← Back

Transcriptomic

Topic spotlight
TopicWorld Wide

transcriptomic

Discover seminars, jobs, and research tagged with transcriptomic across World Wide.
58 curated items35 ePosters22 Seminars1 Position
Updated 1 day ago
58 items · transcriptomic
58 results
SeminarNeuroscience

Rejuvenating the Alzheimer’s brain: Challenges & Opportunities

Salta Evgenia
Netherlands Institute for Neuroscience, Royal Dutch Academy of Science
May 8, 2025
SeminarNeuroscienceRecording

Comparative transcriptomics of retinal cell types

Karthik Shekhar
University of California, Berkeley
Jul 23, 2023
SeminarNeuroscienceRecording

Cholesterol and matrisome pathways dysregulated in Alzheimer’s disease brain astrocytes and microglia

Julia TCW
Boston University
Dec 15, 2022

The impact of apolipoprotein E ε4 (APOE4), the strongest genetic risk factor for Alzheimer’s disease (AD), on human brain cellular function remains unclear. Here, we investigated the effects of APOE4 on brain cell types derived from population and isogenic human induced pluripotent stem cells, post-mortem brain, and APOE targeted replacement mice. Population and isogenic models demonstrate that APOE4 local haplotype, rather than a single risk allele, contributes to risk. Global transcriptomic analyses reveal human-specific, APOE4-driven lipid metabolic dysregulation in astrocytes and microglia. APOE4 enhances de novo cholesterol synthesis despite elevated intracellular cholesterol due to lysosomal cholesterol sequestration in astrocytes. Further, matrisome dysregulation is associated with upregulated chemotaxis, glial activation, and lipid biosynthesis in astrocytes co-cultured with neurons, which recapitulates altered astrocyte matrisome signaling in human brain. Thus, APOE4 initiates glia-specific cell and non-cell autonomous dysregulation that may contribute to increased AD risk." https://doi.org/10.1016/j.cell.2022.05.017

SeminarNeuroscience

Cell-type specific genomics and transcriptomics of HIV in the brain

Amara Plaza-Jennings
Icahn School of Medicine at Mt. Sinai, NYC
Jun 21, 2022

Exploration of genome organization and function in the HIV infected brain is critical to aid in the understanding and development of treatments for HIV-associated neurocognitive disorder (HAND). Here, we applied a multiomic approach, including single nuclei transcriptomics, cell-type specific Hi-C 3D genome mapping, and viral integration site sequencing (IS-seq) to frontal lobe tissue from HIV-infected individuals with encephalitis (HIVE) and without encephalitis (HIV+). We observed reorganization of open/repressive (A/B) compartment structures in HIVE microglia encompassing 6.4% of the genome with enrichment for regions containing interferon (IFN) pathway genes. 3D genome remodeling was associated with transcriptomic reprogramming, including down-regulation of cell adhesion and synapse-related functions and robust activation of IFN signaling and cell migratory pathways, and was recapitulated by IFN-g stimulation of cultured microglial cells. Microglia from HIV+ brains showed, to a lesser extent, similar transcriptional alterations. IS-seq recovered 1,221 integration sites in the brain that were enriched for chromosomal domains newly mobilized into a permissive chromatin environment in HIVE microglia. Viral transcription, which was detected in 0.003% of all nuclei in HIVE brain, occurred in a subset of highly activated microglia that drove differential expression in HIVE. Thus, we observed a dynamic interrelationship of interferon-associated 3D genome and transcriptome remodeling with HIV integration and transcription in the brain.

SeminarNeuroscience

Malignant synaptic plasticity in pediatric high-grade gliomas

Kathryn Taylor
Stanford
May 24, 2022

Pediatric high-grade gliomas (pHGG) are a devastating group of diseases that urgently require novel therapeutic options. We have previously demonstrated that pHGGs directly synapse onto neurons and the subsequent tumor cell depolarization, mediated by calcium-permeable AMPA channels, promotes their proliferation. The regulatory mechanisms governing these postsynaptic connections are unknown. Here, we investigated the role of BDNF-TrkB signaling in modulating the plasticity of the malignant synapse. BDNF ligand activation of its canonical receptor, TrkB (which is encoded for by the gene NTRK2), has been shown to be one important modulator of synaptic regulation in the normal setting. Electrophysiological recordings of glioma cell membrane properties, in response to acute neurotransmitter stimulation, demonstrate in an inward current resembling AMPA receptor (AMPAR) mediated excitatory neurotransmission. Extracellular BDNF increases the amplitude of this glutamate-induced tumor cell depolarization and this effect is abrogated in NTRK2 knockout glioma cells. Upon examining tumor cell excitability using in situ calcium imaging, we found that BDNF increases the intensity of glutamate-evoked calcium transients in GCaMP6s expressing glioma cells. Western blot analysis indicates the tumors AMPAR properties are altered downstream of BDNF induced TrkB activation in glioma. Cell membrane protein capture (via biotinylation) and live imaging of pH sensitive GFP-tagged AMPAR subunits demonstrate an increase of calcium permeable channels at the tumors postsynaptic membrane in response to BDNF. We find that BDNF-TrkB signaling promotes neuron-to-glioma synaptogenesis as measured by high-resolution confocal and electron microscopy in culture and tumor xenografts. Our analysis of published pHGG transcriptomic datasets, together with brain slice conditioned medium experiments in culture, indicates the tumor microenvironment as the chief source of BDNF ligand. Disruption of the BDNF-TrkB pathway in patient-derived orthotopic glioma xenograft models, both genetically and pharmacologically, results in an increased overall survival and reduced tumor proliferation rate. These findings suggest that gliomas leverage normal mechanisms of plasticity to modulate the excitatory channels involved in synaptic neurotransmission and they reveal the potential to target the regulatory components of glioma circuit dynamics as a therapeutic strategy for these lethal cancers.

SeminarNeuroscience

How do protein-RNA condensates form and contribute to disease?

Jernej Ule
UK Dementia Research Institute
May 5, 2022

In recent years, it has become clear that intrinsically disordered regions (IDRs) of RBPs, and the structure of RNAs, often contribute to the condensation of RNPs. To understand the transcriptomic features of such RNP condensates, we’ve used an improved individual nucleotide resolution CLIP protocol (iiCLIP), which produces highly sensitive and specific data, and thus enables quantitative comparisons of interactions across conditions (Lee et al., 2021). This showed how the IDR-dependent condensation properties of TDP-43 specify its RNA binding and regulatory repertoire (Hallegger et al., 2021). Moreover, we developed software for discovery and visualisation of RNA binding motifs that uncovered common binding patterns of RBPs on long multivalent RNA regions that are composed of dispersed motif clusters (Kuret et al, 2021). Finally, we used hybrid iCLIP (hiCLIP) to characterise the RNA structures mediating the assembly of Staufen RNPs across mammalian brain development, which demonstrated the roles of long-range RNA duplexes in the compaction of long 3’UTRs. I will present how the combined analysis of the characteristics of IDRs in RBPs, multivalent RNA regions and RNA structures is required to understand the formation and functions of RNP condensates, and how they change in diseases.

SeminarNeuroscienceRecording

A transcriptomic axis predicts state modulation of cortical interneurons

Stephane Bugeon
Harris & Carandini's lab, UCL
Apr 26, 2022

Transcriptomics has revealed that cortical inhibitory neurons exhibit a great diversity of fine molecular subtypes, but it is not known whether these subtypes have correspondingly diverse activity patterns in the living brain. We show that inhibitory subtypes in primary visual cortex (V1) have diverse correlates with brain state, but that this diversity is organized by a single factor: position along their main axis of transcriptomic variation. We combined in vivo 2-photon calcium imaging of mouse V1 with a novel transcriptomic method to identify mRNAs for 72 selected genes in ex vivo slices. We classified inhibitory neurons imaged in layers 1-3 into a three-level hierarchy of 5 Subclasses, 11 Types, and 35 Subtypes using previously-defined transcriptomic clusters. Responses to visual stimuli differed significantly only across Subclasses, suppressing cells in the Sncg Subclass while driving cells in the other Subclasses. Modulation by brain state differed at all hierarchical levels but could be largely predicted from the first transcriptomic principal component, which also predicted correlations with simultaneously recorded cells. Inhibitory Subtypes that fired more in resting, oscillatory brain states have less axon in layer 1, narrower spikes, lower input resistance and weaker adaptation as determined in vitro and express more inhibitory cholinergic receptors. Subtypes firing more during arousal had the opposite properties. Thus, a simple principle may largely explain how diverse inhibitory V1 Subtypes shape state-dependent cortical processing.

SeminarNeuroscienceRecording

Brain and behavioural impacts of early life adversity

Jeff Dalley
Department of Psychology, University of Cambridge
Apr 25, 2022

Abuse, neglect, and other forms of uncontrollable stress during childhood and early adolescence can lead to adverse outcomes later in life, including especially perturbations in the regulation of mood and emotional states, and specifically anxiety disorders and depression. However, stress experiences vary from one individual to the next, meaning that causal relationships and mechanistic accounts are often difficult to establish in humans. This interdisciplinary talk considers the value of research in experimental animals where stressor experiences can be tightly controlled and detailed investigations of molecular, cellular, and circuit-level mechanisms can be carried out. The talk will focus on the widely used repeated maternal separation procedure in rats where rat offspring are repeatedly separated from maternal care during early postnatal life. This early life stress has remarkably persistent effects on behaviour with a general recognition that maternally-deprived animals are susceptible to depressive-like phenotypes. The validity of this conclusion will be critically appraised with convergent insights from a recent longitudinal study in maternally separated rats involving translational brain imaging, transcriptomics, and behavioural assessment.

SeminarNeuroscience

JAK/STAT regulation of the transcriptomic response during epileptogenesis

Amy Brooks-Kayal
Children's Hospital Colorado / UC Davis
Dec 14, 2021

Temporal lobe epilepsy (TLE) is a progressive disorder mediated by pathological changes in molecular cascades and neural circuit remodeling in the hippocampus resulting in increased susceptibility to spontaneous seizures and cognitive dysfunction. Targeting these cascades could prevent or reverse symptom progression and has the potential to provide viable disease-modifying treatments that could reduce the portion of TLE patients (>30%) not responsive to current medical therapies. Changes in GABA(A) receptor subunit expression have been implicated in the pathogenesis of TLE, and the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway has been shown to be a key regulator of these changes. The JAK/STAT pathway is known to be involved in inflammation and immunity, and to be critical for neuronal functions such as synaptic plasticity and synaptogenesis. Our laboratories have shown that a STAT3 inhibitor, WP1066, could greatly reduce the number of spontaneous recurrent seizures (SRS) in an animal model of pilocarpine-induced status epilepticus (SE). This suggests promise for JAK/STAT inhibitors as disease-modifying therapies, however, the potential adverse effects of systemic or global CNS pathway inhibition limits their use. Development of more targeted therapeutics will require a detailed understanding of JAK/STAT-induced epileptogenic responses in different cell types. To this end, we have developed a new transgenic line where dimer-dependent STAT3 signaling is functionally knocked out (fKO) by tamoxifen-induced Cre expression specifically in forebrain excitatory neurons (eNs) via the Calcium/Calmodulin Dependent Protein Kinase II alpha (CamK2a) promoter. Most recently, we have demonstrated that STAT3 KO in excitatory neurons (eNSTAT3fKO) markedly reduces the progression of epilepsy (SRS frequency) in the intrahippocampal kainate (IHKA) TLE model and protects mice from kainic acid (KA)-induced memory deficits as assessed by Contextual Fear Conditioning. Using data from bulk hippocampal tissue RNA-sequencing, we further discovered a transcriptomic signature for the IHKA model that contains a substantial number of genes, particularly in synaptic plasticity and inflammatory gene networks, that are down-regulated after KA-induced SE in wild-type but not eNSTAT3fKO mice. Finally, we will review data from other models of brain injury that lead to epilepsy, such as TBI, that implicate activation of the JAK/STAT pathway that may contribute to epilepsy development.

SeminarNeuroscienceRecording

What transcriptomics tells us about retinal development, disease and evolution

Joshua Sanes
Harvard University
Nov 21, 2021

Classification of neurons, long viewed as a fairly boring enterprise, has emerged as a major bottleneck in analysis of neural circuits. High throughput single cell RNA-seq has provided a new way to improve the situation. We initially applied this method to mouse retina, showing that its five neuronal classes (photoreceptors, three groups of interneurons, and retinal ganglion cells) can be divided into 130 discrete types. We then applied the method to other species including human, macaque, zebrafish and chick. With the atlases in hand, we are now using them to address questions about how retinal cell types diversify, how they differ in their responses to injury and disease, and the extent to which cell classes and types are conserved among vertebrates.

SeminarNeuroscience

From genetics to neurobiology through transcriptomic data analysis

Ahmed Mahfouz
Leiden University Medical Center (LUMC)
May 5, 2021

Over the past years, genetic studies have uncovered hundreds of genetic variants to be associated with complex brain disorders. While this really represents a big step forward in understanding the genetic etiology of brain disorders, the functional interpretation of these variants remains challenging. We aim to help with the functional characterization of variants through transcriptomic data analysis. For instance, we rely on brain transcriptome atlases, such as Allen Brain Atlases, to infer functional relations between genes. One example of this is the identification of signaling mechanisms of steroid receptors. Further, by integrating brain transcriptome atlases with neuropathology and neuroimaging data, we identify key genes and pathways associated with brain disorders (e.g. Parkinson's disease). With technological advances, we can now profile gene expression in single-cells at large scale. These developments have presented significant computational developments. Our lab focuses on developing scalable methods to identify cells in single-cell data through interactive visualization, scalable clustering, classification, and interpretable trajectory modelling. We also work on methods to integrate single-cell data across studies and technologies.

SeminarNeuroscienceRecording

Organization of Midbrain Serotonin System

Jing Ren
MRC Laboratory of Molecular Biology, Cambridge
Mar 8, 2021

The serotonin system is the most frequently targeted neural system pharmacologically for treating psychiatric disorders, including depression and anxiety. Serotonin neurons of the dorsal and median raphe nuclei (DR, MR) collectively innervate the entire forebrain and midbrain, modulating diverse physiology and behaviour. By using viral-genetic methods, we found that DR serotonin system contains parallel sub-systems that differ in input and output connectivity, physiological response properties, and behavioural functions. To gain a fundamental understanding of the molecular heterogeneity of DR and MR, we used single-cell RNA - sequencing (scRNA-seq) to generate a comprehensive dataset comprising eleven transcriptomically distinct serotonin neuron clusters. We generated novel intersectional viral-genetic tools to access specific subpopulations. Whole-brain axonal projection mapping revealed that the molecular features of these distinct serotonin groups reflect their anatomical organization and provide tools for future exploration of the full projection map of molecularly defined serotonin groups. The molecular architecture of serotonin system lays the foundation for integrating anatomical, neurochemical, physiological, and behavioural functions.

SeminarNeuroscienceRecording

Novel Tools for Spatial and Temporal Genomics

Fei Chen
Broad Institute
Nov 22, 2020

The precise spatial localization of molecular signals within tissues richly informs the mechanisms of tissue formation and function. Here, we’ll introduce Slide-seq, a technology which enables transcriptome-wide measurements with near-single cell spatial resolution. We’ll describe recent experimental and computational advances to enable Slide-seq in biological contexts in biological contexts where high detection sensitivity is important. More broadly, we’ll discuss the promise and challenges of spatial transcriptomics for tissue genomics. Lastly, we’ll touch upon novel molecular recording technologies, which allows recording of the absolute time dynamics of gene expression in live systems into DNA sequences.

SeminarNeuroscienceRecording

Microglia function and dysfunction in Alzheimer’s disease

Beth Stevens
Harvard Medical School
Oct 7, 2020

Emerging genetic studies of late-onset Alzheimer’s Disease implicate the brain’s resident macrophages in the pathogenesis of AD. More than half the risk genes associated with late-onset AD are selectively expressed in microglia and peripheral myeloid cells; yet we know little about the underlying biology or how myeloid cells contribute to AD pathogenesis. Using single-cell RNA sequencing and spatial transcriptomics we identified molecular signatures that can be used to localize and monitor distinct microglia functional states in the human and mouse brain. Our results show that microglia assume diverse functional states in development, aging and injury, including populations corresponding to known microglial functions including proliferation, migration, inflammation, and synaptic phagocytosis. We identified several innate immune pathways by which microglia recognize and prune synapses during development and in models of Alzheimer’s disease, including the classical complement cascade. Illuminating the mechanisms by which developing synaptic circuits are sculpted is providing important insight on understanding how to protect synapses in Alzheimer’s and other neurodegenerative diseases of synaptic dysfunction.

SeminarNeuroscienceRecording

Sparks, flames, and inferno: epileptogenesis in the glioblastoma microenvironment

Jeff Noebels
Baylor College of Medicine
Oct 6, 2020

Glioblastoma cells trigger pharmacoresistant seizures that may promote tumor growth and diminish the quality of remaining life. To define the relationship between growth of glial tumors and their neuronal microenvironment, and to identify genomic biomarkers and mechanisms that may point to better prognosis and treatment of drug resistant epilepsy in brain cancer, we are analyzing a new generation of genetically defined CRISPR/in utero electroporation inborn glioblastoma (GBM) tumor models engineered in mice. The molecular pathophysiology of glioblastoma cells and surrounding neurons and untransformed astrocytes are compared at serial stages of tumor development. Initial studies reveal that epileptiform EEG spiking is a very early and reliable preclinical signature of GBM expansion in these mice, followed by rapidly progressive seizures and death within weeks. FACS-sorted transcriptomic analysis of cortical astrocytes reveals the expansion of a subgroup enriched in pro-synaptogenic genes that may drive hyperexcitability, a novel mechanism of epileptogenesis. Using a prototypical GBM IUE model, we systematically define and correlate the earliest appearance of cortical hyperexcitability with progressive cortical tumor cell invasion, including spontaneous episodes of spreading cortical depolarization, innate inflammation, and xCT upregulation in the peritumoral microenvironment. Blocking this glutamate exporter reduces seizure load. We show that the host genome contributes to seizure risk by generating tumors in a monogenic deletion strain (MapT/tau -/-) that raises cortical seizure threshold. We also show that the tumor variant profile determines epilepsy risk. Our genetic dissection approach sets the stage to broadly explore the developmental biology of personalized tumor/host interactions in mice engineered with novel human tumor mutations in specified glial cell lineages.

SeminarNeuroscience

Neurobiology of Social Behavior

Catherine Dulac
Harvard University
Sep 23, 2020

Social interactions are central to the human experience, yet it is also one of the faculty of the brain that is the most impaired by mental illness. Similarly, social interactions are essential for animals to survive, reproduce, and raise their young. Over the years, my lab has attempted to decipher the unique characteristics of social recognition: what are the unique cues that trigger distinct social behaviors, what is the nature and identity of social behavior circuits, how is the function of these circuits different in males and females and how are they modulated by the animal physiological status? In this lecture, I will describe our recent progress in using genetic, imaging, molecular and behavioral approaches to understand how the brain controls specific social behaviors in both males and females, and how areas throughout the brain participate in the positive and negative controls of specific social interactions. I will also describe how new approaches of single cell transcriptomics have enabled us to uncover specific cell populations involved in distinct social behaviors and the basis of their activity modulation according to the animal state.

SeminarNeuroscienceRecording

The Fabric of the Neocortex

Andreas Tolias
Baylor College of Medicine
Jun 29, 2020
SeminarNeuroscienceRecording

Toward a Comprehensive Classification of Mouse Retinal Ganglion Cells: Morphology, Function, Gene Expression, and Central Projections

Greg Schwartz
Northwestern University, Feinberg School of Medicine
Jun 28, 2020

I will introduce a web portal for the retinal neuroscience community to explore the catalog of mouse retinal ganglion cell (RGC) types, including data on light responses, correspondences with morphological types in EyeWire, and gene expression data from single-cell transcriptomics. Our current classification includes 43 types, accounting for 90% of the cells in EyeWire. Many of these cell types have new stories to tell, and I will cover two of them that represent opposite ends of the spectrum of levels of analysis in my lab. First, I will introduce the “Bursty Suppressed-by-Contrast” RGC and show how its intrinsic properties rather than its synaptic inputs differentiate its function from that of a different well-known RGC type. Second, I will present the histogram of cell types that project to the Olivary Pretectal Nucleus, focusing on the recently discovered M6 ipRGC.

SeminarNeuroscienceRecording

The evolutionary origins of cortical cell types

Maria Tosches
Columbia University
May 20, 2020

In the last 500 million years, the dorsal telencephalon changed like no other region of the vertebrate brain. Differences range from the six-layered neocortex of mammals, to the small three-layered cortex of reptiles, and the complete absence of lamination in birds. These anatomical differences have prompted endless discussions on the origins and evolution of the cerebral cortex. We have approached this problem from a cell type and transcriptomics perspective. This reveals a more granular picture, where different cell types and classes have followed independent trajectories of evolutionary change. In this presentation, I will discuss how the molecular analysis of cell types in the brains of turtles, lizards and amphibians is updating our views on the evolution of the cerebral cortex, and the new questions emerging from these results.

ePoster

A transcriptomic axis predicts state modulation of cortical interneurons

COSYNE 2022

ePoster

A transcriptomic axis predicts state modulation of cortical interneurons

COSYNE 2022

ePoster

Can a conserved transcriptomic axis predict state modulation of cortical interneurons?

Joram Keijser, Loreen Hertäg, Henning Sprekeler

COSYNE 2023

ePoster

BrainTrawler Lite: Navigating through a multi-scale multi-modal gene transcriptomics data resource through a lightweight user interface

Bianca Burger, Tobias Peherstorfer, Sophia Ulonska, Florian Ganglberger, Domic Kargl, Simone Locato, Bader Al-Hamdan, Marvin Kleinlehner, Wulf Haubensak, Katja Bühler

FENS Forum 2024

ePoster

Combined bulk transcriptomics reveals a neurodevelopmental signature in the Alzheimer’s disease postmortem brain

Giovanna Carello-Collar, Marco A. De Bastiani, João Pedro Ferrari-Souza, Christian Limberger, Alexandre Santos Cristino, Diogo O. Souza, Eduardo R. Zimmer

FENS Forum 2024

ePoster

Combined electrophysiologic and transcriptomic characterization reveals different functional populations of GABAergic spinal neurons in neuropathic pain mouse model

Charline Kambrun, Florian Specque, Vanessa Rouglan, Alexis Groppi, Macha Nikolski, Alexandre Favereaux, Yves Le Feuvre

FENS Forum 2024

ePoster

Cortical transcriptomic effects of the non-hallucinogenic 2-bromo LSD

Vern Lewis, Argel Aguilar Valles

FENS Forum 2024

ePoster

Electrophysiologic, transcriptomic, and morphologic plasticity of spinal inhibitory neurons to decipher atypical mechanosensory perception in Autism Spectrum Disorder

Anna Saint-Jean, Vanessa Rouglan, Florian Specque, Alexis Groppi, Macha Nikolski, Alexandre Favereaux, Yves Le Feuvre

FENS Forum 2024

ePoster

Epitranscriptomic regulation of synaptic plasticity via novel pharmacological tools

Rahaf Keskinen, Joni Haikonen, Sari Lauri

FENS Forum 2024

ePoster

Examining the transcriptomic signature of the thalamus in a dual-hit rat model of schizophrenia: Insights into gender-specific alterations

Blanca Sánchez-Moreno, Ángela Calzado-González, Ana Isabel Fraga-Sánchez, Inés García-Ortiz, Miriam Martínez-Jiménez, Claudio Toma, David Vega-Avelaira, Javier Gilabert-Juan

FENS Forum 2024

ePoster

Exploring the neural transcriptomic environment of TLR7-activated neuroinflammation

Kirstyn Gardner-Stephen, Rhona McGonigal, Alison McColl, Louis Nerurkar, John Cole, Nigel Jamieson, Jonathan Cavanagh

FENS Forum 2024

ePoster

Identifying candidate genes associated with hippocampal dysfunction in a hemiparkinsonian rat model by transcriptomic profiling

Bohye Kim, Sungmoo Hong, Jeongmin Lee, Sohi Kang, Joong-Sun Kim, Taekyun Shin, BuHyun Youn, Changjong Moon

FENS Forum 2024

ePoster

Impairment of the placenta–cortex transcriptomic signature following prenatal alcohol exposure, leading to dysregulation of angiogenic pathways

Anthony Falluel-Morel, Camille Sautreuil, Maryline Lecointre, Céline Derambure, Carole Brasse-Lagnel, Philippe Leroux, Annie Laquerrière, Gaël Nicolas, Sophie Gil, Daniel D. Savage, Stéphane Marret, Florent Marguet, Bruno J. Gonzalez

FENS Forum 2024

ePoster

Influence of the APOE4 risk factor on hippocampal epigenetic and transcriptomic signatures in a physiological and pathological environment indicative of dementia with Lewy bodies (DLB)

Iris Grgurina, Isabel Paiva, Stephanie Le Gras, Damien Plassard, Brigitte Cosquer, Charles Decraene, Gaetan Ternier, Tracy Bellande, Chantal Mathis, Ronald Melki, Paolo Giacobini, Karine Merienne, Anne-Laurence Boutillier

FENS Forum 2024

ePoster

Integrating network activity with transcriptomic profiling in hiPSCs-derived neuronal networks to understand the molecular drivers of functional heterogeneity in the context of neurodevelopmental disorders

Sofia Puvogel, Ummi Ciptasari, Eline van Hugte, Shan Wang, Nicky Scheefhals, Astrid Oudakker, Chantal Schoenmaker, Ka Man Wu, Hans van Bokhoven, Dirk Schubert, Nael Nadif Kasri

FENS Forum 2024

ePoster

Intuitive access to spatially linked brain activity and transcriptomic data using BrainTrawler

Tobias Peherstorfer, Bianca Burger, Sophia Ulonska, Florian Ganglberger, Dominic Kargl, Julien Hernandez-Lallement, Simone Lucato, Bader Al-Hamdan, Marvin Kleinlehner, Wulf Haubensak, Katja Bühler

FENS Forum 2024

ePoster

Longitudinal single-cell and brain transcriptomic characterization of microglia signatures during experimental demyelination and remyelination

Athena Boutou, Ilias Roufagalas, Katerina Politopoulou, Spyros Tastsoglou, Maya Abouzeid, Giorgos Skoufos, Michael R Johnson, Lesley Probert

FENS Forum 2024

ePoster

NETSseq enhances the understanding of cerebellar transcriptomic changes in ataxia-telangiectasia

Jenna Harvey, Giuliano Stirparo, Russell Burley, Xioa Xu, Jason Lawrence, David Cadwalladr, Toni Thompson, Daniel Barker, Victoria Mulligan, Keith Page, Louise Dickson, Steve Sheardown, Lee Dawson, Mark Carlton, Justin Powell, Nicola Brice

FENS Forum 2024

ePoster

Neuronal taxonomy of the human dorsal striatum by single nuclei transcriptomics

Ana B. Muñoz-Manchado, Lisbeth Harder, Gabriel González-Ulloa, Leonardo Garma, Juan M. Barba-Reyes, Sergio Marco-Salas, Mónica Díez-Salguero, Mats Nilsson, Alberto Serrano-Pozo, Bradley T. Hyman

FENS Forum 2024

ePoster

Normalization of the accumbal cell type-specific transcriptomic signatures and anxiety-like behaviour following treatment with a mitochondrial booster in outbred rats

Dogukan Ulgen, David Mallet, Carmen Sandi

FENS Forum 2024

ePoster

Proteomic and transcriptomic analysis of Id2- and Ascl4-induced wiring in adult hippocampal granule cells

Charlotte Seng, Wenshu Luo, Csaba Földy

FENS Forum 2024

ePoster

Single-cell transcriptomic profiles of the ventral hippocampus in response to prolonged chronic stress and antidepressant action

Benedetta Bigio, Shofiul Azam, Neelu John, Yotam Sagi, Chaitan Khosla, Carla Nasca

FENS Forum 2024

ePoster

Single-cell volumetric transcriptomic atlas of the adult zebrafish forebrain reveals teleost homologues of cortical and subcortical structures from terrestrial vertebrates

Bjørn André Bredesen-Aa, Francisca Acuna-Hinrichsen, Anh-Tuan Trinh, Yağnur Işık Çiftci, Astha Gupta, Annette Bogdoll, Benedikt S. Nilges, Nachiket D. Kashikar, Mehmet Ilyas Cosacak, Caghan Kizil, Bram Serneels, Nathalie Jurisch-Yaksi, Emre Yaksi

FENS Forum 2024

ePoster

Single-nucleus and spatial transcriptomic profiling of human temporal cortex and associated white matter reveals novel AD trait associations

Pallavi Gaur, Julien Bryois, Daniela Calini, Lynette Foo, Jeroen J M Hoozemans, Dheeraj Malhotra, Vilas Menon

FENS Forum 2024

ePoster

Spatial transcriptomics-correlated electron microscopy integrates transcriptional and ultrastructural responses to brain injury

Peter Androvic, Martina Schifferer, Katrin Perez Anderson, Ludovico Cantuti-Castelvetri, Hanyi Jiang, Hao Ji, Lu Liu, Garyfallia Gouna, Stefan Berghoff, Simon Besson-Girard, Johanna Knoferle, Mikael Simons, Ozgun Gokce

FENS Forum 2024

ePoster

Spatial transcriptomics reveals common pathways in Alzheimer's disease and Down syndrome

Arshi Shahin, Emily Miyoshi, Samuel Morabito, Caden Henningfield, Begin Rahimzadeh, Sudeshna Das, Elizabeth Head, Kim Green, Vivek Swarup

FENS Forum 2024

ePoster

Spatially resolved transcriptomics of newborn human prefrontal cortex

Kseniia Kubenko, Olga Efimova, Ilia Kurochkin, Aljes Binkevich, Zhenzhen Song, Anna Tkachev, Philipp Khaitovich

FENS Forum 2024

ePoster

Transcriptomic analysis of the effects of a single dose of ibogaine: Uncovering potential therapeutic pathways in mice

Judit Biosca-Brull, Genis Ona, Lineth Alarcón-Franco, Séfora Barberà-Parada, Maria Teresa Colomina

FENS Forum 2024

ePoster

Transcriptomic characterization of maturing neurons from human neural stem cells across developmental time points and their application in developmental neurotoxicity screening

Kimia Hosseini, Gaëtan Philippot, Sara Salomonsson, Andrea Cediel-Ulloa, Elnaz Gholizadeh, Anna Forsby, Robert Fredriksson

FENS Forum 2024

ePoster

The transcriptomic landscape of spinal V1 interneurons implicates a specific molecular subset in the control of locomotor speed

Alexandra Trevisan, Katie Han, Phillip Chapman, Anand Kulkarni, Jennifer Hinton, Cody Ramirez, Ines Klein, Mariano Gabitto, Vilas Menon, Graziana Gatto, Jay Bikoff

FENS Forum 2024

ePoster

Transcriptomic and sublaminar dynamics of the developing human frontal cortex: A novel approach

Janja Kopić, Parthiv Haldipur, Leonarda Grandverger, Jure Krasić, Zeljka Krsnik

FENS Forum 2024

ePoster

Understanding LZK-mediated reactive astrogliosis and neuronal repair using mouse molecular genetics and transcriptomic profiling

Kween Agba, Tiffany Gavin, Binhai Zheng

FENS Forum 2024

ePoster

Unveiling molecular signatures in resilience following child abuse: Noradrenergic cells transcriptomics in human post-mortem tissues

Déa Slavova, Maria Antonietta Davoli, Céline Keime, Erika Vigneault, Corina Nagy, Naguib Mechawar, Bruno Giros, Elsa Isingrini

FENS Forum 2024

ePoster

Visual impairments in a mouse model of multiple sclerosis: A transcriptomic analysis

Taekyun Shin

FENS Forum 2024

ePoster

ModuleXplore: A user-friendly Shiny application to compare gene co-expression modules within and across transcriptomic datasets

Rachel Smith

Neuromatch 5