← Back

Neural Responses

Topic spotlight
TopicWorld Wide

neural responses

Discover seminars, jobs, and research tagged with neural responses across World Wide.
35 curated items27 Seminars8 ePosters
Updated 6 months ago
35 items · neural responses
35 results
SeminarPsychology

An Ecological and Objective Neural Marker of Implicit Unfamiliar Identity Recognition

Tram Nguyen
University of Malta
Jun 10, 2025

We developed a novel paradigm measuring implicit identity recognition using Fast Periodic Visual Stimulation (FPVS) with EEG among 16 students and 12 police officers with normal face processing abilities. Participants' neural responses to a 1-Hz tagged oddball identity embedded within a 6-Hz image stream revealed implicit recognition with high-quality mugshots but not CCTV-like images, suggesting optimal resolution requirements. Our findings extend previous research by demonstrating that even unfamiliar identities can elicit robust neural recognition signatures through brief, repeated passive exposure. This approach offers potential for objective validation of face processing abilities in forensic applications, including assessment of facial examiners, Super-Recognisers, and eyewitnesses, potentially overcoming limitations of traditional behavioral assessment methods.

SeminarPsychology

Deepfake emotional expressions trigger the uncanny valley brain response, even when they are not recognised as fake

Casey Becker
University of Pittsburgh
Apr 15, 2025

Facial expressions are inherently dynamic, and our visual system is sensitive to subtle changes in their temporal sequence. However, researchers often use dynamic morphs of photographs—simplified, linear representations of motion—to study the neural correlates of dynamic face perception. To explore the brain's sensitivity to natural facial motion, we constructed a novel dynamic face database using generative neural networks, trained on a verified set of video-recorded emotional expressions. The resulting deepfakes, consciously indistinguishable from videos, enabled us to separate biological motion from photorealistic form. Results showed that conventional dynamic morphs elicit distinct responses in the brain compared to videos and photos, suggesting they violate expectations (n400) and have reduced social salience (late positive potential). This suggests that dynamic morphs misrepresent facial dynamism, resulting in misleading insights about the neural and behavioural correlates of face perception. Deepfakes and videos elicited largely similar neural responses, suggesting they could be used as a proxy for real faces in vision research, where video recordings cannot be experimentally manipulated. And yet, despite being consciously undetectable as fake, deepfakes elicited an expectation violation response in the brain. This points to a neural sensitivity to naturalistic facial motion, beyond conscious awareness. Despite some differences in neural responses, the realism and manipulability of deepfakes make them a valuable asset for research where videos are unfeasible. Using these stimuli, we proposed a novel marker for the conscious perception of naturalistic facial motion – Frontal delta activity – which was elevated for videos and deepfakes, but not for photos or dynamic morphs.

SeminarNeuroscience

Homeostatic Neural Responses to Photic Stimulation

Philipp Streicher
The University of Sussex
May 21, 2024

This talk presents findings from open and closed-loop neural stimulation experiments using EEG. Fixed-frequency (10 Hz) stimulation revealed cross-cortical alpha power suppression post-stimulation, modulated by the difference between the individual's alpha frequency and the stimulation frequency. Closed-loop stimulation demonstrated phase-dependent effects: trough stimulation enhanced lower alpha activity, while peak stimulation suppressed high alpha to beta activity. These findings provide evidence for homeostatic mechanisms in the brain's response to photic stimulation, with implications for neuromodulation applications.

SeminarNeuroscience

Brain-heart interactions at the edges of consciousness

Diego Candia-Rivera
Paris Brain Institute (ICM)/Sorbonne Université
Mar 7, 2024

Various clinical cases have provided evidence linking cardiovascular, neurological, and psychiatric disorders to changes in the brain-heart interaction. Our recent experimental evidence on patients with disorders of consciousness revealed that observing brain-heart interactions helps to detect residual consciousness, even in patients with absence of behavioral signs of consciousness. Those findings support hypotheses suggesting that visceral activity is involved in the neurobiology of consciousness and sum to the existing evidence in healthy participants in which the neural responses to heartbeats reveal perceptual and self-consciousness. Furthermore, the presence of non-linear, complex, and bidirectional communication between brain and heartbeat dynamics can provide further insights into the physiological state of the patient following severe brain injury. These developments on methodologies to analyze brain-heart interactions open new avenues for understanding neural functioning at a large-scale level, uncovering that peripheral bodily activity can influence brain homeostatic processes, cognition, and behavior.

SeminarNeuroscience

Identifying mechanisms of cognitive computations from spikes

Tatiana Engel
Princeton
Nov 2, 2023

Higher cortical areas carry a wide range of sensory, cognitive, and motor signals supporting complex goal-directed behavior. These signals mix in heterogeneous responses of single neurons, making it difficult to untangle underlying mechanisms. I will present two approaches for revealing interpretable circuit mechanisms from heterogeneous neural responses during cognitive tasks. First, I will show a flexible nonparametric framework for simultaneously inferring population dynamics on single trials and tuning functions of individual neurons to the latent population state. When applied to recordings from the premotor cortex during decision-making, our approach revealed that populations of neurons encoded the same dynamic variable predicting choices, and heterogeneous firing rates resulted from the diverse tuning of single neurons to this decision variable. The inferred dynamics indicated an attractor mechanism for decision computation. Second, I will show an approach for inferring an interpretable network model of a cognitive task—the latent circuit—from neural response data. We developed a theory to causally validate latent circuit mechanisms via patterned perturbations of activity and connectivity in the high-dimensional network. This work opens new possibilities for deriving testable mechanistic hypotheses from complex neural response data.

SeminarNeuroscienceRecording

Dynamics of cortical circuits: underlying mechanisms and computational implications

Alessandro Sanzeni
Bocconi University, Milano
Jan 24, 2023

A signature feature of cortical circuits is the irregularity of neuronal firing, which manifests itself in the high temporal variability of spiking and the broad distribution of rates. Theoretical works have shown that this feature emerges dynamically in network models if coupling between cells is strong, i.e. if the mean number of synapses per neuron K is large and synaptic efficacy is of order 1/\sqrt{K}. However, the degree to which these models capture the mechanisms underlying neuronal firing in cortical circuits is not fully understood. Results have been derived using neuron models with current-based synapses, i.e. neglecting the dependence of synaptic current on the membrane potential, and an understanding of how irregular firing emerges in models with conductance-based synapses is still lacking. Moreover, at odds with the nonlinear responses to multiple stimuli observed in cortex, network models with strongly coupled cells respond linearly to inputs. In this talk, I will discuss the emergence of irregular firing and nonlinear response in networks of leaky integrate-and-fire neurons. First, I will show that, when synapses are conductance-based, irregular firing emerges if synaptic efficacy is of order 1/\log(K) and, unlike in current-based models, persists even under the large heterogeneity of connections which has been reported experimentally. I will then describe an analysis of neural responses as a function of coupling strength and show that, while a linear input-output relation is ubiquitous at strong coupling, nonlinear responses are prominent at moderate coupling. I will conclude by discussing experimental evidence of moderate coupling and loose balance in the mouse cortex.

SeminarNeuroscience

Intrinsic Geometry of a Combinatorial Sensory Neural Code for Birdsong

Tim Gentner
University of California, San Diego, USA
Nov 8, 2022

Understanding the nature of neural representation is a central challenge of neuroscience. One common approach to this challenge is to compute receptive fields by correlating neural activity with external variables drawn from sensory signals. But these receptive fields are only meaningful to the experimenter, not the organism, because only the experimenter has access to both the neural activity and knowledge of the external variables. To understand neural representation more directly, recent methodological advances have sought to capture the intrinsic geometry of sensory driven neural responses without external reference. To date, this approach has largely been restricted to low-dimensional stimuli as in spatial navigation. In this talk, I will discuss recent work from my lab examining the intrinsic geometry of sensory representations in a model vocal communication system, songbirds. From the assumption that sensory systems capture invariant relationships among stimulus features, we conceptualized the space of natural birdsongs to lie on the surface of an n-dimensional hypersphere. We computed composite receptive field models for large populations of simultaneously recorded single neurons in the auditory forebrain and show that solutions to these models define convex regions of response probability in the spherical stimulus space. We then define a combinatorial code over the set of receptive fields, realized in the moment-to-moment spiking and non-spiking patterns across the population, and show that this code can be used to reconstruct high-fidelity spectrographic representations of natural songs from evoked neural responses. Notably, we find that topological relationships among combinatorial codewords directly mirror acoustic relationships among songs in the spherical stimulus space. That is, the time-varying pattern of co-activity across the neural population expresses an intrinsic representational geometry that mirrors the natural, extrinsic stimulus space.  Combinatorial patterns across this intrinsic space directly represent complex vocal communication signals, do not require computation of receptive fields, and are in a form, spike time coincidences, amenable to biophysical mechanisms of neural information propagation.

SeminarNeuroscience

Signal in the Noise: models of inter-trial and inter-subject neural variability

Alex Williams
NYU/Flatiron
Nov 3, 2022

The ability to record large neural populations—hundreds to thousands of cells simultaneously—is a defining feature of modern systems neuroscience. Aside from improved experimental efficiency, what do these technologies fundamentally buy us? I'll argue that they provide an exciting opportunity to move beyond studying the "average" neural response. That is, by providing dense neural circuit measurements in individual subjects and moments in time, these recordings enable us to track changes across repeated behavioral trials and across experimental subjects. These two forms of variability are still poorly understood, despite their obvious importance to understanding the fidelity and flexibility of neural computations. Scientific progress on these points has been impeded by the fact that individual neurons are very noisy and unreliable. My group is investigating a number of customized statistical models to overcome this challenge. I will mention several of these models but focus particularly on a new framework for quantifying across-subject similarity in stochastic trial-by-trial neural responses. By applying this method to noisy representations in deep artificial networks and in mouse visual cortex, we reveal that the geometry of neural noise correlations is a meaningful feature of variation, which is neglected by current methods (e.g. representational similarity analysis).

SeminarNeuroscienceRecording

Hierarchical transformation of visual event timing representations in the human brain: response dynamics in early visual cortex and timing-tuned responses in association cortices

Evi Hendrikx
Utrecht University
Sep 27, 2022

Quantifying the timing (duration and frequency) of brief visual events is vital to human perception, multisensory integration and action planning. For example, this allows us to follow and interact with the precise timing of speech and sports. Here we investigate how visual event timing is represented and transformed across the brain’s hierarchy: from sensory processing areas, through multisensory integration areas, to frontal action planning areas. We hypothesized that the dynamics of neural responses to sensory events in sensory processing areas allows derivation of event timing representations. This would allow higher-level processes such as multisensory integration and action planning to use sensory timing information, without the need for specialized central pacemakers or processes. Using 7T fMRI and neural model-based analyses, we found responses that monotonically increase in amplitude with visual event duration and frequency, becoming increasingly clear from primary visual cortex to lateral occipital visual field maps. Beginning in area MT/V5, we found a gradual transition from monotonic to tuned responses, with response amplitudes peaking at different event timings in different recording sites. While monotonic response components were limited to the retinotopic location of the visual stimulus, timing-tuned response components were independent of the recording sites' preferred visual field positions. These tuned responses formed a network of topographically organized timing maps in superior parietal, postcentral and frontal areas. From anterior to posterior timing maps, multiple events were increasingly integrated, response selectivity narrowed, and responses focused increasingly on the middle of the presented timing range. These results suggest that responses to event timing are transformed from the human brain’s sensory areas to the association cortices, with the event’s temporal properties being increasingly abstracted from the response dynamics and locations of early sensory processing. The resulting abstracted representation of event timing is then propagated through areas implicated in multisensory integration and action planning.

SeminarNeuroscience

Multi-level theory of neural representations in the era of large-scale neural recordings: Task-efficiency, representation geometry, and single neuron properties

SueYeon Chung
NYU/Flatiron
Sep 15, 2022

A central goal in neuroscience is to understand how orchestrated computations in the brain arise from the properties of single neurons and networks of such neurons. Answering this question requires theoretical advances that shine light into the ‘black box’ of representations in neural circuits. In this talk, we will demonstrate theoretical approaches that help describe how cognitive and behavioral task implementations emerge from the structure in neural populations and from biologically plausible neural networks. First, we will introduce an analytic theory that connects geometric structures that arise from neural responses (i.e., neural manifolds) to the neural population’s efficiency in implementing a task. In particular, this theory describes a perceptron’s capacity for linearly classifying object categories based on the underlying neural manifolds’ structural properties. Next, we will describe how such methods can, in fact, open the ‘black box’ of distributed neuronal circuits in a range of experimental neural datasets. In particular, our method overcomes the limitations of traditional dimensionality reduction techniques, as it operates directly on the high-dimensional representations, rather than relying on low-dimensionality assumptions for visualization. Furthermore, this method allows for simultaneous multi-level analysis, by measuring geometric properties in neural population data, and estimating the amount of task information embedded in the same population. These geometric frameworks are general and can be used across different brain areas and task modalities, as demonstrated in the work of ours and others, ranging from the visual cortex to parietal cortex to hippocampus, and from calcium imaging to electrophysiology to fMRI datasets. Finally, we will discuss our recent efforts to fully extend this multi-level description of neural populations, by (1) investigating how single neuron properties shape the representation geometry in early sensory areas, and by (2) understanding how task-efficient neural manifolds emerge in biologically-constrained neural networks. By extending our mathematical toolkit for analyzing representations underlying complex neuronal networks, we hope to contribute to the long-term challenge of understanding the neuronal basis of tasks and behaviors.

SeminarNeuroscienceRecording

Spatial uncertainty provides a unifying account of navigation behavior and grid field deformations

Yul Kang
Lengyel lab, Cambridge University
Apr 5, 2022

To localize ourselves in an environment for spatial navigation, we rely on vision and self-motion inputs, which only provide noisy and partial information. It is unknown how the resulting uncertainty affects navigation behavior and neural representations. Here we show that spatial uncertainty underlies key effects of environmental geometry on navigation behavior and grid field deformations. We develop an ideal observer model, which continually updates probabilistic beliefs about its allocentric location by optimally combining noisy egocentric visual and self-motion inputs via Bayesian filtering. This model directly yields predictions for navigation behavior and also predicts neural responses under population coding of location uncertainty. We simulate this model numerically under manipulations of a major source of uncertainty, environmental geometry, and support our simulations by analytic derivations for its most salient qualitative features. We show that our model correctly predicts a wide range of experimentally observed effects of the environmental geometry and its change on homing response distribution and grid field deformation. Thus, our model provides a unifying, normative account for the dependence of homing behavior and grid fields on environmental geometry, and identifies the unavoidable uncertainty in navigation as a key factor underlying these diverse phenomena.

SeminarNeuroscienceRecording

Structure, Function, and Learning in Distributed Neuronal Networks

SueYeon Chung
Flatiron Institute/NYU
Jan 25, 2022

A central goal in neuroscience is to understand how orchestrated computations in the brain arise from the properties of single neurons and networks of such neurons. Answering this question requires theoretical advances that shine light into the ‘black box’ of neuronal networks. In this talk, I will demonstrate theoretical approaches that help describe how cognitive and behavioral task implementations emerge from structure in neural populations and from biologically plausible learning rules. First, I will introduce an analytic theory that connects geometric structures that arise from neural responses (i.e., neural manifolds) to the neural population’s efficiency in implementing a task. In particular, this theory describes how easy or hard it is to discriminate between object categories based on the underlying neural manifolds’ structural properties. Next, I will describe how such methods can, in fact, open the ‘black box’ of neuronal networks, by showing how we can understand a) the role of network motifs in task implementation in neural networks and b) the role of neural noise in adversarial robustness in vision and audition. Finally, I will discuss my recent efforts to develop biologically plausible learning rules for neuronal networks, inspired by recent experimental findings in synaptic plasticity. By extending our mathematical toolkit for analyzing representations and learning rules underlying complex neuronal networks, I hope to contribute toward the long-term challenge of understanding the neuronal basis of behaviors.

SeminarNeuroscienceRecording

NMC4 Short Talk: Hypothesis-neutral response-optimized models of higher-order visual cortex reveal strong semantic selectivity

Meenakshi Khosla
Massachusetts Institute of Technology
Nov 30, 2021

Modeling neural responses to naturalistic stimuli has been instrumental in advancing our understanding of the visual system. Dominant computational modeling efforts in this direction have been deeply rooted in preconceived hypotheses. In contrast, hypothesis-neutral computational methodologies with minimal apriorism which bring neuroscience data directly to bear on the model development process are likely to be much more flexible and effective in modeling and understanding tuning properties throughout the visual system. In this study, we develop a hypothesis-neutral approach and characterize response selectivity in the human visual cortex exhaustively and systematically via response-optimized deep neural network models. First, we leverage the unprecedented scale and quality of the recently released Natural Scenes Dataset to constrain parametrized neural models of higher-order visual systems and achieve novel predictive precision, in some cases, significantly outperforming the predictive success of state-of-the-art task-optimized models. Next, we ask what kinds of functional properties emerge spontaneously in these response-optimized models? We examine trained networks through structural ( feature visualizations) as well as functional analysis (feature verbalizations) by running `virtual' fMRI experiments on large-scale probe datasets. Strikingly, despite no category-level supervision, since the models are solely optimized for brain response prediction from scratch, the units in the networks after optimization act as detectors for semantic concepts like `faces' or `words', thereby providing one of the strongest evidences for categorical selectivity in these visual areas. The observed selectivity in model neurons raises another question: are the category-selective units simply functioning as detectors for their preferred category or are they a by-product of a non-category-specific visual processing mechanism? To investigate this, we create selective deprivations in the visual diet of these response-optimized networks and study semantic selectivity in the resulting `deprived' networks, thereby also shedding light on the role of specific visual experiences in shaping neuronal tuning. Together with this new class of data-driven models and novel model interpretability techniques, our study illustrates that DNN models of visual cortex need not be conceived as obscure models with limited explanatory power, rather as powerful, unifying tools for probing the nature of representations and computations in the brain.

SeminarNeuroscience

A universal probabilistic spike count model reveals ongoing modulation of neural variability in head direction cell activity in mice

David Liu
University of Cambridge
Oct 26, 2021

Neural responses are variable: even under identical experimental conditions, single neuron and population responses typically differ from trial to trial and across time. Recent work has demonstrated that this variability has predictable structure, can be modulated by sensory input and behaviour, and bears critical signatures of the underlying network dynamics and computations. However, current methods for characterising neural variability are primarily geared towards sensory coding in the laboratory: they require trials with repeatable experimental stimuli and behavioural covariates. In addition, they make strong assumptions about the parametric form of variability, rely on assumption-free but data-inefficient histogram-based approaches, or are altogether ill-suited for capturing variability modulation by covariates. Here we present a universal probabilistic spike count model that eliminates these shortcomings. Our method uses scalable Bayesian machine learning techniques to model arbitrary spike count distributions (SCDs) with flexible dependence on observed as well as latent covariates. Without requiring repeatable trials, it can flexibly capture covariate-dependent joint SCDs, and provide interpretable latent causes underlying the statistical dependencies between neurons. We apply the model to recordings from a canonical non-sensory neural population: head direction cells in the mouse. We find that variability in these cells defies a simple parametric relationship with mean spike count as assumed in standard models, its modulation by external covariates can be comparably strong to that of the mean firing rate, and slow low-dimensional latent factors explain away neural correlations. Our approach paves the way to understanding the mechanisms and computations underlying neural variability under naturalistic conditions, beyond the realm of sensory coding with repeatable stimuli.

SeminarNeuroscienceRecording

Expectation of self-generated sounds drives predictive processing in mouse auditory cortex

Nick Audette
Schneider lab, New York University
Sep 21, 2021

Sensory stimuli are often predictable consequences of one’s actions, and behavior exerts a correspondingly strong influence over sensory responses in the brain. Closed-loop experiments with the ability to control the sensory outcomes of specific animal behaviors have revealed that neural responses to self-generated sounds are suppressed in the auditory cortex, suggesting a role for prediction in local sensory processing. However, it is unclear whether this phenomenon derives from a precise movement-based prediction or how it affects the neural representation of incoming stimuli. We address these questions by designing a behavioral paradigm where mice learn to expect the predictable acoustic consequences of a simple forelimb movement. Neuronal recordings from auditory cortex revealed suppression of neural responses that was strongest for the expected tone and specific to the time of the sound-associated movement. Predictive suppression in the auditory cortex was layer-specific, preceded by the arrival of movement information, and unaffected by behavioral relevance or reward association. These findings illustrate that expectation, learned through motor-sensory experience, drives layer-specific predictive processing in the mouse auditory cortex.

SeminarNeuroscienceRecording

Distinct limbic-hypothalamic circuits for the generation of social behaviors

Takashi Yamaguchi
Lin lab, New York University
May 18, 2021

The main pillars of social behaviors involve (1) mating, where males copulate with female partners to reproduce, and (2) aggression, where males fight conspecific male competitors in territory guarding. Decades of study have identified two key regions in the hypothalamus, the medial preoptic nucleus (MPN) and the ventrolateral part of ventromedial hypothalamus (VMHvl) , that are essential for male sexual and aggressive behaviors, respectively. However, it remains ambiguous what area directs excitatory control of the hypothalamic activity and generates the initiation signal for social behaviors. Through neural tracing, in vivo optical recording and functional manipulations, we identified the estrogen receptor alpha (Esr1)-expressing cells in the posterior amygdala (PA) as a main source of excitatory inputs to the MPN and VMHvl, and key hubs in mating and fighting circuits in males. Importantly, two spatially-distinct populations in the PA regulate male sexual and aggressive behaviors, respectively. Moreover, these two subpopulations in the PA display differential molecular phenotypes, projection patterns and in vivo neural responses. Our work also observed the parallels between these social behavior circuits and basal ganglia circuits to control motivated behaviors, which Larry Swanson (2000) originally proposed based on extensive developmental and anatomical evidence.

SeminarNeuroscienceRecording

Restless engrams: the origin of continually reconfiguring neural representations

Timothy O'Leary
University of Cambridge
Mar 4, 2021

During learning, populations of neurons alter their connectivity and activity patterns, enabling the brain to construct a model of the external world. Conventional wisdom holds that the durability of a such a model is reflected in the stability of neural responses and the stability of synaptic connections that form memory engrams. However, recent experimental findings have challenged this idea, revealing that neural population activity in circuits involved in sensory perception, motor planning and spatial memory continually change over time during familiar behavioural tasks. This continual change suggests significant redundancy in neural representations, with many circuit configurations providing equivalent function. I will describe recent work that explores the consequences of such redundancy for learning and for task representation. Despite large changes in neural activity, we find cortical responses in sensorimotor tasks admit a relatively stable readout at the population level. Furthermore, we find that redundancy in circuit connectivity can make a task easier to learn and compensate for deficiencies in biological learning rules. Finally, if neuronal connections are subject to an unavoidable level of turnover, the level of plasticity required to optimally maintain a memory is generally lower than the total change due to turnover itself, predicting continual reconfiguration of an engram.

SeminarNeuroscienceRecording

Arousal modulates retinal output

Sylvia Schröder
University of Sussex
Feb 21, 2021

Neural responses in the visual system are usually not purely visual but depend on behavioural and internal states such as arousal. This dependence is seen both in primary visual cortex (V1) and in subcortical brain structures receiving direct retinal input. In this talk, I will show that modulation by behavioural state arises as early as in the output of the retina.To measure retinal activity in the awake, intact brain, we imaged the synaptic boutons of retinal axons in the superficial superior colliculus (sSC) of mice. The activity of about half of the boutons depended not only on vision but also on running speed and pupil size, regardless of retinal illumination. Arousal typically reduced the boutons’ visual responses to preferred direction and their selectivity for direction and orientation.Arousal may affect activity in retinal boutons by presynaptic neuromodulation. To test whether the effects of arousal occur already in the retina, we recorded from retinal axons in the optic tract. We found that, in darkness, more than one third of the recorded axons was significantly correlated with running speed. Arousal had similar effects postsynaptically, in sSC neurons, independent of activity in V1, the other main source of visual inputs to colliculus. Optogenetic inactivation of V1 generally decreased activity in collicular neurons but did not diminish the effects of arousal. These results indicate that arousal modulates activity at every stage of the visual system. In the future, we will study the purpose and the underlying mechanisms of behavioural modulation in the early visual system

SeminarNeuroscience

Assessing consciousness in human infants

Ghislaine Dehaene-Lambertz
CNRS
Jan 24, 2021

In a few months, human infants develop complex capacities in numerous cognitive domains. They learn their native language, recognize their parents, refine their numerical capacities and their perception of the world around them but are they conscious and how can we study consciousness when no verbal report is possible? One way to approach this question is to rely on the neural responses correlated with conscious perception in adults (i.e. a global increase of activity in notably frontal regions with top-down amplification of the sensory levels). We can thus study at what age the developing anatomical architecture might be mature enough to allow this type of responses, but moreover we can use similar experimental paradigms than in adults in which we expect to observe a similar pattern of functional responses.

SeminarNeuroscience

From oscillations to laminar responses - characterising the neural circuitry of autobiographical memories

Eleanor Maguire
Wellcome Centre for Human Neuroimaging at UCL
Nov 30, 2020

Autobiographical memories are the ghosts of our past. Through them we visit places long departed, see faces once familiar, and hear voices now silent. These, often decades-old, personal experiences can be recalled on a whim or come unbidden into our everyday consciousness. Autobiographical memories are crucial to cognition because they facilitate almost everything we do, endow us with a sense of self and underwrite our capacity for autonomy. They are often compromised by common neurological and psychiatric pathologies with devastating effects. Despite autobiographical memories being central to everyday mental life, there is no agreed model of autobiographical memory retrieval, and we lack an understanding of the neural mechanisms involved. This precludes principled interventions to manage or alleviate memory deficits, and to test the efficacy of treatment regimens. This knowledge gap exists because autobiographical memories are challenging to study – they are immersive, multi-faceted, multi-modal, can stretch over long timescales and are grounded in the real world. One missing piece of the puzzle concerns the millisecond neural dynamics of autobiographical memory retrieval. Surprisingly, there are very few magnetoencephalography (MEG) studies examining such recall, despite the important insights this could offer into the activity and interactions of key brain regions such as the hippocampus and ventromedial prefrontal cortex. In this talk I will describe a series of MEG studies aimed at uncovering the neural circuitry underpinning the recollection of autobiographical memories, and how this changes as memories age. I will end by describing our progress on leveraging an exciting new technology – optically pumped MEG (OP-MEG) which, when combined with virtual reality, offers the opportunity to examine millisecond neural responses from the whole brain, including deep structures, while participants move within a virtual environment, with the attendant head motion and vestibular inputs.

SeminarNeuroscience

Rapid State Changes Account for Apparent Brain and Behavior Variability

David McCormick
University of Oregon
Sep 16, 2020

Neural and behavioral responses to sensory stimuli are notoriously variable from trial to trial. Does this mean the brain is inherently noisy or that we don’t completely understand the nature of the brain and behavior? Here we monitor the state of activity of the animal through videography of the face, including pupil and whisker movements, as well as walking, while also monitoring the ability of the animal to perform a difficult auditory or visual task. We find that the state of the animal is continuously changing and is never stable. The animal is constantly becoming more or less activated (aroused) on a second and subsecond scale. These changes in state are reflected in all of the neural systems we have measured, including cortical, thalamic, and neuromodulatory activity. Rapid changes in cortical activity are highly correlated with changes in neural responses to sensory stimuli and the ability of the animal to perform auditory or visual detection tasks. On the intracellular level, these changes in forebrain activity are associated with large changes in neuronal membrane potential and the nature of network activity (e.g. from slow rhythm generation to sustained activation and depolarization). Monitoring cholinergic and noradrenergic axonal activity reveals widespread correlations across the cortex. However, we suggest that a significant component of these rapid state changes arise from glutamatergic pathways (e.g. corticocortical or thalamocortical), owing to their rapidity. Understanding the neural mechanisms of state-dependent variations in brain and behavior promises to significantly “denoise” our understanding of the brain.

SeminarNeuroscience

Cortical population coding of consumption decisions

Donald B. Katz
Brandeis University
Jun 29, 2020

The moment that a tasty substance enters an animal’s mouth, the clock starts ticking. Taste information transduced on the tongue signals whether a potential food will nourish or poison, and the animal must therefore use this information quickly if it is to decide whether the food should be swallowed or expelled. The system tasked with computing this important decision is rife with cross-talk and feedback—circuitry that all but ensures dynamics and between-neuron coupling in neural responses to tastes. In fact, cortical taste responses, rather than simply reporting individual taste identities, do contain characterizable dynamics: taste-driven firing first reflects the substance’s presence on the tongue, and then broadly codes taste quality, and then shifts again to correlate with the taste’s current palatability—the basis of consumption decisions—all across the 1-1.5 seconds after taste administration. Ensemble analyses reveal the onset of palatability-related firing to be a sudden, nonlinear transition happening in many neurons simultaneously, such that it can be reliably detected in single trials. This transition faithfully predicts both the nature and timing of consumption behaviours, despite the huge trial-to-trial variability in both; furthermore, perturbations of this transition interfere with production of the behaviours. These results demonstrate the specific importance of ensemble dynamics in the generation of behaviour, and reveal the taste system to be akin to a range of other integrated sensorimotor systems.

SeminarNeuroscienceRecording

Hyperalignment: Modeling shared information encoded in idiosyncratic cortical topographies

James Haxby
Dartmouth College
Jun 25, 2020

Information that is shared across brains is encoded in idiosyncratic fine-scale functional topographies. Hyperalignment jointly models shared information and idiosyncratic topographies. Pattern vectors for neural responses and connectivities are projected into a common, high-dimensional information space, rather than being aligned in a canonical anatomical space. Hyperalignment calculates individual transformation matrices that preserve the geometry of pairwise dissimilarities between pattern vectors. Individual cortical topographies are modeled as mixtures of overlapping, individual-specific topographic basis functions, rather than as contiguous functional areas. The fundamental property of brain function that is preserved across brains is information content, rather than the functional properties of local features that support that content.

ePoster

Causal inference can explain hierarchical motion perception and is reflected in neural responses in MT

COSYNE 2022

ePoster

Identifying changes in behavioral strategy from neural responses during evidence accumulation

COSYNE 2022

ePoster

Identifying changes in behavioral strategy from neural responses during evidence accumulation

COSYNE 2022

ePoster

Imagining what was there: looking at an absent offer location modulates neural responses in OFC

COSYNE 2022

ePoster

Imagining what was there: looking at an absent offer location modulates neural responses in OFC

COSYNE 2022

ePoster

Dendritic low pass filtering shapes midbrain neural responses to behaviorally relevant stimuli

Norma Kühn, Bram Nuttin, Chen Li, Natalia Baimacheva, Katja Reinhard, Vincent Bonin, Karl Farrow

COSYNE 2023

ePoster

Inter-individual Variability in Primate Inferior Temporal Cortex Representations: Insights from Macaque Neural Responses and Artificial Neural Networks

Kohitij Kar, James DiCarlo

COSYNE 2025

ePoster

Dopamine and opioid modulation of human neural responses to social and non-social rewards

Claudia Massaccesi, Sebastian Korb, Sebastian Götzendorfer, Emilio Chiappini, Matthaeus Willeit, Johan Lundström, Christian Windischberger, Christoph Eisenegger, Giorgia Silani

FENS Forum 2024