpsycho-immunology, have highlighted the arrival of a new frontier in biological psychiatryresearch for depressive disorders.

SeminarNeuroscience

An Introduction to Autism BrainNet

David Amaral, PhD and Carolyn Komich Hare, MS
Feb 9, 2022
SeminarNeuroscience

Diversification of cortical inhibitory circuits & Molecular programs orchestrating the wiring of inhibitory circuitries

Beatriz Rico and Professor Oscar Marin
MRC Centre for Neurodevelopmental Disorders Centre for Developmental Neurobiology , King’s College London, UK
Feb 2, 2022

GABAergic interneurons play crucial roles in the regulation of neural activity in the cerebral cortex. In this Dual Lecture, Prof Oscar Marín and Prof Beatriz Rico will discuss several aspects of the formation of inhibitory circuits in the mammalian cerebral cortex. Prof. Marín will provide an overview of the mechanisms regulating the generation of the remarkable diversity of GABAergic interneurons and their ultimate numbers. Prof. Rico will describe the molecular logic through which specific pyramidal cell-interneuron circuits are established in the cerebral cortex, and how alterations in some of these connectivity motifs might be liked to disease.   Our web pages for reference: https://devneuro.org.uk/marinlab/ & https://devneuro.org.uk/rico/default

SeminarNeuroscience

Translational Biomarkers in Preclinical Models of Neurodevelopmental Disorders

Jill Silverman
UC Davis
Jan 25, 2022
SeminarNeuroscience

Synaptic alterations in the striatum drive ASD-related behaviors in mice

Helen Bateup
UC Berkeley
Jan 11, 2022
SeminarNeuroscience

Role of primary visual cortex (V1) in visual awareness: insights from blindsight

Juha Silvanto
University of Surrey
Nov 22, 2021
SeminarNeuroscience

Networking—the key to success… especially in the brain

Alexander Dunn
University of Cambridge, DAMTP
Nov 16, 2021

In our everyday lives, we form connections and build up social networks that allow us to function successfully as individuals and as a society. Our social networks tend to include well-connected individuals who link us to other groups of people that we might otherwise have limited access to. In addition, we are more likely to befriend individuals who a) live nearby and b) have mutual friends. Interestingly, neurons tend to do the same…until development is perturbed. Just like social networks, neuronal networks require highly connected hubs to elicit efficient communication at minimal cost (you can’t befriend everybody you meet, nor can every neuron wire with every other!). This talk will cover some of Alex’s work showing that microscopic (cellular scale) brain networks inferred from spontaneous activity show similar complex topology to that previously described in macroscopic human brain scans. The talk will also discuss what happens when neurodevelopment is disrupted in the case of a monogenic disorder called Rett Syndrome. This will include simulations of neuronal activity and the effects of manipulation of model parameters as well as what happens when we manipulate real developing networks using optogenetics. If functional development can be restored in atypical networks, this may have implications for treatment of neurodevelopmental disorders like Rett Syndrome.

SeminarNeuroscience

Stem cell approaches to understand acquired and genetic epilepsies

Jenny Hsieh
University of Texas at San Antonio
Nov 16, 2021

The Hsieh lab focuses on the mechanisms that promote neural stem cell self-renewal and differentiation in embryonic and adult brain. Using mouse models, video-EEG monitoring, viral techniques, and imaging/electrophysiological approaches, we elucidated many of the key transcriptional/epigenetic regulators of adult neurogenesis and showed aberrant new neuron integration in adult rodent hippocampus contribute to circuit disruption and seizure development. Building on this work, I will present our recent studies describing how GABA-mediated Ca2+ activity regulates the production of aberrant adult-born granule cells. In a new direction of my laboratory, we are using human induced pluripotent stem cells and brain organoid models as approaches to understand brain development and disease. Mutations in one gene, Aristaless-related homeobox (ARX), are of considerable interest since they are known to cause a common spectrum of neurodevelopmental disorders including epilepsy, autism, and intellectual disability. We have generated cortical and subpallial organoids from patients with poly-alanine expansion mutations in ARX. To understand the nature of ARX mutations in the organoid system, we are currently performing cellular, molecular, and physiological analyses. I will present these data to gain a comprehensive picture of the effect of ARX mutations in brain development. Since we do not understand how human brain development is affected by ARX mutations that contribute to epilepsy, we believe these studies will allow us to understand the mechanism of pathogenesis of ARX mutations, which has the potential to impact the diagnosis and care of patients.

SeminarNeuroscience

Investigating the functional single-cell biology of SynGAP1 pathways

Michael Courtney
University of Turku and the Abo Academy University
Nov 3, 2021
SeminarNeuroscience

Dual lecture: Diversification of cortical inhibitory circuits & Molecular programs orchestrating the wiring of inhibitory circuitries

Oscar Marín & Beatriz Rico
MRC Centre for Neurodevelopmental Disorders & Centre for Developmental Neurobiology, King’s College London, UK
Nov 3, 2021

GABAergic interneurons play crucial roles in the regulation of neural activity in the cerebral cortex. In this Dual Lecture, Prof Oscar Marín and Prof Beatriz Rico will discuss several aspects of the formation of inhibitory circuits in the mammalian cerebral cortex. Prof. Marín will provide an overview of the mechanisms regulating the generation of the remarkable diversity of GABAergic interneurons and their ultimate numbers. Prof. Rico will describe the molecular logic through which specific pyramidal cell-interneuron circuits are established in the cerebral cortex, and how alterations in some of these connectivity motifs might be liked to disease.

SeminarNeuroscienceRecording

Mechanisms of CACNA1A-associated developmental epileptic encephalopathies

Elsa Rossignol
University of Montreal
Nov 2, 2021

Developmental epileptic encephalopathies are early-onset epilepsies, often refractory to therapy, with developmental delay or regression. These disorders carry poor neurodevelopmental prognosis, with long-term refractory epilepsy and persistent cognitive, behavioral and motor deficits. Mutations in the CACNA1A gene, encoding the pore-forming α1 subunit of CaV2.1 voltage-gated calcium channels, result in a spectrum of neurological disorders, including severe, early-onset epileptic encephalopathies. Recent work from the Rossignol lab helped characterize the phenotypic spectrum of CACNA1A-related epilepsies in humans. Using conditional genetics and novel animal models, the Rossignol lab unveiled some of the underlying pathophysiological mechanisms, including critical deficits in cortical inhibition, resulting in seizures and a range of cognitive-behavioral deficits. Importantly, Dr. Rossignol’s team demonstrated that the targeted activation of specific GABAergic interneuron populations in selected cortical regions prevents motor seizures and reverts attention deficits and cognitive rigidity in mouse models of the disorder. These recent findings open novel avenues for the treatment of these severe CACNA1A-associated neurodevelopmental disorders.

SeminarNeuroscienceRecording

Relearning to see with a damaged V1

Krystel Huxlin
Rochester
Nov 1, 2021
SeminarNeuroscience

Behavioral phenotyping strategies for mouse models of neurodevelopmental disorders

Jacqueline N. Crawley
MIND Institute. Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
Sep 29, 2021
SeminarNeuroscience

Gestational exposure to environmental toxins, infections, and stressors are epidemiologically linked to neurodevelopmental disorders

Staci D. Bilbo
Duke University
Sep 12, 2021

Gestational exposure to environmental toxins, infections, and stressors are epidemiologically linked to neurodevelopmental disorders with strong male-bias, such as autism spectrum disorder. We modeled some of these prenatal risk factors in mice, by co-exposing pregnant dams to an environmental pollutant and limited-resource stress, which robustly dysregulated the maternal immune system. Male but not female offspring displayed long-lasting behavioral abnormalities and alterations in the activity of brain networks encoding social interactions, along with disruptions of gut structure and microbiome composition. Cellularly, prenatal stressors impaired microglial synaptic pruning in males during early postnatal development. Precise inhibition of microglial phagocytosis during the same critical period mimicked the impact of prenatal stressors on the male-specific social deficits. Conversely, modifying the gut microbiome rescued the social and cellular deficits, indicating that environmental stressors alter neural circuit formation in males via impairing microglia function during development, perhaps via a gut-brain disruption.

SeminarNeuroscience

Untitled Seminar

Dr. Ana Mingorance
Dracaena Consulting
Sep 1, 2021
SeminarNeuroscience

Interpretation of SYNGAP1 Variants

Eduardo Perez Palma, PhD
Universidad del Desarrollo, Santiago (Chile)
Aug 18, 2021
SeminarNeuroscience

Careers in neuroscience (and beyond!)

Emma Soopramanien
Queen Mary University London
Jul 20, 2021

Join us to hear about degrees and careers in neuroscience, what it’s like to be a neuroscientist, the wide range of career options open to you after a neuroscience degree, first-hand examples of career paths in neuroscience, and some tips and thoughts to help you in your own careers. This free and friendly webinar will give you the chance to ask questions from people with different experiences in neuroscience: - Emma Soopramanien, the BNA Committee Representative for Students and Early Career Researchers – Emma has just completed her undergraduate course in neuroscience, and will be hosting the webinar. - Professor Anthony Isles, BNA Trustee – Anthony is a professor at Cardiff University, where he researches epigenetic mechanisms of brain and behaviour and how they contribute to neurodevelopmental and neuropsychiatric disorders, as well as teaching undergraduate and postgraduate students. He will talk about how he came to be a neuroscientist researcher and ways into neuroscience. - Dr Anne Cooke, BNA Chief Executive – Anne studied physiology and neuroscience at university and carried out research into neuronal communication, before then following a career path with roles in academia and industry, and now as CE at the BNA. Anne will describe her own career in neuroscience, as well as some of the many other options open to you after a neuroscience degree.

SeminarNeuroscience

Learning under uncertainty in autism and anxiety

Timothy Sandhu
University of Cambridge, MRC CBU
Jun 15, 2021

Optimally interacting with a changeable and uncertain world requires estimating and representing uncertainty. Psychiatric and neurodevelopmental conditions such as anxiety and autism are characterized by an altered response to uncertainty. I will review the evidence for these phenomena from computational modelling, and outline the planned experiments from our lab to add further weight to these ideas. If time allows, I will present results from a control sample in a novel task interrogating a particular type of uncertainty and their associated transdiagnostic psychiatric traits.

ePoster

Developmental trajectories of sleep EEG in neurodevelopmental disorders: Does sex matter?

Nataliia Kozhemiako, Shaun M. Purcell

FENS Forum 2024

ePoster

Functional characterization of DPYSL5 gene variants involved in neurodevelopmental disorders with brain malformations

Florence Desprez, Solène Remize, Aubin Moutal, Dévina C. Ung, Sylviane Marouillat, Roger Besançon, Jérôme Honnorat, Médéric Jeanne, Frédéric Laumonnier

FENS Forum 2024

ePoster

Human iPSC-derived neurons to investigate subtype-specific alterations in neurodevelopmental disorders: Our progress on SSADH deficiency

Wardiya Afshar Saber, Nicole Teaney, Kellen Winden, Federico Gasparoli, J-B Roullet, Phillip Pearl, Mustafa Sahin

FENS Forum 2024

ePoster

Integrating network activity with transcriptomic profiling in hiPSCs-derived neuronal networks to understand the molecular drivers of functional heterogeneity in the context of neurodevelopmental disorders

Sofia Puvogel, Ummi Ciptasari, Eline van Hugte, Shan Wang, Nicky Scheefhals, Astrid Oudakker, Chantal Schoenmaker, Ka Man Wu, Hans van Bokhoven, Dirk Schubert, Nael Nadif Kasri

FENS Forum 2024

ePoster

Investigating the pathogenic potential of KCNH5 variants in neurodevelopmental disorders

Tobias Miering, Shreyas Sakharwade, Esen Gümüslü, Arif Ekici, Tobias Huth, André Reis, Peter Soba

FENS Forum 2024

ePoster

Investigating the pathogenic potential of CLSTN1 variants in neurodevelopmental disorders

Christina Priller, Esen Gümüslü, Shreyas Sakharwade, Birgit Vogler, Arif B. Ekici, André Reis, Peter Soba

FENS Forum 2024

ePoster

PTCHD1 modulates cytoskeleton remodeling through regulation of Rac1-PAK signaling pathway, consistent with neurodevelopmental disorders phenotype

Dévina Ung, Sylviane Marouillat, Thibaut Laboute, Judith Halewa, Chloé Boisseau, Marie Vossels, Frédéric Laumonnier

FENS Forum 2024

ePoster

Rabphilin 3A: From NMDA receptor synaptic retention to neurodevelopmental disorders

Marta Barzasi, Lisa Pavinato, Chiara Galizia, Monica Di Luca, Alfredo Brusco, Fabrizio Gardoni

FENS Forum 2024

ePoster

Role of astrocytes in visual synaptic transmission and plasticity: Implications in neurodevelopmental disorders

Valentin Ritou, Elsie Moukarzel, Elsa Isingrini, Cendra Agulhon

FENS Forum 2024

ePoster

The true cost of air pollution on neurodevelopmental disorders: Postnatal PM10 exposure impairs normal development in transgenic ApoE mice

Rocío Rodulfo Cárdenas, Judit Biosca-Brull, Séfora Barberà-Parada, Diego Ruiz-Sobremazas, Jordi Blanco, Maria Cabré, Fernando Sánchez-Santed, Caridad López-Granero, Maria Teresa Colomina

FENS Forum 2024

ePoster

In vivo xenotransplantation of patient iPSC-derived neurons in MECP2 neurodevelopmental disorders

Nona Merckx, Leïla Boubakar, Ryohei Iwata, Emir Erkol, Pierre Vanderhaeghen, Hilde Van Esch

FENS Forum 2024