← Back

Sensory Information

Topic spotlight
TopicWorld Wide

sensory information

Discover seminars, jobs, and research tagged with sensory information across World Wide.
46 curated items38 Seminars8 ePosters
Updated 10 months ago
46 items · sensory information
46 results
SeminarNeuroscience

Modelling the fruit fly brain and body

Srinivas Turaga
HHMI | Janelia
May 14, 2024

Through recent advances in microscopy, we now have an unprecedented view of the brain and body of the fruit fly Drosophila melanogaster. We now know the connectivity at single neuron resolution across the whole brain. How do we translate these new measurements into a deeper understanding of how the brain processes sensory information and produces behavior? I will describe two computational efforts to model the brain and the body of the fruit fly. First, I will describe a new modeling method which makes highly accurate predictions of neural activity in the fly visual system as measured in the living brain, using only measurements of its connectivity from a dead brain [1], joint work with Jakob Macke. Second, I will describe a whole body physics simulation of the fruit fly which can accurately reproduce its locomotion behaviors, both flight and walking [2], joint work with Google DeepMind.

SeminarNeuroscienceRecording

Predictive processing: a circuit approach to psychosis

Georg Keller
Friedrich Miescher Institute for Biomedical Research, Basel
Mar 13, 2024

Predictive processing is a computational framework that aims to explain how the brain processes sensory information by making predictions about the environment and minimizing prediction errors. It can also be used to explain some of the key symptoms of psychotic disorders such as schizophrenia. In my talk, I will provide an overview of our progress in this endeavor.

SeminarNeuroscienceRecording

Neural Mechanisms of Subsecond Temporal Encoding in Primary Visual Cortex

Samuel Post
University of California, Riverside
Nov 28, 2023

Subsecond timing underlies nearly all sensory and motor activities across species and is critical to survival. While subsecond temporal information has been found across cortical and subcortical regions, it is unclear if it is generated locally and intrinsically or if it is a read out of a centralized clock-like mechanism. Indeed, mechanisms of subsecond timing at the circuit level are largely obscure. Primary sensory areas are well-suited to address these question as they have early access to sensory information and provide minimal processing to it: if temporal information is found in these regions, it is likely to be generated intrinsically and locally. We test this hypothesis by training mice to perform an audio-visual temporal pattern sensory discrimination task as we use 2-photon calcium imaging, a technique capable of recording population level activity at single cell resolution, to record activity in primary visual cortex (V1). We have found significant changes in network dynamics through mice’s learning of the task from naive to middle to expert levels. Changes in network dynamics and behavioral performance are well accounted for by an intrinsic model of timing in which the trajectory of q network through high dimensional state space represents temporal sensory information. Conversely, while we found evidence of other temporal encoding models, such as oscillatory activity, we did not find that they accounted for increased performance but were in fact correlated with the intrinsic model itself. These results provide insight into how subsecond temporal information is encoded mechanistically at the circuit level.

SeminarNeuroscienceRecording

Rodents to Investigate the Neural Basis of Audiovisual Temporal Processing and Perception

Ashley Schormans
BrainsCAN, Western University, Canada.
Sep 26, 2023

To form a coherent perception of the world around us, we are constantly processing and integrating sensory information from multiple modalities. In fact, when auditory and visual stimuli occur within ~100 ms of each other, individuals tend to perceive the stimuli as a single event, even though they occurred separately. In recent years, our lab, and others, have developed rat models of audiovisual temporal perception using behavioural tasks such as temporal order judgments (TOJs) and synchrony judgments (SJs). While these rodent models demonstrate metrics that are consistent with humans (e.g., perceived simultaneity, temporal acuity), we have sought to confirm whether rodents demonstrate the hallmarks of audiovisual temporal perception, such as predictable shifts in their perception based on experience and sensitivity to alterations in neurochemistry. Ultimately, our findings indicate that rats serve as an excellent model to study the neural mechanisms underlying audiovisual temporal perception, which to date remains relativity unknown. Using our validated translational audiovisual behavioural tasks, in combination with optogenetics, neuropharmacology and in vivo electrophysiology, we aim to uncover the mechanisms by which inhibitory neurotransmission and top-down circuits finely control ones’ perception. This research will significantly advance our understanding of the neuronal circuitry underlying audiovisual temporal perception, and will be the first to establish the role of interneurons in regulating the synchronized neural activity that is thought to contribute to the precise binding of audiovisual stimuli.

SeminarNeuroscience

The Geometry of Decision-Making

Iain Couzin
University of Konstanz, Germany
May 23, 2023

Running, swimming, or flying through the world, animals are constantly making decisions while on the move—decisions that allow them to choose where to eat, where to hide, and with whom to associate. Despite this most studies have considered only on the outcome of, and time taken to make, decisions. Motion is, however, crucial in terms of how space is represented by organisms during spatial decision-making. Employing a range of new technologies, including automated tracking, computational reconstruction of sensory information, and immersive ‘holographic’ virtual reality (VR) for animals, experiments with fruit flies, locusts and zebrafish (representing aerial, terrestrial and aquatic locomotion, respectively), I will demonstrate that this time-varying representation results in the emergence of new and fundamental geometric principles that considerably impact decision-making. Specifically, we find that the brain spontaneously reduces multi-choice decisions into a series of abrupt (‘critical’) binary decisions in space-time, a process that repeats until only one option—the one ultimately selected by the individual—remains. Due to the critical nature of these transitions (and the corresponding increase in ‘susceptibility’) even noisy brains are extremely sensitive to very small differences between remaining options (e.g., a very small difference in neuronal activity being in “favor” of one option) near these locations in space-time. This mechanism facilitates highly effective decision-making, and is shown to be robust both to the number of options available, and to context, such as whether options are static (e.g. refuges) or mobile (e.g. other animals). In addition, we find evidence that the same geometric principles of decision-making occur across scales of biological organisation, from neural dynamics to animal collectives, suggesting they are fundamental features of spatiotemporal computation.

SeminarNeuroscienceRecording

Signatures of criticality in efficient coding networks

Shervin Safavi
Dayan lab, MPI for Biological Cybernetics
May 2, 2023

The critical brain hypothesis states that the brain can benefit from operating close to a second-order phase transition. While it has been shown that several computational aspects of sensory information processing (e.g., sensitivity to input) are optimal in this regime, it is still unclear whether these computational benefits of criticality can be leveraged by neural systems performing behaviorally relevant computations. To address this question, we investigate signatures of criticality in networks optimized to perform efficient encoding. We consider a network of leaky integrate-and-fire neurons with synaptic transmission delays and input noise. Previously, it was shown that the performance of such networks varies non-monotonically with the noise amplitude. Interestingly, we find that in the vicinity of the optimal noise level for efficient coding, the network dynamics exhibits signatures of criticality, namely, the distribution of avalanche sizes follows a power law. When the noise amplitude is too low or too high for efficient coding, the network appears either super-critical or sub-critical, respectively. This result suggests that two influential, and previously disparate theories of neural processing optimization—efficient coding, and criticality—may be intimately related

SeminarNeuroscienceRecording

Are place cells just memory cells? Probably yes

Stefano Fusi
Columbia University, New York
Mar 21, 2023

Neurons in the rodent hippocampus appear to encode the position of the animal in physical space during movement. Individual ``place cells'' fire in restricted sub-regions of an environment, a feature often taken as evidence that the hippocampus encodes a map of space that subserves navigation. But these same neurons exhibit complex responses to many other variables that defy explanation by position alone, and the hippocampus is known to be more broadly critical for memory formation. Here we elaborate and test a theory of hippocampal coding which produces place cells as a general consequence of efficient memory coding. We constructed neural networks that actively exploit the correlations between memories in order to learn compressed representations of experience. Place cells readily emerged in the trained model, due to the correlations in sensory input between experiences at nearby locations. Notably, these properties were highly sensitive to the compressibility of the sensory environment, with place field size and population coding level in dynamic opposition to optimally encode the correlations between experiences. The effects of learning were also strongly biphasic: nearby locations are represented more similarly following training, while locations with intermediate similarity become increasingly decorrelated, both distance-dependent effects that scaled with the compressibility of the input features. Using virtual reality and 2-photon functional calcium imaging in head-fixed mice, we recorded the simultaneous activity of thousands of hippocampal neurons during virtual exploration to test these predictions. Varying the compressibility of sensory information in the environment produced systematic changes in place cell properties that reflected the changing input statistics, consistent with the theory. We similarly identified representational plasticity during learning, which produced a distance-dependent exchange between compression and pattern separation. These results motivate a more domain-general interpretation of hippocampal computation, one that is naturally compatible with earlier theories on the circuit's importance for episodic memory formation. Work done in collaboration with James Priestley, Lorenzo Posani, Marcus Benna, Attila Losonczy.

SeminarNeuroscience

From Computation to Large-scale Neural Circuitry in Human Belief Updating

Tobias Donner
University Medical Center Hamburg-Eppendorf
Jun 28, 2022

Many decisions under uncertainty entail dynamic belief updating: multiple pieces of evidence informing about the state of the environment are accumulated across time to infer the environmental state, and choose a corresponding action. Traditionally, this process has been conceptualized as a linear and perfect (i.e., without loss) integration of sensory information along purely feedforward sensory-motor pathways. Yet, natural environments can undergo hidden changes in their state, which requires a non-linear accumulation of decision evidence that strikes a tradeoff between stability and flexibility in response to change. How this adaptive computation is implemented in the brain has remained unknown. In this talk, I will present an approach that my laboratory has developed to identify evidence accumulation signatures in human behavior and neural population activity (measured with magnetoencephalography, MEG), across a large number of cortical areas. Applying this approach to data recorded during visual evidence accumulation tasks with change-points, we find that behavior and neural activity in frontal and parietal regions involved in motor planning exhibit hallmarks signatures of adaptive evidence accumulation. The same signatures of adaptive behavior and neural activity emerge naturally from simulations of a biophysically detailed model of a recurrent cortical microcircuit. The MEG data further show that decision dynamics in parietal and frontal cortex are mirrored by a selective modulation of the state of early visual cortex. This state modulation is (i) specifically expressed in the alpha frequency-band, (ii) consistent with feedback of evolving belief states from frontal cortex, (iii) dependent on the environmental volatility, and (iv) amplified by pupil-linked arousal responses during evidence accumulation. Together, our findings link normative decision computations to recurrent cortical circuit dynamics and highlight the adaptive nature of decision-related long-range feedback processing in the brain.

SeminarNeuroscienceRecording

Neural circuits of visuospatial working memory

Albert Compte
IDIPAPS, Barcelona
May 10, 2022

One elementary brain function that underlies many of our cognitive behaviors is the ability to maintain parametric information briefly in mind, in the time scale of seconds, to span delays between sensory information and actions. This component of working memory is fragile and quickly degrades with delay length. Under the assumption that behavioral delay-dependencies mark core functions of the working memory system, our goal is to find a neural circuit model that represents their neural mechanisms and apply it to research on working memory deficits in neuropsychiatric disorders. We have constrained computational models of spatial working memory with delay-dependent behavioral effects and with neural recordings in the prefrontal cortex during visuospatial working memory. I will show that a simple bump attractor model with weak inhomogeneities and short-term plasticity mechanisms can link neural data with fine-grained behavioral output in a trial-by-trial basis and account for the main delay-dependent limitations of working memory: precision, cardinal repulsion biases and serial dependence. I will finally present data from participants with neuropsychiatric disorders that suggest that serial dependence in working memory is specifically altered, and I will use the model to infer the possible neural mechanisms affected.

SeminarNeuroscienceRecording

Implementing structure mapping as a prior in deep learning models for abstract reasoning

Shashank Shekhar
University of Guelph
Mar 2, 2022

Building conceptual abstractions from sensory information and then reasoning about them is central to human intelligence. Abstract reasoning both relies on, and is facilitated by, our ability to make analogies about concepts from known domains to novel domains. Structure Mapping Theory of human analogical reasoning posits that analogical mappings rely on (higher-order) relations and not on the sensory content of the domain. This enables humans to reason systematically about novel domains, a problem with which machine learning (ML) models tend to struggle. We introduce a two-stage neural net framework, which we label Neural Structure Mapping (NSM), to learn visual analogies from Raven's Progressive Matrices, an abstract visual reasoning test of fluid intelligence. Our framework uses (1) a multi-task visual relationship encoder to extract constituent concepts from raw visual input in the source domain, and (2) a neural module net analogy inference engine to reason compositionally about the inferred relation in the target domain. Our NSM approach (a) isolates the relational structure from the source domain with high accuracy, and (b) successfully utilizes this structure for analogical reasoning in the target domain.

SeminarNeuroscience

From natural scene statistics to multisensory integration: experiments, models and applications

Cesare Parise
Oculus VR
Feb 8, 2022

To efficiently process sensory information, the brain relies on statistical regularities in the input. While generally improving the reliability of sensory estimates, this strategy also induces perceptual illusions that help reveal the underlying computational principles. Focusing on auditory and visual perception, in my talk I will describe how the brain exploits statistical regularities within and across the senses for the perception space, time and multisensory integration. In particular, I will show how results from a series of psychophysical experiments can be interpreted in the light of Bayesian Decision Theory, and I will demonstrate how such canonical computations can be implemented into simple and biologically plausible neural circuits. Finally, I will show how such principles of sensory information processing can be leveraged in virtual and augmented reality to overcome display limitations and expand human perception.

SeminarNeuroscienceRecording

What happens to our ability to perceive multisensory information as we age?

Fiona Newell
Trinity Collge Dublin
Jan 12, 2022

Our ability to perceive the world around us can be affected by a number of factors including the nature of the external information, prior experience of the environment, and the integrity of the underlying perceptual system. A particular challenge for the brain is to maintain a coherent perception from information encoded by the peripheral sensory organs whose function is affected by typical, developmental changes across the lifespan. Yet, how the brain adapts to the maturation of the senses, as well as experiential changes in the multisensory environment, is poorly understood. Over the past few years, we have used a range of multisensory tasks to investigate the role of ageing on the brain’s ability to merge sensory inputs. In particular, we have embedded an audio-visual task based on the sound-induced flash illusion (SIFI) into a large-scale, longitudinal study of ageing. Our findings support the idea that the temporal binding window (TBW) is modulated by age and reveal important individual differences in this TBW that may have clinical implications. However, our investigations also suggest the TWB is experience-dependent with evidence for both long and short term behavioural plasticity. An overview of these findings, including recent evidence on how multisensory integration may be associated with higher order functions, will be discussed.

SeminarNeuroscienceRecording

Why Some Intelligent Agents are Conscious

Hakwan Lau
RIKEN CBS
Dec 2, 2021

In this talk I will present an account of how an agent designed or evolved to be intelligent may come to enjoy subjective experiences. First, the agent is stipulated to be capable of (meta)representing subjective ‘qualitative’ sensory information, in the sense that it can easily assess how exactly similar a sensory signal is to all other possible sensory signals. This information is subjective in the sense that it concerns how the different stimuli can be distinguished by the agent itself, rather than how physically similar they are. For this to happen, sensory coding needs to satisfy sparsity and smoothness constraints, which are known to facilitate metacognition and generalization. Second, this qualitative information can under some specific circumstances acquire an ‘assertoric force’. This happens when a certain self-monitoring mechanism decides that the qualitative information reliably tracks the current state of the world, and informs a general symbolic reasoning system of this fact. I will argue that the having of subjective conscious experiences amounts to nothing more than having qualitative sensory information acquiring an assertoric status within one’s belief system. When this happens, the perceptual content presents itself as reflecting the state of the world right now, in ways that seem undeniably rational to the agent. At the same time, without effort, the agent also knows what the perceptual content is like, in terms of how subjectively similar it is to all other possible precepts. I will discuss the computational benefits of this architecture, for which consciousness might have arisen as a byproduct.

SeminarNeuroscienceRecording

NMC4 Short Talk: The complete connectome of an insect brain

Michael Winding (he/him)
University of Cambridge
Dec 1, 2021

Brains must integrate complex sensory information and compare to past events to generate appropriate behavioral responses. The neural circuit basis of these computations is unclear and the underlying structure unknown. Here, we mapped the comprehensive synaptic wiring diagram of the fruit fly larva brain, which contains 3,013 neurons and 544K synaptic sites. It is the most complete insect connectome to date: 1) Both brain hemispheres are reconstructed, allowing investigation of neural pathways that include contralateral axons, which we found in 37% of brain neurons. 2) All sensory neurons and descending neurons are reconstructed, allowing one to follow signals in an uninterrupted chain—from the sensory periphery, through the brain, to motor neurons in the nerve cord. We developed novel computational tools, allowing us to cluster the brain and investigate how information flows through it. We discovered that feedforward pathways from sensory to descending neurons are multilayered and highly multimodal. Robust feedback was observed at almost all levels of the brain, including descending neurons. We investigated how the brain hemispheres communicate with each other and the nerve cord, leading to identification of novel circuit motifs. This work provides the complete blueprint of a brain and a strong foundation to study the structure-function relationship of neural circuits.

SeminarNeuroscienceRecording

Being awake while sleeping, being asleep while awake: consequences on cognition and consciousness

Thomas Andrillon
Paris Brain Institute
Nov 18, 2021

Sleep is classically presented as an all-or-nothing phenomenon. Yet, there is increasing evidence showing that sleep and wakefulness can actually intermingle and that wake-like and sleep-like activity can be observed concomitantly in different brain regions. I will here explore the implications of this conception of sleep as a local phenomenon for cognition and consciousness. In the first part of my presentation, I will show how local modulations of sleep depth during sleep could support the processing of sensory information by sleepers. I will also how, under certain circumstances, sleepers can learn while sleeping but also how they can forget. In the second part, I will show how the reverse phenomenon, sleep intrusions during waking, can explain modulations of attention. I will focus in particular on modulations of subjective experience and how the local sleep framework can inform our understanding of everyday phenomena such as mind wandering and mind blanking. Through this presentation and the exploration of both sleep and wakefulness, I will seek to connect changes in neurophysiology with changes in behaviour and subjective experience.

SeminarNeuroscience

An optimal population code for global motion estimation in local direction-selective cells

Miriam Henning
Silies lab, University of Mainz, Germany
Nov 3, 2021

Neuronal computations are matched to optimally encode the sensory information that is available and relevant for the animal. However, the physical distribution of sensory information is often shaped by the animal’s own behavior. One prominent example is the encoding of optic flow fields that are generated during self-motion of the animal and will therefore depend on the type of locomotion. How evolution has matched computational resources to the behavioral constraints of an animal is not known. Here we use in vivo two photon imaging to record from a population of >3.500 local-direction selective cells. Our data show that the local direction-selective T4/T5 neurons in Drosophila form a population code that is matched to represent optic flow fields generated during translational and rotational self-motion of the fly. This coding principle for optic flow is reminiscent to the population code of local direction-selective ganglion cells in the mouse retina, where four direction-selective ganglion cells encode four different axes of self-motion encountered during walking (Sabbah et al., 2017). However, in flies we find six different subtypes of T4 and T5 cells that, at the population level, represent six axes of self-motion of the fly. The four uniformly tuned T4/T5 subtypes described previously represent a local snapshot (Maisak et al. 2013). The encoding of six types of optic flow in the fly as compared to four types of optic flow in mice might be matched to the high degrees of freedom encountered during flight. Thus, a population code for optic flow appears to be a general coding principle of visual systems, resulting from convergent evolution, but matching the individual ethological constraints of the animal.

SeminarNeuroscienceRecording

Migraine: a disorder of excitatory-inhibitory balance in multiple brain networks? Insights from genetic mouse models of the disease

Daniela Pietrobon
Department of Biomedical Sciences and Padova Neuroscience Center, University of Padova, Italy
Oct 27, 2021

Migraine is much more than an episodic headache. It is a complex brain disorder, characterized by a global dysfunction in multisensory information processing and integration. In a third of patients, the headache is preceded by transient sensory disturbances (aura), whose neurophysiological correlate is cortical spreading depression (CSD). The molecular, cellular and circuit mechanisms of the primary brain dysfunctions that underlie migraine onset, susceptibility to CSD and altered sensory processing remain largely unknown and are major open issues in the neurobiology of migraine. Genetic mouse models of a rare monogenic form of migraine with aura provide a unique experimental system to tackle these key unanswered questions. I will describe the functional alterations we have uncovered in the cerebral cortex of genetic mouse models and discuss the insights into the cellular and circuit mechanisms of migraine obtained from these findings.

SeminarNeuroscienceRecording

Neural dynamics of probabilistic information processing in humans and recurrent neural networks

Nuttida Rungratsameetaweemana
Sejnowski lab, The Salk Institute
Oct 5, 2021

In nature, sensory inputs are often highly structured, and statistical regularities of these signals can be extracted to form expectation about future sensorimotor associations, thereby optimizing behavior. One of the fundamental questions in neuroscience concerns the neural computations that underlie these probabilistic sensorimotor processing. Through a recurrent neural network (RNN) model and human psychophysics and electroencephalography (EEG), the present study investigates circuit mechanisms for processing probabilistic structures of sensory signals to guide behavior. We first constructed and trained a biophysically constrained RNN model to perform a series of probabilistic decision-making tasks similar to paradigms designed for humans. Specifically, the training environment was probabilistic such that one stimulus was more probable than the others. We show that both humans and the RNN model successfully extract information about stimulus probability and integrate this knowledge into their decisions and task strategy in a new environment. Specifically, performance of both humans and the RNN model varied with the degree to which the stimulus probability of the new environment matched the formed expectation. In both cases, this expectation effect was more prominent when the strength of sensory evidence was low, suggesting that like humans, our RNNs placed more emphasis on prior expectation (top-down signals) when the available sensory information (bottom-up signals) was limited, thereby optimizing task performance. Finally, by dissecting the trained RNN model, we demonstrate how competitive inhibition and recurrent excitation form the basis for neural circuitry optimized to perform probabilistic information processing.

SeminarNeuroscience

Neural circuits that support robust and flexible navigation in dynamic naturalistic environments

Hannah Haberkern
HHMI Janelia Research Campus
Aug 15, 2021

Tracking heading within an environment is a fundamental requirement for flexible, goal-directed navigation. In insects, a head-direction representation that guides the animal’s movements is maintained in a conserved brain region called the central complex. Two-photon calcium imaging of genetically targeted neural populations in the central complex of tethered fruit flies behaving in virtual reality (VR) environments has shown that the head-direction representation is updated based on self-motion cues and external sensory information, such as visual features and wind direction. Thus far, the head direction representation has mainly been studied in VR settings that only give flies control of the angular rotation of simple sensory cues. How the fly’s head direction circuitry enables the animal to navigate in dynamic, immersive and naturalistic environments is largely unexplored. I have developed a novel setup that permits imaging in complex VR environments that also accommodate flies’ translational movements. I have previously demonstrated that flies perform visually-guided navigation in such an immersive VR setting, and also that they learn to associate aversive optogenetically-generated heat stimuli with specific visual landmarks. A stable head direction representation is likely necessary to support such behaviors, but the underlying neural mechanisms are unclear. Based on a connectomic analysis of the central complex, I identified likely circuit mechanisms for prioritizing and combining different sensory cues to generate a stable head direction representation in complex, multimodal environments. I am now testing these predictions using calcium imaging in genetically targeted cell types in flies performing 2D navigation in immersive VR.

SeminarNeuroscience

Understanding the role of prediction in sensory encoding

Jason Mattingley
Monash Biomedical Imaging
Jul 28, 2021

At any given moment the brain receives more sensory information than it can use to guide adaptive behaviour, creating the need for mechanisms that promote efficient processing of incoming sensory signals. One way in which the brain might reduce its sensory processing load is to encode successive presentations of the same stimulus in a more efficient form, a process known as neural adaptation. Conversely, when a stimulus violates an expected pattern, it should evoke an enhanced neural response. Such a scheme for sensory encoding has been formalised in predictive coding theories, which propose that recent experience establishes expectations in the brain that generate prediction errors when violated. In this webinar, Professor Jason Mattingley will discuss whether the encoding of elementary visual features is modulated when otherwise identical stimuli are expected or unexpected based upon the history of stimulus presentation. In humans, EEG was employed to measure neural activity evoked by gratings of different orientations, and multivariate forward modelling was used to determine how orientation selectivity is affected for expected versus unexpected stimuli. In mice, two-photon calcium imaging was used to quantify orientation tuning of individual neurons in the primary visual cortex to expected and unexpected gratings. Results revealed enhanced orientation tuning to unexpected visual stimuli, both at the level of whole-brain responses and for individual visual cortex neurons. Professor Mattingley will discuss the implications of these findings for predictive coding theories of sensory encoding. Professor Jason Mattingley is a Laureate Fellow and Foundation Chair in Cognitive Neuroscience at The University of Queensland. His research is directed toward understanding the brain processes that support perception, selective attention and decision-making, in health and disease.

SeminarNeuroscienceRecording

Anatomical and functional characterization of the neuronal circuits underlying ejaculation

Constanze Lenschow
Lima lab, Champalimaud Centre for the Unknown
May 18, 2021

During sexual behavior, copulation related sensory information and modulatory signals from the brain must be integrated and converted into the motor and secretory outputs that characterize ejaculation (Lenschow and Lima, Current Opinion in Neurobiology, 2020). Studies in humans and rats suggest the existence of interneurons in the lumbar spinal cord that mediates that step: the spinal ejaculation generator (SEG). My work aimed at gaining mechanistic insights about the neuronal circuits controlling ejaculation thereby applying cutting-edge techniques. More specifically, we mapped anatomically and functionally the spinal circuit for ejaculation starting from the main muscle being involved in sperm expulsion: the bulbospongiosus muscle (BSM). Combining viral tracing strategies with electrophysiology, we specifically show that the BSM motoneurons receive direct synaptic input from a group of interneurons located in between lumbar segment 2 and 3 and expressing the peptide galanin. Electrically and optogenetically activating the galanin positive cells (the SEG) lead to the activation of the motoneurons innervating the BSM and the muscle itself. Finally, inhibition of SEG cells using DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) in sexual behaving animals is currently conducted to reveal whether ejaculation can be prevented.

SeminarNeuroscienceRecording

Neural codes in early sensory areas maximize fitness

Todd Hare
University of Zürich
May 12, 2021

It has generally been presumed that sensory information encoded by a nervous system should be as accurate as its biological limitations allow. However, perhaps counter intuitively, accurate representations of sensory signals do not necessarily maximize the organism’s chances of survival. We show that neural codes that maximize reward expectation—and not accurate sensory representations—account for retinal responses in insects, and retinotopically-specific adaptive codes in humans. Thus, our results provide evidence that fitness-maximizing rules imposed by the environment are applied at the earliest stages of sensory processing.

SeminarNeuroscience

“Circuit mechanisms for flexible behaviors”

Takaki Komiyama,
UC San Diego
Apr 7, 2021

Animals constantly modify their behavior through experience. Flexible behavior is key to our ability to adapt to the ever-changing environment. My laboratory is interested in studying the activity of neuronal ensembles in behaving animals, and how it changes with learning. We have recently set up a paradigm where mice learn to associate sensory information (two different odors) to motor outputs (lick vs no-lick) under head-fixation. We combined this with two-photon calcium imaging, which can monitor the activity of a microcircuit of many tens of neurons simultaneously from a small area of the brain. Imaging the motor cortex during the learning of this task revealed neurons with diverse task-related response types. Intriguingly, different response types were spatially intermingled; even immediately adjacent neurons often had very different response types. As the mouse learned the task under the microscope, the activity coupling of neurons with similar response types specifically increased, even though they are intermingled with neurons with dissimilar response types. This suggests that intermingled subnetworks of functionally-related neurons form in a learning-related way, an observation that became possible with our cutting-edge technique combining imaging and behavior. We are working to extend this study. How plastic are neuronal microcircuits during other forms of learning? How plastic are they in other parts of the brain? What are the cellular and molecular mechanisms of the microcircuit plasticity? Are the observed activity and plasticity required for learning? How does the activity of identified individual neurons change over days to weeks? We are asking these questions, combining a variety of techniques including in vivo two-photon imaging, optogenetics, electrophysiology, genetics and behavior.

SeminarNeuroscienceRecording

The Dark Side of Vision: Resolving the Neural Code

Petri Ala-Laurila
Aalto University
Apr 5, 2021

All sensory information – like what we see, hear and smell – gets encoded in spike trains by sensory neurons and gets sent to the brain. Due to the complexity of neural circuits and the difficulty of quantifying complex animal behavior, it has been exceedingly hard to resolve how the brain decodes these spike trains to drive behavior. We now measure quantal signals originating from sparse photons through the most sensitive neural circuits of the mammalian retina and correlate the retinal output spike trains with precisely quantified behavioral decisions. We utilize a combination of electrophysiological measurements on the most sensitive ON and OFF retinal ganglion cell types and a novel deep-learning based tracking technology of the head and body positions of freely-moving mice. We show that visually-guided behavior relies on information from the retinal ON pathway for the dimmest light increments and on information from the retinal OFF pathway for the dimmest light decrements (“quantal shadows”). Our results show that the distribution of labor between ON and OFF pathways starts already at starlight supporting distinct pathway-specific visual computations to drive visually-guided behavior. These results have several fundamental consequences for understanding how the brain integrates information across parallel information streams as well as for understanding the limits of sensory signal processing. In my talk, I will discuss some of the most eminent consequences including the extension of this “Quantum Behavior” paradigm from mouse vision to monkey and human visual systems.

SeminarNeuroscience

Circuit mechanisms for synaptic plasticity in the rodent somatosensory cortex

Anthony Holtmaat
Department of Basic Neurosciences, University of Geneva, CH
Mar 31, 2021

Sensory experience and perceptual learning changes receptive field properties of cortical pyramidal neurons possibly mediated by long-term potentiation (LTP) of synapses. We have previously shown in the mouse somatosensory cortex (S1) that sensory-driven LTP in layer (L) 2/3 pyramidal neurons is dependent on higher order thalamic feedback from the posteromedial nucleus (POm), which is thought to convey contextual information from various cortical regions integrated with sensory input. We have followed up on this work by dissecting the cortical microcircuitry that underlies this form of LTP. We found that repeated pairing of Pom thalamocortical and intracortical pathway activity in brain slices induces NMDAr-dependent LTP of the L2/3 synapses that are driven by the intracortical pathway. Repeated pairing also recruits activity of vasoactive intestinal peptide (VIP) interneurons, whereas it reduces the activity of somatostatin (SST) interneurons. VIP interneuron-mediated inhibition of SST interneurons has been established as a motif for the disinhibition of pyramidal neurons. By chemogenetic interrogation we found that activation of this disinhibitory microcircuit motif by higher-order thalamic feedback is indispensable for eliciting LTP. Preliminary results in vivo suggest that VIP neuron activity also increases during sensory-evoked LTP. Together, this suggests that the higherorder thalamocortical feedback may help modifying the strength of synaptic circuits that process first-order sensory information in S1. To start characterizing the relationship between higher-order feedback and cortical plasticity during learning in vivo, we adapted a perceptual learning paradigm in which head-fixed mice have to discriminate two types of textures in order to obtain a reward. POm axons or L2/3 pyramidal neurons labeled with the genetically encoded calcium indicator GCaMP6s were imaged during the acquisition of this task as well as the subsequent learning of a new discrimination rule. We found that a subpopulation of the POm axons and L2/3 neurons dynamically represent textures. Moreover, upon a change in reward contingencies, a fraction of the L2/3 neurons re-tune their selectivity to the texture that is newly associated with the reward. Altogether, our data indicates that higher-order thalamic feedback can facilitate synaptic plasticity and may be implicated in dynamic sensory stimulus representations in S1, which depends on higher-order features that are associated with the stimuli.

SeminarNeuroscience

Plasticity of Pain and Pleasure

Robert Bonin
University of Toronto Centre for the Study of Pain
Jan 31, 2021

What happens when the nervous system fails to adapt? Our perception of the world relies on a nervous system that learns and adapts to sensory information. Based on our experience we can predict what a wooden surface will feel like, that fire is hot, and that a gentle caress from a partner can be soothing. But our sensory experience of the world is not static – warm water can feel like fire on sunburned skin and the gentle brush of our clothes can be excruciating after an injury. In pathological conditions such as chronic pain, changes in nervous system function can cause normally innocuous sensory stimuli to be perceived as aversive or painful long after the initial injury has happened. These changes can sometimes be similar to the formation of a pain ‘memory’ that can modulate and distort our perception of sensory information. Our research program seeks to understand how fundamental processes that govern the formation and maintenance of plastic changes in the nervous system can lead to pathological conditions and how we can reverse engineer these changes to treat chronic conditions.

SeminarNeuroscienceRecording

Inhibitory neural circuit mechanisms underlying neural coding of sensory information in the neocortex

Jeehyun Kwag
Korea University
Jan 28, 2021

Neural codes, such as temporal codes (precisely timed spikes) and rate codes (instantaneous spike firing rates), are believed to be used in encoding sensory information into spike trains of cortical neurons. Temporal and rate codes co-exist in the spike train and such multiplexed neural code-carrying spike trains have been shown to be spatially synchronized in multiple neurons across different cortical layers during sensory information processing. Inhibition is suggested to promote such synchronization, but it is unclear whether distinct subtypes of interneurons make different contributions in the synchronization of multiplexed neural codes. To test this, in vivo single-unit recordings from barrel cortex were combined with optogenetic manipulations to determine the contributions of parvalbumin (PV)- and somatostatin (SST)-positive interneurons to synchronization of precisely timed spike sequences. We found that PV interneurons preferentially promote the synchronization of spike times when instantaneous firing rates are low (<12 Hz), whereas SST interneurons preferentially promote the synchronization of spike times when instantaneous firing rates are high (>12 Hz). Furthermore, using a computational model, we demonstrate that these effects can be explained by PV and SST interneurons having preferential contribution to feedforward and feedback inhibition, respectively. Overall, these results show that PV and SST interneurons have distinct frequency (rate code)-selective roles in dynamically gating the synchronization of spike times (temporal code) through preferentially recruiting feedforward and feedback inhibitory circuit motifs. The inhibitory neural circuit mechanisms we uncovered here his may have critical roles in regulating neural code-based somatosensory information processing in the neocortex.

SeminarNeuroscienceRecording

The Gist of False Memory

Shaul Hochstein
Hebrew University
Nov 23, 2020

It has long been known that when viewing a set of images, we misjudge individual elements as being closer to the mean than they are (Hollingworth, 1910) and recall seeing the (absent) set mean (Deese, 1959; Roediger & McDermott (1995). Recent studies found that viewing sets of images, simultaneously or sequentially, leads to perception of set statistics (mean, range) with poor memory for individual elements. Ensemble perception was found for sets of simple images (e.g. circles varying in size or brightness; lines of varying orientation), complex objects (e.g. faces of varying emotion), as well as for objects belonging to the same category. When the viewed set does not include its mean or prototype, nevertheless, observers report and act as if they have seen this central image or object – a form of false memory. Physiologically, detailed sensory information at cortical input levels is processed hierarchically to form an integrated scene gist at higher levels. However, we are aware of the gist before the details. We propose that images and objects belonging to a set or category are represented as their gist, mean or prototype, plus individual differences from that gist. Under constrained viewing conditions, only the gist is perceived and remembered. This theory also provides a basis for compressed neural representation. Extending this theory to scenes and episodes supplies a generalized basis for false memories. They seem right, match generalized expectations, so are believable without challenging examination. This theory could be tested by analyzing the typicality of false memories, compared to rejected alternatives.

SeminarNeuroscience

Influence of cortical and neuromodulatory loops on sensory information processing and perception in the mouse olfactory system

Markus Rothermel
Dept. Chemosensation, RWTH Aachen University, Germany
Oct 11, 2020
SeminarNeuroscienceRecording

Dynamic computation in the retina by retuning of neurons and synapses

Leon Lagnado
University of Sussex
Sep 15, 2020

How does a circuit of neurons process sensory information? And how are transformations of neural signals altered by changes in synaptic strength? We investigate these questions in the context of the visual system and the lateral line of fish. A distinguishing feature of our approach is the imaging of activity across populations of synapses – the fundamental elements of signal transfer within all brain circuits. A guiding hypothesis is that the plasticity of neurotransmission plays a major part in controlling the input-output relation of sensory circuits, regulating the tuning and sensitivity of neurons to allow adaptation or sensitization to particular features of the input. Sensory systems continuously adjust their input-output relation according to the recent history of the stimulus. A common alteration is a decrease in the gain of the response to a constant feature of the input, termed adaptation. For instance, in the retina, many of the ganglion cells (RGCs) providing the output produce their strongest responses just after the temporal contrast of the stimulus increases, but the response declines if this input is maintained. The advantage of adaptation is that it prevents saturation of the response to strong stimuli and allows for continued signaling of future increases in stimulus strength. But adaptation comes at a cost: a reduced sensitivity to a future decrease in stimulus strength. The retina compensates for this loss of information through an intriguing strategy: while some RGCs adapt following a strong stimulus, a second population gradually becomes sensitized. We found that the underlying circuit mechanisms involve two opposing forms of synaptic plasticity in bipolar cells: synaptic depression causes adaptation and facilitation causes sensitization. Facilitation is in turn caused by depression in inhibitory synapses providing negative feedback. These opposing forms of plasticity can cause simultaneous increases and decreases in contrast-sensitivity of different RGCs, which suggests a general framework for understanding the function of sensory circuits: plasticity of both excitatory and inhibitory synapses control dynamic changes in tuning and gain.

SeminarNeuroscience

Motor Cortical Control of Vocal Interactions in a Neotropical Singing Mouse

Arkarup Banerjee
NYU Langone medical center
Sep 8, 2020

Using sounds for social interactions is common across many taxa. Humans engaged in conversation, for example, take rapid turns to go back and forth. This ability to act upon sensory information to generate a desired motor output is a fundamental feature of animal behavior. How the brain enables such flexible sensorimotor transformations, for example during vocal interactions, is a central question in neuroscience. Seeking a rodent model to fill this niche, we are investigating neural mechanisms of vocal interaction in Alston’s singing mouse (Scotinomys teguina) – a neotropical rodent native to the cloud forests of Central America. We discovered sub-second temporal coordination of advertisement songs (counter-singing) between males of this species – a behavior that requires the rapid modification of motor outputs in response to auditory cues. We leveraged this natural behavior to probe the neural mechanisms that generate and allow fast and flexible vocal communication. Using causal manipulations, we recently showed that an orofacial motor cortical area (OMC) in this rodent is required for vocal interactions (Okobi*, Banerjee* et. al, 2019). Subsequently, in electrophysiological recordings, I find neurons in OMC that track initiation, termination and relative timing of songs. Interestingly, persistent neural dynamics during song progression stretches or compresses on every trial to match the total song duration (Banerjee et al, in preparation). These results demonstrate robust cortical control of vocal timing in a rodent and upends the current dogma that motor cortical control of vocal output is evolutionarily restricted to the primate lineage.

SeminarNeuroscience

Neural coding in the auditory cortex - "Emergent Scientists Seminar Series

Dr Jennifer Lawlor & Mr Aleksandar Ivanov
Johns Hopkins University / University of Oxford
Jul 16, 2020

Dr Jennifer Lawlor Title: Tracking changes in complex auditory scenes along the cortical pathway Complex acoustic environments, such as a busy street, are characterised by their everchanging dynamics. Despite their complexity, listeners can readily tease apart relevant changes from irrelevant variations. This requires continuously tracking the appropriate sensory evidence while discarding noisy acoustic variations. Despite the apparent simplicity of this perceptual phenomenon, the neural basis of the extraction of relevant information in complex continuous streams for goal-directed behavior is currently not well understood. As a minimalistic model for change detection in complex auditory environments, we designed broad-range tone clouds whose first-order statistics change at a random time. Subjects (humans or ferrets) were trained to detect these changes.They were faced with the dual-task of estimating the baseline statistics and detecting a potential change in those statistics at any moment. To characterize the extraction and encoding of relevant sensory information along the cortical hierarchy, we first recorded the brain electrical activity of human subjects engaged in this task using electroencephalography. Human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. To further this investigation, we performed a series of electrophysiological recordings in the primary auditory cortex (A1), secondary auditory cortex (PEG) and frontal cortex (FC) of the fully trained behaving ferret. A1 neurons exhibited strong onset responses and change-related discharges specific to neuronal tuning. PEG population showed reduced onset-related responses, but more categorical change-related modulations. Finally, a subset of FC neurons (dlPFC/premotor) presented a generalized response to all change-related events only during behavior. We show using a Generalized Linear Model (GLM) that the same subpopulation in FC encodes sensory and decision signals, suggesting that FC neurons could operate conversion of sensory evidence to perceptual decision. All together, these area-specific responses suggest a behavior-dependent mechanism of sensory extraction and generalization of task-relevant event. Aleksandar Ivanov Title: How does the auditory system adapt to different environments: A song of echoes and adaptation

SeminarNeuroscienceRecording

The thalamus that speaks to the cortex: spontaneous activity in the developing brain

Guillermina Lopez Bendito
Instituto de Neurociencias, Alicante (Spain)
Jun 21, 2020

Our research team runs several related projects studying the cellular and molecular mechanisms involved in the development of axonal connections in the brain. In particular, our aim is to uncover the principles underlying thalamocortical axonal wiring, maintenance and ultimately the rewiring of connections, through an integrated and innovative experimental programme. The development of the thalamocortical wiring requires a precise topographical sorting of its connections. Each thalamic nucleus receives specific sensory information from the environment and projects topographically to its corresponding cortical. A second level of organization is achieved within each area, where thalamocortical connections display an intra-areal topographical organization, allowing the generation of accurate spatial representations within each cortical area. Therefore, the level of organization and specificity of the thalamocortical projections is much more complex than other projection systems in the CNS. The central hypothesis of our laboratory is that thalamocortical input influences and maintains the functional architecture of the sensory cortices. We also believe that rewiring and plasticity events can be triggered by activity-dependent mechanisms in the thalamus. Three major questions are been focused in the laboratory: i) the role of spontaneous patterns of activity in thalamocortical wiring and cortical development, ii) the role of the thalamus and its connectivity in the neuroplastic cortical changes following sensory deprivation, and iii) reprogramming thalamic cells for sensory circuit restoration. Within these projects we are using several experimental programmes, these include: optical imaging, manipulation of gene expression in vivo, cell and molecular biology, biochemistry, cell culture, sensory deprivation paradigms and electrophysiology. The results derived from our investigations will contribute to our understating of how reprogramming of cortical wiring takes place following brain damage and how cortical structure is maintained.

SeminarNeuroscience

Cortical circuits for olfactory navigation

Cindy Poo
Champalimaud
May 13, 2020

Olfactory navigation is essential for the survival of living beings from unicellular organisms to mammals. In the wild, rodents combine odor information with an internal spatial representation of the environment for foraging and navigation. What are the neural circuits in the brain that implement these behaviours? My research addresses this question by examining the synaptic circuits and neural population activity in the olfactory cortex to understand the integration of olfactory and spatial information. Primary olfactory (piriform) cortex (PCx) has long been recognized as a highly associative brain structure. What is the behavioural and functional role of these associative synapses in PCx? We designed an odor-cued navigation task, where rats must use both olfactory and spatial information to obtain water rewards. We recorded from populations of posterior piriform cortex (pPCx) neurons during behaviour and found that individual neurons were not only odor-selective, but also fired differentially to the same odor sampled at different locations, forming an “olfactory place map”. Spatial locations can be decoded from simultaneously recorded pPCx population, and spatial selectivity is maintained in the absence of odors, across behavioural contexts. This novel olfactory place map is consistent with our finding for a dominant role of associative excitatory synapses in shaping PCx representations, and suggest a role for PCx spatial representations in supporting olfactory navigation. This work not only provides insight into the neural basis for how odors can be used for navigation, but also reveals PCx as a prime site for addressing the general question of how sensory information is anchored within memory systems and combined with cognitive maps to guide flexible behaviour.

ePoster

Thalamocortical-like circuits transform and integrate sensory information in the early vertebrate forebrain.

Anh-Tuan Trinh, Anna Maria Ostenrath, Ignacio Del Castillo Berges, Susanne Josephine Kraus, Bram Serneels, Emre Yaksi

COSYNE 2025

ePoster

Astrocytes in globus pallidus externa integrate sensory information through dopamine D2 receptors

Zisis Bimpisidis, Fabrizio Bernardi, Francesca Managò, Daniel Dautan, Maria Antonietta De Luca, Francesco Papaleo

FENS Forum 2024

ePoster

Directional and flexible flow of sensory information along the cortical hierarchy during whisker-based discrimination

Pierre-Marie Garderes, Florent Haiss

FENS Forum 2024

ePoster

Predictive processing of tactile sensory information in mice engaged in a locomotion task

Max Chalabi, Timothé Jost-Mousseau, Daniel E Shulz, Isabelle Ferezou

FENS Forum 2024

ePoster

Prefrontal cortex alterations underlying attentional modulation of sensory information in the Fmr1KO mouse model of autism spectrum disorder

Maria Gueidão Costa, Awen Louboutin, Ourania Semelidou, Roman Böhringer, Ignacio J. Marín Blasco, Andreas Frick, Olga Peñagarikano, Melanie Ginger

FENS Forum 2024

ePoster

Stochastic model for the optimal fusion of social and sensory information in transparent interactions

Selma Kouaiche, Fred Wolf, Matthias Haering

FENS Forum 2024

ePoster

Thalamocortical-like circuits transform and integrate sensory information in the zebrafish forebrain

Anh-Tuan Trinh, Ignacio Del Castillo Berges, Bram Serneels, Anna Maria Ostenrath, Emre Yaksi

FENS Forum 2024

ePoster

TRPV1 enhances encoding of sensory information in mouse primary somatosensory cortex

Leena Amrutha, Ehsan Arabzadeh, Ehsan Kheradpezhouh

FENS Forum 2024